1
|
Ghanemi A, Melouane A, Yoshioka M, St-Amand J. Exercise and High-Fat Diet in Obesity: Functional Genomics Perspectives of Two Energy Homeostasis Pillars. Genes (Basel) 2020; 11:genes11080875. [PMID: 32752100 PMCID: PMC7463441 DOI: 10.3390/genes11080875] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
The heavy impact of obesity on both the population general health and the economy makes clarifying the underlying mechanisms, identifying pharmacological targets, and developing efficient therapies for obesity of high importance. The main struggle facing obesity research is that the underlying mechanistic pathways are yet to be fully revealed. This limits both our understanding of pathogenesis and therapeutic progress toward treating the obesity epidemic. The current anti-obesity approaches are mainly a controlled diet and exercise which could have limitations. For instance, the “classical” anti-obesity approach of exercise might not be practical for patients suffering from disabilities that prevent them from routine exercise. Therefore, therapeutic alternatives are urgently required. Within this context, pharmacological agents could be relatively efficient in association to an adequate diet that remains the most efficient approach in such situation. Herein, we put a spotlight on potential therapeutic targets for obesity identified following differential genes expression-based studies aiming to find genes that are differentially expressed under diverse conditions depending on physical activity and diet (mainly high-fat), two key factors influencing obesity development and prognosis. Such functional genomics approaches contribute to elucidate the molecular mechanisms that both control obesity development and switch the genetic, biochemical, and metabolic pathways toward a specific energy balance phenotype. It is important to clarify that by “gene-related pathways”, we refer to genes, the corresponding proteins and their potential receptors, the enzymes and molecules within both the cells in the intercellular space, that are related to the activation, the regulation, or the inactivation of the gene or its corresponding protein or pathways. We believe that this emerging area of functional genomics-related exploration will not only lead to novel mechanisms but also new applications and implications along with a new generation of treatments for obesity and the related metabolic disorders especially with the modern advances in pharmacological drug targeting and functional genomics techniques.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada; (A.G.); (A.M.)
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Aicha Melouane
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada; (A.G.); (A.M.)
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada; (A.G.); (A.M.)
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-418-654-2296; Fax: +1-418-654-2761
| |
Collapse
|
2
|
Correia CN, McLoughlin KE, Nalpas NC, Magee DA, Browne JA, Rue-Albrecht K, Gordon SV, MacHugh DE. RNA Sequencing (RNA-Seq) Reveals Extremely Low Levels of Reticulocyte-Derived Globin Gene Transcripts in Peripheral Blood From Horses ( Equus caballus) and Cattle ( Bos taurus). Front Genet 2018; 9:278. [PMID: 30154823 PMCID: PMC6102425 DOI: 10.3389/fgene.2018.00278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
RNA-seq has emerged as an important technology for measuring gene expression in peripheral blood samples collected from humans and other vertebrate species. In particular, transcriptomics analyses of whole blood can be used to study immunobiology and develop novel biomarkers of infectious disease. However, an obstacle to these methods in many mammalian species is the presence of reticulocyte-derived globin mRNAs in large quantities, which can complicate RNA-seq library sequencing and impede detection of other mRNA transcripts. A range of supplementary procedures for targeted depletion of globin transcripts have, therefore, been developed to alleviate this problem. Here, we use comparative analyses of RNA-seq data sets generated from human, porcine, equine, and bovine peripheral blood to systematically assess the impact of globin mRNA on routine transcriptome profiling of whole blood in cattle and horses. The results of these analyses demonstrate that total RNA isolated from equine and bovine peripheral blood contains very low levels of globin mRNA transcripts, thereby negating the need for globin depletion and greatly simplifying blood-based transcriptomic studies in these two domestic species.
Collapse
Affiliation(s)
- Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - Kirsten E McLoughlin
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - Kevin Rue-Albrecht
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research University College Dublin, Dublin, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Miura S, Himaki T, Takahashi J, Iwahashi H. THE ROLE OF TRANSCRIPTOMICS: PHYSIOLOGICAL EQUIVALENCE BASED ON GENE EXPRESSION PROFILES. ACTA ACUST UNITED AC 2017. [DOI: 10.7831/ras.5.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shiori Miura
- The United Graduate School of Agricultural Science, Gifu University
| | - Takehiro Himaki
- The United Graduate School of Agricultural Science, Gifu University
| | - Junko Takahashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Hitoshi Iwahashi
- The United Graduate School of Agricultural Science, Gifu University
| |
Collapse
|
4
|
Rai S, Bhatnagar S. Hyperlipidemia, Disease Associations, and Top 10 Potential Drug Targets: A Network View. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:152-68. [DOI: 10.1089/omi.2015.0172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sneha Rai
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| |
Collapse
|
5
|
Whole Blood Transcriptomics Is Relevant to Identify Molecular Changes in Response to Genetic Selection for Feed Efficiency and Nutritional Status in the Pig. PLoS One 2016; 11:e0146550. [PMID: 26752050 PMCID: PMC4709134 DOI: 10.1371/journal.pone.0146550] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/19/2015] [Indexed: 11/24/2022] Open
Abstract
The molecular mechanisms underlying feed efficiency need to be better understood to improve animal efficiency, a research priority to support a competitive and sustainable livestock production. This study was undertaken to determine whether pig blood transcriptome was affected by differences in feed efficiency and by ingested nutrients. Growing pigs from two lines divergently selected for residual feed intake (RFI) and fed isoproteic and isocaloric diets contrasted in energy source and nutrients were considered. Between 74 and 132 days of age, pigs (n = 12 by diet and by line) received a regular diet rich in cereals and low in fat (LF) or a diet where cereals where partially substituted by lipids and fibers (HF). At the end of the feeding trial, the total number of white blood cells was not affected by the line or by the diet, whereas the red blood cell number was higher (P<0.001) in low RFI than in high RFI pigs. Analysis of the whole blood transcriptome using a porcine microarray reveals a higher number of probes differentially expressed (DE) between RFI lines than between diets (2,154 versus 92 probes DE, P<0.01). This corresponds to 528 overexpressed genes and 477 underexpressed genes in low RFI pigs compared with high RFI pigs, respectively. Overexpressed genes were predominantly associated with translational elongation. Underexpressed genes were mainly involved in the immune response, regulation of inflammatory response, anti-apoptosis process, and cell organization. These findings suggest that selection for RFI has affected the immune status and defense mechanisms of pigs. Genes DE between diets were mainly related to the immune system and lipid metabolism. Altogether, this study demonstrates the usefulness of the blood transcriptome to identify the main biological processes affected by genetic selection and feeding strategies.
Collapse
|
6
|
Óvilo C, Benítez R, Fernández A, Isabel B, Núñez Y, Fernández AI, Rodríguez C, Daza A, Silió L, López-Bote C. Dietary energy source largely affects tissue fatty acid composition but has minor influence on gene transcription in Iberian pigs. J Anim Sci 2014; 92:939-54. [PMID: 24492573 DOI: 10.2527/jas.2013-6988] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A trial was performed to compare the effects of different dietary sources of MUFA on the fatty acid (FA) composition, lipid metabolism, and gene transcription in different tissues of Iberian pigs. Twenty-seven Iberian male pigs of 28 kg live weight (LW) were divided in 2 groups and fed with 1 of 2 isocaloric diets: a standard diet with carbohydrates as energy source (CH) and a diet enriched with high-oleic sunflower oil (HO). Ham adipose tissue was sampled by biopsy at 44 and 70 kg LW. At 110 kg LW pigs were slaughtered and backfat, loin, and liver tissues were sampled. Animals of the HO group showed higher MUFA content and lower SFA in all the analyzed tissues (P < 0.001). These main effects were established early during the treatment and increased only slightly along time. Small diet effects were also detected on PUFA, which showed differences according to sampling time, tissue, and lipid fraction. Effects of diet on gene expression were explored with a combined approach analyzing adipose tissue transcriptome and quantifying the expression of a panel of key genes implicated in lipogenesis and lipid metabolism processes in backfat, muscle, and liver. Backfat transcriptome showed small effects of diet on gene expression, in number and magnitude. According to the posterior probabilities (PP) of the probe-specific expression differences between dietary groups (PP < 0.01), 37 genes were considered differentially expressed (DE). Gene ontology allowed relating them with several biological functions including lipid metabolic processes. Quantitative PCR confirmed several DE genes in adipose tissue (RXRG, LEP, and ME1; P < 0.0001, P < 0.05, and P < 0.0001, respectively), but no DE gene was found in loin or liver tissues. Joint results agree with a metabolic adjustment of adipose tissue FA levels by the subtle effect of the diet on the regulation of several lipid metabolism pathways, mainly FA oxidation and prostanoid synthesis, with LEP, RXRG, and PTGS2 genes playing mayor roles.
Collapse
Affiliation(s)
- C Óvilo
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cooper CA, Moraes LE, Murray JD, Owens SD. Hematologic and biochemical reference intervals for specific pathogen free 6-week-old Hampshire-Yorkshire crossbred pigs. J Anim Sci Biotechnol 2014; 5:5. [PMID: 24410946 PMCID: PMC3898366 DOI: 10.1186/2049-1891-5-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/07/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hematologic and biochemical reference intervals depend on many factors, including age. A review of the literature highlights the lack of reference intervals for 6-wk-old specific pathogen free (SPF) Hampshire-Yorkshire crossbred pigs. For translational research, 6-wk-old pigs represent an important animal model for both human juvenile colitis and diabetes mellitus type 2 given the similarities between the porcine and human gastrointestinal maturation process. The aim of this study was to determine reference intervals for hematological and biochemical parameters in healthy 6-wk-old crossbred pigs. Blood samples were collected from 66 clinically healthy Hampshire-Yorkshire pigs. The pigs were 6 wks old, represented both sexes, and were housed in a SPF facility. Automated hematological and biochemical analysis were performed using an ADVIA 120 Hematology System and a Cobas 6000 C501 Clinical Chemistry Analyzer. RESULTS Reference intervals were calculated using both parametric and nonparametric methods. The mean, median, minimum, and maximum values were calculated. CONCLUSION As pigs are used more frequently as medical models of human disease, having reference intervals for commonly measured hematological and biochemical parameters in 6-wk-old pigs will be useful. The reference intervals calculated in this study will aid in the diagnosis and monitoring of both naturally occurring and experimentally induced disease. In comparison to published reference intervals for older non SPF pigs, notable differences in leukocyte populations, and in levels of sodium, potassium, glucose, protein, and alkaline phosphatase were observed.
Collapse
Affiliation(s)
| | | | | | - Sean D Owens
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|