1
|
Abd Alla J, Quitterer U. The RAF Kinase Inhibitor Protein (RKIP): Good as Tumour Suppressor, Bad for the Heart. Cells 2022; 11:cells11040654. [PMID: 35203304 PMCID: PMC8869954 DOI: 10.3390/cells11040654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
The RAF kinase inhibitor protein, RKIP, is a dual inhibitor of the RAF1 kinase and the G protein-coupled receptor kinase 2, GRK2. By inhibition of the RAF1-MAPK (mitogen-activated protein kinase) pathway, RKIP acts as a beneficial tumour suppressor. By inhibition of GRK2, RKIP counteracts GRK2-mediated desensitisation of G protein-coupled receptor (GPCR) signalling. GRK2 inhibition is considered to be cardioprotective under conditions of exaggerated GRK2 activity such as heart failure. However, cardioprotective GRK2 inhibition and pro-survival RAF1-MAPK pathway inhibition counteract each other, because inhibition of the pro-survival RAF1-MAPK cascade is detrimental for the heart. Therefore, the question arises, what is the net effect of these apparently divergent functions of RKIP in vivo? The available data show that, on one hand, GRK2 inhibition promotes cardioprotective signalling in isolated cardiomyocytes. On the other hand, inhibition of the pro-survival RAF1-MAPK pathway by RKIP deteriorates cardiomyocyte viability. In agreement with cardiotoxic effects, endogenous RKIP promotes cardiac fibrosis under conditions of cardiac stress, and transgenic RKIP induces heart dysfunction. Supported by next-generation sequencing (NGS) data of the RKIP-induced cardiac transcriptome, this review provides an overview of different RKIP functions and explains how beneficial GRK2 inhibition can go awry by RAF1-MAPK pathway inhibition. Based on RKIP studies, requirements for the development of a cardioprotective GRK2 inhibitor are deduced.
Collapse
Affiliation(s)
- Joshua Abd Alla
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Ursula Quitterer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Department of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-44-632-9801
| |
Collapse
|
2
|
RKIP Pleiotropic Activities in Cancer and Inflammatory Diseases: Role in Immunity. Cancers (Basel) 2021; 13:cancers13246247. [PMID: 34944867 PMCID: PMC8699197 DOI: 10.3390/cancers13246247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The human body consists of tissues and organs formed by cells. In each cell there is a switch that allows the cell to divide or not. In contrast, cancer cells have their switch on which allow them to divide and invade other sites leading to death. Over two decades ago, Doctor Kam Yeung, University of Toledo, Ohio, has identified a factor (RKIP) that is responsible for the on/off switch which functions normally in healthy tissues but is inactive or absent in cancers. Since this early discovery, many additional properties have been ascribed to RKIP including its role in inhibiting cancer metastasis and resistance to therapeutics and its role in modulating the normal immune response. This review describes all of the above functions of RKIP and suggesting therapeutics to induce RKIP in cancers to inhibit their growth and metastases as well as inhibit its activity to treat non-cancerous inflammatory diseases. Abstract Several gene products play pivotal roles in the induction of inflammation and the progression of cancer. The Raf kinase inhibitory protein (RKIP) is a cytosolic protein that exerts pleiotropic activities in such conditions, and thus regulates oncogenesis and immune-mediated diseases through its deregulation. Herein, we review the general properties of RKIP, including its: (i) molecular structure; (ii) involvement in various cell signaling pathways (i.e., inhibition of the Raf/MEK/ERK pathway; the NF-kB pathway; GRK-2 or the STAT-3 pathway; as well as regulation of the GSK3Beta signaling; and the spindle checkpoints); (iii) regulation of RKIP expression; (iv) expression’s effects on oncogenesis; (v) role in the regulation of the immune system to diseases (i.e., RKIP regulation of T cell functions; the secretion of cytokines and immune mediators, apoptosis, immune check point inhibitors and RKIP involvement in inflammatory diseases); and (vi) bioinformatic analysis between normal and malignant tissues, as well as across various immune-related cells. Overall, the regulation of RKIP in different cancers and inflammatory diseases suggest that it can be used as a potential therapeutic target in the treatment of these diseases.
Collapse
|
3
|
Yesilkanal AE, Rosner MR. Targeting Raf Kinase Inhibitory Protein Regulation and Function. Cancers (Basel) 2018; 10:cancers10090306. [PMID: 30181452 PMCID: PMC6162369 DOI: 10.3390/cancers10090306] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
Raf Kinase Inhibitory Protein (RKIP) is a highly conserved kinase inhibitor that functions as a metastasis suppressor in a variety of cancers. Since RKIP can reprogram tumor cells to a non-metastatic state by rewiring kinase networks, elucidating the mechanism by which RKIP acts not only reveals molecular mechanisms that regulate metastasis, but also represents an opportunity to target these signaling networks therapeutically. Although RKIP is often lost during metastatic progression, the mechanism by which this occurs in tumor cells is complex and not well understood. In this review, we summarize our current understanding of RKIP regulation in tumors and consider experimental and computational strategies for recovering or mimicking its function by targeting mediators of metastasis.
Collapse
Affiliation(s)
- Ali Ekrem Yesilkanal
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
4
|
Qi ZH, Xu HX, Zhang SR, Xu JZ, Li S, Gao HL, Jin W, Wang WQ, Wu CT, Ni QX, Yu XJ, Liu L. RIPK4/PEBP1 axis promotes pancreatic cancer cell migration and invasion by activating RAF1/MEK/ERK signaling. Int J Oncol 2018; 52:1105-1116. [PMID: 29436617 PMCID: PMC5843398 DOI: 10.3892/ijo.2018.4269] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is a lethal disease with a high metastatic potential. In our previous study, we identified a specific subgroup of patients with pancreatic cancer with a serum signature of carcinoembryonic antigen (CEA)+/cancer antigen (CA)125+/CA19-9 ≥1,000 U/ml. In this study, by using high-throughput screening analysis, we found that receptor-interacting protein kinases 4 (RIPK4) may be a key molecule involved in the high metastatic potential of this subgroup of patients with pancreatic cancer. A high RIPK4 expression predicted a poor prognosis and promoted pancreatic cancer cell migration and invasion via the RAF1/MEK/ERK pathway. Moreover, RIPK4 activated the RAF1/MEK/ERK pathway by regulating proteasome-mediated phosphatidylethanolamine binding protein 1 (PEBP1) degradation. The suppression of PEBP1 degradation eliminated the RIPK4-induced activation of RAF1/MEK/ERK signaling and pancreatic cancer cell migration or invasion. Thus, on the whole, the findings of this study indicated that RIPK4 was upregulated in the subgroup of pancreatic cancer with a high metastatic potential. RIPK4 overexpression promoted pancreatic cancer cell migration and invasion via the PEBP1 degradation-induced activation of the RAF1/MEK/ERK pathway.
Collapse
Affiliation(s)
- Zi-Hao Qi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Hua-Xiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Shi-Rong Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Jin-Zhi Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - He-Li Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Wei Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Chun-Tao Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Quan-Xing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
5
|
Store-operated Ca 2+ Entry Facilitates the Lipopolysaccharide-induced Cyclooxygenase-2 Expression in Gastric Cancer Cells. Sci Rep 2017; 7:12813. [PMID: 29038542 PMCID: PMC5643532 DOI: 10.1038/s41598-017-12648-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori has been identified as one of the major causes of chronic gastritis, gastric and duodenal ulcers, and gastric cancer. Lipopolysaccharide (LPS) is a major component of the outer membrane of gram-negative bacteria, and H. pylori LPS might play an exclusively important role in activating inflammatory pathways in monocytes and macrophages. To study the role of LPS in the underlying mechanism of inflammatory responses, we established an in vitro model using the human AGS gastric cancer cell line. We found that LPS mediates inflammation through setting off a cascade of events: activation of the store-operated calcium (SOC) channel, initiation of downstream NF-κB signaling, and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). Phosphorylated ERK1/2 promotes the nuclear translocation of NF-κB, and eventually elevates the expression level of COX-2, a major inflammatory gene.
Collapse
|
6
|
Lee S, Wottrich S, Bonavida B. Crosstalks between Raf-kinase inhibitor protein and cancer stem cell transcription factors (Oct4, KLF4, Sox2, Nanog). Tumour Biol 2017; 39:1010428317692253. [PMID: 28378634 DOI: 10.1177/1010428317692253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Raf-kinase inhibitor protein has been reported to inhibit both the Raf/mitogen extracellular signal-regulated kinase/extracellular signal-regulated kinase and nuclear factor kappa-light-chain of activated B cells pathways. It has also been reported in cancers that Raf-kinase inhibitor protein behaves as a metastatic suppressor as well as a chemo-immunosensitizing factor to drug/immune-mediated apoptosis. The majority of cancers exhibit low or no levels of Raf-kinase inhibitor protein. Hence, the activities of Raf-kinase inhibitor protein contrast, in part, to those mediated by several cancer stem cell transcription factors for their roles in resistance and metastasis. In this review, the existence of crosstalks in the signaling pathways between Raf-kinase inhibitor protein and several cancer stem cell transcription factors (Oct4, KLF4, Sox2 and Nanog) was assembled. Oct4 is induced by Lin28, and Raf-kinase inhibitor protein inhibits the microRNA binding protein Lin28. The expression of Raf-kinase inhibitor protein inversely correlates with the expression of Oct4. KLF4 does not interact directly with Raf-kinase inhibitor protein, but rather interacts indirectly via Raf-kinase inhibitor protein's regulation of the Oct4/Sox2/KLF4 complex through the mitogen-activated protein kinase pathway. The mechanism by which Raf-kinase inhibitor protein inhibits Sox2 is via the inhibition of the mitogen-activated protein kinase pathway by Raf-kinase inhibitor protein. Thus, Raf-kinase inhibitor protein's relationship with Sox2 is via its regulation of Oct4. Inhibition of extracellular signal-regulated kinase by Raf-kinase inhibitor protein results in the upregulation of Nanog. The inhibition of Oct4 by Raf-kinase inhibitor protein results in the failure of the heterodimer formation of Oct4 and Sox2 that is necessary to bind to the Nanog promoter for the transcription of Nanog. The findings revealed that there exists a direct correlation between the expression of Raf-kinase inhibitor protein and the expression of each of the above transcription factors. Based on these analyses, we suggest that the expression level of Raf-kinase inhibitor protein may be involved in the regulation of the cancer stem cell phenotype.
Collapse
Affiliation(s)
- SoHyun Lee
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephanie Wottrich
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Wang DW, Peng ZJ, Ren GF, Wang GX. The different roles of selective autophagic protein degradation in mammalian cells. Oncotarget 2016; 6:37098-116. [PMID: 26415220 PMCID: PMC4741918 DOI: 10.18632/oncotarget.5776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an intracellular pathway for bulk protein degradation and the removal of damaged organelles by lysosomes. Autophagy was previously thought to be unselective; however, studies have increasingly confirmed that autophagy-mediated protein degradation is highly regulated. Abnormal autophagic protein degradation has been associated with multiple human diseases such as cancer, neurological disability and cardiovascular disease; therefore, further elucidation of protein degradation by autophagy may be beneficial for protein-based clinical therapies. Macroautophagy and chaperone-mediated autophagy (CMA) can both participate in selective protein degradation in mammalian cells, but the process is quite different in each case. Here, we summarize the various types of macroautophagy and CMA involved in determining protein degradation. For this summary, we divide the autophagic protein degradation pathways into four categories: the post-translational modification dependent and independent CMA pathways and the ubiquitin dependent and independent macroautophagy pathways, and describe how some non-canonical pathways and modifications such as phosphorylation, acetylation and arginylation can influence protein degradation by the autophagy lysosome system (ALS). Finally, we comment on why autophagy can serve as either diagnostics or therapeutic targets in different human diseases.
Collapse
Affiliation(s)
- Da-wei Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen-ju Peng
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-fang Ren
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-xin Wang
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Rajkumar K, Nichita A, Anoor PK, Raju S, Singh SS, Burgula S. Understanding perspectives of signalling mechanisms regulating PEBP1 function. Cell Biochem Funct 2016; 34:394-403. [PMID: 27385268 DOI: 10.1002/cbf.3198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022]
Abstract
UNLABELLED Phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitor protein, belongs to PEBP family of proteins. It is known to interact with many proteins that are mainly involved in pathways that monitor cell proliferation and differentiation. PEBP1 in many cells interacts with several pathways, namely MAPK, GRK2, NF-кB, etc. that keeps the cell proliferation and differentiation in check. This protein is expressed by many cells in humans, including neurons where it is predominantly involved in production of choline acetyltransferase. Deregulated PEBP1 is known to cause cancer, diabetic nephropathy and neurodegenerative diseases like Alzheimer's and dementia. Recent research led to the discovery of many drugs that mainly target the interaction of PEBP1 with its partners. These compounds are known to bind PEBP1 in its conserved domain which abrogate its association with interacting partners in several different pathways. We outline here the latest developments in understanding of PEBP1 function in maintaining cell integrity. Copyright © 2016 John Wiley & Sons, Ltd. SIGNIFICANCE OF THE STUDY Phosphatidylethanolamine-binding protein is crucial in regulation of MAPK and PKC pathways. Its diverse roles, including regulating these pathways keep cell differentiation and proliferation in check. This review outlines some latest findings which greatly add to our current knowledge of phosphatidylethanolamine-binding protein.
Collapse
Affiliation(s)
- Karthik Rajkumar
- Department of Microbiology, Osmania University, Hyderabad, India
| | - Aare Nichita
- Department of Microbiology, Osmania University, Hyderabad, India
| | | | - Swathi Raju
- Department of Microbiology, Osmania University, Hyderabad, India
| | | | | |
Collapse
|
9
|
Abstract
Humans depend on our commensal bacteria for nutritive, immune-modulating, and metabolic contributions to maintenance of health. However, this commensal community exists in careful balance that, if disrupted, enters dysbiosis; this has been shown to contribute to the pathogenesis of colon, gastric, esophageal, pancreatic, laryngeal, breast, and gallbladder carcinomas. This development is closely tied to host inflammation, which causes and is aggravated by microbial dysbiosis and increases vulnerability to pathogens. Advances in sequencing technology have increased our ability to catalog microbial species associated with various cancer types across the body. However, defining microbial biomarkers as cancer predictors presents multiple challenges, and existing studies identifying cancer-associated bacteria have reported inconsistent outcomes. Combining metabolites and microbiome analyses can help elucidate interactions between gut microbiota, metabolism, and the host. Ultimately, understanding how gut dysbiosis impacts host response and inflammation will be critical to creating an accurate picture of the role of the microbiome in cancer.
Collapse
|
10
|
Nisimova L, Wen S, Cross-Knorr S, Rogers AB, Moss SF, Chatterjee D. Role of Raf kinase inhibitor protein in Helicobacter pylori-mediated signaling in gastric cancer. Crit Rev Oncog 2015; 19:469-81. [PMID: 25597356 DOI: 10.1615/critrevoncog.2014012044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Helicobacter pylori is a helical bacterium that colonizes the stomach in over half of the world's population. Infection with this bacterium has been linked to peptic ulcer disease and gastric cancer. The bacterium has been shown to affect regulatory pathways in its host cells through specific virulence factors that control gene expression. Infection with H. pylori increases levels of phosphorylation of Raf kinase inhibitor protein (pRKIP) in gastric adenocarcinoma (AGS) cells in vitro and in vivo. We investigated the role of H. pylori in the phosphorylation of RKIP as a possible mechanism to downregulate pro-survival signals in gastric adenocarcinoma. pRKIP induces RKIP transcriptional activity, which serves to induce apoptosis of damaged cells to prevent further tumorigenesis. Infection of wild type and RKIP knockout mice with H. pylori for 2 months further confirmed roles of RKIP and pRKIP in the prevention of gastric cancer progression. Loss of RKIP in AGS cells results in increased expression of the Cag A virulence factor after H. pylori infection and RKIP overexpression inhibits H. pylori-mediated STAT3 phosphorylation and STAT3 and NF-κB transcriptional activity. We examined the role of mTOR (mammalian target of rapamycin) after H. pylori infection on the phosphorylation of RKIP. Cells treated with rapamycin, an inhibitor of mTOR, displayed less expression of pRKIP after H. pylori infection. Microarray antibody analysis was conducted on wild-type and RKIP-knockdown AGS cells and showed that in the absence of RKIP, there was increased expression of pro-tumorigenic proteins such as EGFR, Raf-1, and MAPKs. Although further work is needed to confirm the interaction of RKIP and mTOR in AGS cells as a result of H. pylori infection, we hypothesize that H. pylori-mediated induction of pro-survival signaling in gastric epithelial cells induces a feedback response through the activation of RKIP. The phosphorylated, or active, form of RKIP is important in protecting gastric epithelial cells from tumorigenesis after H. pylori infection.
Collapse
Affiliation(s)
- Liana Nisimova
- Department of Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, Rhode Island
| | - Sicheng Wen
- Department of Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, Rhode Island
| | - Sam Cross-Knorr
- Department of Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, Rhode Island
| | - Arlin B Rogers
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Steven F Moss
- Department of Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, Rhode Island
| | - Devasis Chatterjee
- Department of Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
11
|
Abstract
Raf kinase inhibitory protein (RKIP) is a highly conserved regulator of many signaling networks whose loss or inactivation can lead to a variety of disease states. The multifaceted roles played by RKIP are enabled by an allosteric structure that is controlled through phosphorylation of RKIP and dynamics in the RKIP pocket loop. Perhaps the most striking feature of RKIP is that it can assume multiple functional states. Specifically, phosphorylation redirects RKIP from a state that binds and inhibits Raf-1 to a state that binds and inhibits GRK2. Recent evidence suggests the presence of a third functional state that facilitates RKIP phosphorylation. Here, we present a three-state model to explain the RKIP functional switch and discuss the role of the pocket loop in regulating RKIP activity.
Collapse
Affiliation(s)
- John J. Skinner
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Gordon Center for Integrative Sciences, Chicago, Illinois
- Address all correspondence to: Marsha R. Rosner, Ben May Department for Cancer Research, University of Chicago, Gordon Center for Integrative Sciences, 929 East 57th Street, Chicago, IL 60637;
| |
Collapse
|
12
|
Cross-Knorr S, Lu S, Perez K, Guevara S, Brilliant K, Pisano C, Quesenberry PJ, Resnick MB, Chatterjee D. RKIP phosphorylation and STAT3 activation is inhibited by oxaliplatin and camptothecin and are associated with poor prognosis in stage II colon cancer patients. BMC Cancer 2013; 13:463. [PMID: 24098947 PMCID: PMC3856511 DOI: 10.1186/1471-2407-13-463] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/25/2013] [Indexed: 12/14/2022] Open
Abstract
Background A major obstacle in treating colorectal cancer (CRC) is the acquired resistance to chemotherapeutic agents. An important protein in the regulation of cancer cell death and clinical outcome is Raf kinase inhibitor protein (RKIP). In contrast, activated signal transducer and activator of transcription 3 (STAT3) is a protein that promotes tumor cell survival by inhibiting apoptosis and has an important role in cancer progression in many of cancer types. The aim of this study was to evaluate the regulation of RKIP and STAT3 after treatment with clinically relevant chemotherapeutic agents (camptothecin (CPT) and oxaliplatin (OXP)) and the cytokine interleukin-6 (IL-6) in HCT116 colon cancer cells as well as evaluate the association between RKIP and STAT3 with clinical outcome of Stage II colon cancer patients. Methods HCT-116 colon cancer cells were treated with CPT, OXP, and IL-6 separately or in combination in a time and dose-dependent manner and examined for phosphorylated and non-phosphorylated RKIP and STAT3 via Western blot analysis. STAT3 transcriptional activity was measured via a luciferase reporter assay in HCT116 cells treated with CPT, IL-6 or transfected with JAK 1, 2 separately or in combination. We extended these observations and determined STAT3 and RKIP/ pRKIP in tumor microarrays (TMA) in stage II colon cancer patients. Results We demonstrate IL-6-mediated activation of STAT3 occurs in conjunction with the phosphorylation of RKIP in vitro in human colon cancer cells. OXP and CPT block IL-6 mediated STAT3 activation and RKIP phosphorylation via the inhibition of the interaction of STAT3 with gp130. We determined that STAT3 and nuclear pRKIP are significantly associated with poor patient prognosis in stage II colon cancer patients. Conclusions In the analysis of tumor samples from stage II colon cancer patients and the human colon carcinoma cell line HCT116, pRKIP and STAT3, 2 proteins potentially involved in the resistance to conventional treatments were detected. The phosphorylation of pRKIP and STAT3 are induced by the cytokine IL-6 and suppressed by the chemotherapeutic drugs CPT and OXP. Therefore, these results suggest that STAT3 and pRKIP may serve as prognostic biomarkers in stage II colon cancer patients and may improve chemotherapy.
Collapse
Affiliation(s)
- Sam Cross-Knorr
- Department of Medicine, Rhode Island Hospital and The Alpert Medical School of Brown University, Providence, RI 02903, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Al-Mulla F, Bitar MS, Taqi Z, Yeung KC. RKIP: much more than Raf kinase inhibitory protein. J Cell Physiol 2013; 228:1688-702. [PMID: 23359513 DOI: 10.1002/jcp.24335] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/16/2013] [Indexed: 12/11/2022]
Abstract
From its discovery as a phosphatidylethanolamine-binding protein in bovine brain to its designation as a physiological inhibitor of Raf kinase protein, RKIP has emerged as a critical molecule for maintaining subdued, well-orchestrated cellular responses to stimuli. The disruption of RKIP in a wide range of pathologies, including cancer, Alzheimer's disease, and pancreatitis, makes it an exciting target for individualized therapy and disease-specific interventions. This review attempts to highlight recent advances in the RKIP field underscoring its potential role as a master modulator of many pivotal intracellular signaling cascades that control cellular growth, motility, apoptosis, genomic integrity, and therapeutic resistance. Specific biological and functional niches are highlighted to focus future research towards an enhanced understanding of the multiple roles of RKIP in health and disease.
Collapse
Affiliation(s)
- Fahd Al-Mulla
- Faculty of Medicine, Department of Pathology, Kuwait University Health Sciences Centre, Safat, Kuwait.
| | | | | | | |
Collapse
|
14
|
Abstract
INTRODUCTION In patients with metastatic colorectal cancers, multimodal management and the use of biological agents such as monoclonal antibodies have had major positive effects on survival. The ability to predict which patients may be at 'high risk' of distant metastasis could have major implications on patient management. Histomorphological, immunohistochemical or molecular biomarkers are currently being investigated in order to test their potential value as predictors of metastasis. AREAS COVERED Here, the author reviews the clinical and functional data supporting the investigation of three novel promising biomarkers for the prediction of metastasis in patients with colorectal cancer: tumor budding, Raf1 kinase inhibitor protein (RKIP) and metastasis-associated in colon cancer-1 (MACC1). EXPERT OPINION The lifespan of most potential biomarkers is short as evidenced by the rare cases that have successfully made their way into daily practice such as KRAS or microsatellite instability (MSI) status. Although the three biomarkers reviewed herein have the potential to become important predictive biomarkers of metastasis, they have similar hurdles to overcome before they can be implemented into clinical management: standardization and validation in prospective patient cohorts.
Collapse
Affiliation(s)
- Inti Zlobec
- University of Bern, Institute of Pathology L414, Translational Research Unit (TRU), Bern, Switzerland.
| |
Collapse
|
15
|
Silva TS, Cordeiro OD, Matos ED, Wulff T, Dias JP, Jessen F, Rodrigues PM. Effects of preslaughter stress levels on the post-mortem sarcoplasmic proteomic profile of gilthead seabream muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9443-53. [PMID: 22906076 DOI: 10.1021/jf301766e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fish welfare is an important concern in aquaculture, not only due to the ethical implications but also for productivity and quality-related reasons. The purpose of this study was to track soluble proteome expression in post-mortem gilthead seabream muscle and to observe how preslaughter stress affects these post-mortem processes. For the experiment, two groups of gilthead seabream (n = 5) were subjected to distinct levels of preslaughter stress, with three muscle samples being taken from each fish. Proteins were extracted from the muscle samples, fractionated, and separated by 2DE. Protein identification was performed by MALDI-TOF-TOF MS. Analysis of the results indicates changes on several cellular pathways, with some of these changes being attributable to oxidative and proteolytic activity on sarcoplasmic proteins, together with leaking of myofibrillar proteins. These processes appear to have been hastened by preslaughter stress, confirming that it induces clear post-mortem changes in the muscle proteome of gilthead seabream.
Collapse
Affiliation(s)
- Tomé S Silva
- CIMAR/CCMAR, Centre of Marine Sciences of Algarve, University of Algarve, Faro, Portugal.
| | | | | | | | | | | | | |
Collapse
|