1
|
Tan BSN, Kwek J, Wong CKE, Saner NJ, Yap C, Felquer F, Morris MB, Gardner DK, Rathjen PD, Rathjen J. Src Family Kinases and p38 Mitogen-Activated Protein Kinases Regulate Pluripotent Cell Differentiation in Culture. PLoS One 2016; 11:e0163244. [PMID: 27723793 PMCID: PMC5056717 DOI: 10.1371/journal.pone.0163244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/05/2016] [Indexed: 02/04/2023] Open
Abstract
Multiple pluripotent cell populations, which together comprise the pluripotent cell lineage, have been identified. The mechanisms that control the progression between these populations are still poorly understood. The formation of early primitive ectoderm-like (EPL) cells from mouse embryonic stem (mES) cells provides a model to understand how one such transition is regulated. EPL cells form from mES cells in response to l-proline uptake through the transporter Slc38a2. Using inhibitors of cell signaling we have shown that Src family kinases, p38 MAPK, ERK1/2 and GSK3β are required for the transition between mES and EPL cells. ERK1/2, c-Src and GSK3β are likely to be enforcing a receptive, primed state in mES cells, while Src family kinases and p38 MAPK are involved in the establishment of EPL cells. Inhibition of these pathways prevented the acquisition of most, but not all, features of EPL cells, suggesting that other pathways are required. L-proline activation of differentiation is mediated through metabolism and changes to intracellular metabolite levels, specifically reactive oxygen species. The implication of multiple signaling pathways in the process suggests a model in which the context of Src family kinase activation determines the outcomes of pluripotent cell differentiation.
Collapse
Affiliation(s)
- Boon Siang Nicholas Tan
- School of BioSciences, University of Melbourne, Parkville, Australia
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
| | - Joly Kwek
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
| | - Chong Kum Edwin Wong
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
| | - Nicholas J. Saner
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
| | - Charlotte Yap
- School of BioSciences, University of Melbourne, Parkville, Australia
| | - Fernando Felquer
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Michael B. Morris
- Australian Stem Cell Centre, Monash University, Clayton, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - David K. Gardner
- School of BioSciences, University of Melbourne, Parkville, Australia
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
| | - Peter D. Rathjen
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Joy Rathjen
- School of BioSciences, University of Melbourne, Parkville, Australia
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
- School of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
2
|
LIYANG G, ABDULLAH S, ROSLI R, NORDIN N. Neural Commitment of Embryonic Stem Cells through the Formation of Embryoid Bodies (EBs). Malays J Med Sci 2014; 21:8-16. [PMID: 25977628 PMCID: PMC4418120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 05/11/2014] [Indexed: 06/04/2023] Open
Abstract
An embryonic stem cell (ESC) is a good tool to generate neurons in vitro and can be used to mimic neural development in vivo. It has been widely used in research to examine the role of cell signalling during neuronal development, test the effects of drugs on neurons, and generate a large population of functional neurons. So far, a number of protocols have been established to promote the differentiation of ESCs, such as direct and indirect differentiation. One of the widely used protocols to generate neurons is through the spontaneous formation of multicellular aggregates known as embryonic bodies (EBs). However, for some, it is not clear why EB protocol could be the protocol of choice. EB also is known to mimic an early embryo; hence, knowing the similarities between EB and an early embryo is essential, particularly the information on the players that promote the formation of EBs or the aggregation of ESCs. This review paper focuses on these issues and discusses further the generation of neural cells from EBs using a well-known protocol, the 4-/4+ protocol.
Collapse
Affiliation(s)
- Gao LIYANG
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Syahril ABDULLAH
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rozita ROSLI
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Norshariza NORDIN
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Goh HN, Rathjen PD, Familari M, Rathjen J. Endoderm complexity in the mouse gastrula is revealed through the expression of spink3. Biores Open Access 2014; 3:98-109. [PMID: 24940561 PMCID: PMC4048981 DOI: 10.1089/biores.2014.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endoderm formation in the mammalian embryo occurs first in the blastocyst, when the primitive endoderm and pluripotent cells resolve into separate lineages, and again during gastrulation, when the definitive endoderm progenitor population emerges from the primitive streak. The formation of the definitive endoderm can be modeled using pluripotent cell differentiation in culture. The differentiation of early primitive ectoderm-like (EPL) cells, a pluripotent cell population formed from embryonic stem (ES) cells, was used to identify and characterize definitive endoderm formation. Expression of serine peptidase inhibitor, Kazal type 3 (Spink3) was detected in EPL cell–derived endoderm, and in a band of endoderm immediately distal to the embryonic–extra-embryonic boundary in pregastrula and gastrulating embryos. Later expression marked a region of endoderm separating the yolk sac from the developing gut. In the embryo, Spink3 expression marked a region of endoderm comprising the distal visceral endoderm, as determined by an endocytosis assay, and the proximal region of the definitive endoderm. This region was distinct from the more distal definitive endoderm population, marked by thyrotropin-releasing hormone (Trh). Endoderm expressing either Spink3 or Trh could be formed during EPL cell differentiation, and the prevalence of these populations could be influenced by culture medium and growth factor addition. Moreover, further differentiation suggested that the potential of these populations differed. These approaches have revealed an unexpected complexity in the definitive endoderm lineage, a complexity that will need to be accommodated in differentiation protocols to ensure the formation of the appropriate definitive endoderm progenitor in the future.
Collapse
Affiliation(s)
- Hwee Ngee Goh
- Department of Zoology, University of Melbourne , Victoria, Australia
| | - Peter D Rathjen
- The Menzies Research Institute Tasmania, University of Tasmania , Tasmania, Australia
| | - Mary Familari
- Department of Zoology, University of Melbourne , Victoria, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne , Victoria, Australia . ; The Menzies Research Institute Tasmania, University of Tasmania , Tasmania, Australia
| |
Collapse
|
4
|
Hughes JN, Wong CKE, Lau KX, Rathjen PD, Rathjen J. Regulation of pluripotent cell differentiation by a small molecule, staurosporine. Differentiation 2014; 87:101-10. [PMID: 24582574 DOI: 10.1016/j.diff.2014.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 12/16/2013] [Accepted: 01/07/2014] [Indexed: 12/25/2022]
Abstract
Research in the embryo and in culture has resulted in a sophisticated understanding of many regulators of pluripotent cell differentiation. As a consequence, protocols for the differentiation of pluripotent cells generally rely on a combination of exogenous growth factors and endogenous signalling. Little consideration has been given to manipulating other pathways to achieve pluripotent cell differentiation. The integrity of cell:cell contacts has been shown to influence lineage choice during pluripotent cell differentiation, with disruption of cell:cell contacts promoting mesendoderm formation and maintenance of cell:cell contacts resulting in the preferential formation of neurectoderm. Staurosporine is a broad spectrum inhibitor of serine/threonine kinases which has several effects on cell function, including interruption of cell:cell contacts, decreasing focal contact size, inducing epithelial to mesenchyme transition (EMT) and promoting cell differentiation. The possibility that staurosporine could influence lineage choice from pluripotent cells in culture was investigated. The addition of staurosporine to differentiating mouse EPL resulted in preferential formation of mesendoderm and mesoderm populations, and inhibited the formation of neurectoderm. Addition of staurosporine to human ES cells similarly induced primitive streak marker gene expression. These data demonstrate the ability of staurosporine to influence lineage choice during pluripotent cell differentiation and to mimic the effect of disrupting cell:cell contacts. Staurosporine induced mesendoderm in the absence of known inducers of formation, such as serum and BMP4. Staurosporine induced the expression of mesendoderm markers, including markers that were not induced by BMP4, suggesting it acted as a broad spectrum inducer of molecular gastrulation. This approach has identified a small molecule regulator of lineage choice with potential applications in the commercial development of ES cell derivatives, specifically as a method for forming mesendoderm progenitors or as a culture adjunct to prevent the formation of ectoderm progenitors during pluripotent cell differentiation.
Collapse
Affiliation(s)
- James Nicholas Hughes
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Chong Kum Edwin Wong
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia; Australian Stem Cell Centre, Monash University, Clayton, 3800 Victoria, Australia
| | - Kevin Xiuwen Lau
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Peter David Rathjen
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia; The Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia.
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia; The Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
5
|
Yap C, Goh HN, Familari M, Rathjen PD, Rathjen J. The formation of proximal and distal definitive endoderm populations in culture requires p38 MAPK activity. J Cell Sci 2014; 127:2204-16. [PMID: 24481813 DOI: 10.1242/jcs.134502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endoderm formation in the mammal is a complex process with two lineages forming during the first weeks of development, the primitive (or extraembryonic) endoderm, which is specified in the blastocyst, and the definitive endoderm that forms later, at gastrulation, as one of the germ layers of the embryo proper. Fate mapping evidence suggests that the definitive endoderm arises as two waves, which potentially reflect two distinct cell populations. Early primitive ectoderm-like (EPL) cell differentiation has been used successfully to identify and characterise mechanisms regulating molecular gastrulation and lineage choice during differentiation. The roles of the p38 MAPK family in the formation of definitive endoderm were investigated using EPL cells and chemical inhibitors of p38 MAPK activity. These approaches define a role for p38 MAPK activity in the formation of the primitive streak and a second role in the formation of the definitive endoderm. Characterisation of the definitive endoderm populations formed from EPL cells demonstrates the formation of two distinct populations, defined by gene expression and ontogeny, that were analogous to the proximal and distal definitive endoderm populations of the embryo. Formation of the proximal definitive endoderm was found to require p38 MAPK activity and is correlated with molecular gastrulation, defined by the expression of brachyury (T). Distal definitive endoderm formation also requires p38 MAPK activity but can form when T expression is inhibited. Understanding lineage complexity will be a prerequisite for the generation of endoderm derivatives for commercial and clinical use.
Collapse
Affiliation(s)
- Charlotte Yap
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Hwee Ngee Goh
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Mary Familari
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Peter David Rathjen
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia The Menzies Research Institute Tasmania, University of Tasmania, Tasmania, 7000, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia The Menzies Research Institute Tasmania, University of Tasmania, Tasmania, 7000, Australia
| |
Collapse
|