1
|
Kim SH, Singh D, Kim SA, Kwak MJ, Cho D, Kim J, Roh JH, Kim WG, Han NS, Lee CH. Strain-specific metabolomic diversity of Lactiplantibacillus plantarum under aerobic and anaerobic conditions. Food Microbiol 2023; 116:104364. [PMID: 37689426 DOI: 10.1016/j.fm.2023.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/11/2023]
Abstract
The chemotaxonomic diversity of 20 Lactiplantibacillus plantarum strains was investigated using non-targeted metabolite profiling under different culture conditions. Multivariate and metabolic pathway analyses based on GC-MS and LC-MS/MS datasets showed that amino acid metabolism, especially 2-hydroxy acids, was enriched under aerobic conditions (AE), whereas fatty acid & sugar metabolism was increased under anaerobic conditions (AN). Based on the metabolite profiles, L. plantarum strains were clustered into three main groups (A, B, and C). Overall, 79 and 83 significantly discriminant metabolites were characterized as chemical markers of AE and AN growth conditions, respectively. Notably, alcohols were more abundant in group A whereas amino acids, peptides, purines, and pyrimidines were significantly higher in group C. 2-hydroxy acids and oxylipins biosynthesized through amino acid and fatty acid metabolism, respectively, were more abundant in groups A and B. Furthermore, we observed a strong correlation between the chemical diversity of L. plantarum groups and their antioxidant activity from metabolite extracts. We propose a non-targeted metabolomic workflow to comprehensively characterize the chemodiversity of L. plantarum strain under different culture conditions, which may help reveal specific biomarkers of individual strains depending on the culture conditions.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, And Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Min Jeong Kwak
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, And Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Donghyun Cho
- Amorepacific R&I Center, 1920, Yonggu-daero, Yongin, 17074, Republic of Korea
| | - Juewon Kim
- Amorepacific R&I Center, 1920, Yonggu-daero, Yongin, 17074, Republic of Korea
| | - Jong-Hwa Roh
- Amorepacific R&I Center, 1920, Yonggu-daero, Yongin, 17074, Republic of Korea
| | - Wan-Gi Kim
- Amorepacific R&I Center, 1920, Yonggu-daero, Yongin, 17074, Republic of Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, And Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea; Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Echegaray N, Yilmaz B, Sharma H, Kumar M, Pateiro M, Ozogul F, Lorenzo JM. A novel approach to Lactiplantibacillus plantarum: From probiotic properties to the omics insights. Microbiol Res 2023; 268:127289. [PMID: 36571922 DOI: 10.1016/j.micres.2022.127289] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/24/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) strains are one of the lactic acid bacteria (LAB) commonly used in fermentation and their probiotic and functional properties along with their health-promoting roles come to the fore. Food-derived L. plantarum strains have shown good resistance and adhesion in the gastrointestinal tract (GI) and excellent antioxidant and antimicrobial properties. Furthermore, many strains of L. plantarum can produce bacteriocins with interesting antimicrobial activity. This probiotic properties of L. plantarum and existing in different niches give a great potential to have beneficial effects on health. It is also has been shown that L. plantarum can regulate the intestinal microbiota composition in a good way. Recently, omics approaches such as metabolomics, secretomics, proteomics, transcriptomics and genomics try to understand the roles and mechanisms of L. plantarum that are related to its functional characteristics. This review provides an overview of the probiotic properties, including the specific interactions between microbiota and host, and omics insights of L. plantarum.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Birsen Yilmaz
- Department of Nutrition and Dietetics, Cukurova University, Sarıcam, 01330 Adana, Turkey
| | - Heena Sharma
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnāl, Haryana, 132001, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330, Adana, Turkey
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| |
Collapse
|
3
|
Adaptation of Lacticaseibacillus rhamnosus CM MSU 529 to Aerobic Growth: A Proteomic Approach. Microorganisms 2023; 11:microorganisms11020313. [PMID: 36838278 PMCID: PMC9963975 DOI: 10.3390/microorganisms11020313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The study describes the effect of aerobic conditions on the proteome of homofermentative lactic acid bacterium Lacticaseibacillus rhamnosus CM MSU 529 grown in a batch culture. Aeration caused the induction of the biosynthesis of 43 proteins, while 14 proteins were downregulated as detected by label-free LC-MS/MS. Upregulated proteins are involved in oxygen consumption (Pox, LctO, pyridoxine 5'-phosphate oxidase), xylulose 5-phosphate conversion (Xfp), pyruvate metabolism (PdhD, AlsS, AlsD), reactive oxygen species (ROS) elimination (Tpx, TrxA, Npr), general stress response (GroES, PfpI, universal stress protein, YqiG), antioxidant production (CysK, DkgA), pyrimidine metabolism (CarA, CarB, PyrE, PyrC, PyrB, PyrR), oligopeptide transport and metabolism (OppA, PepO), and maturation and stability of ribosomal subunits (RbfA, VicX). Downregulated proteins participate in ROS defense (AhpC), citrate and pyruvate consumption (CitE, PflB), oxaloacetate production (AvtA), arginine synthesis (ArgG), amino acid transport (GlnQ), and deoxynucleoside biosynthesis (RtpR). The data obtained shed light on mechanisms providing O2-tolerance and adaptation to aerobic conditions in strain CM MSU 529. The biosynthesis of 39 from 57 differentially abundant proteins was shown to be O2-sensitive in lactic acid bacteria for the first time. To our knowledge this is the first study on the impact of aerobic cultivation on the proteome of L. rhamnosus.
Collapse
|
4
|
Blazheva D, Mihaylova D, Averina OV, Slavchev A, Brazkova M, Poluektova EU, Danilenko VN, Krastanov A. Antioxidant Potential of Probiotics and Postbiotics: A Biotechnological Approach to Improving Their Stability. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Averina OV, Poluektova EU, Marsova MV, Danilenko VN. Biomarkers and Utility of the Antioxidant Potential of Probiotic Lactobacilli and Bifidobacteria as Representatives of the Human Gut Microbiota. Biomedicines 2021; 9:1340. [PMID: 34680457 PMCID: PMC8533434 DOI: 10.3390/biomedicines9101340] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Lactobacilli and bifidobacteria are an important part of human gut microbiota. Among numerous benefits, their antioxidant properties are attracting more and more attention. Multiple in vivo and in vitro studies have demonstrated that lactobacilli and bifidobacteria, along with their cellular components, possess excellent antioxidant capacity, which provides a certain degree of protection to the human body against diseases associated with oxidative stress. Recently, lactobacilli and bifidobacteria have begun to be considered as a new source of natural antioxidants. This review summarizes the current state of research on various antioxidant properties of lactobacilli and bifidobacteria. Special emphasis is given to the mechanisms of antioxidant activity of these bacteria in the human gut microbiota, which involve bacterial cell components and metabolites. This review is also dedicated to the genes involved in the antioxidant properties of lactobacilli and bifidobacteria strains as indicators of their antioxidant potential in human gut microbiota. Identification of the antioxidant biomarkers of the gut microbiota is of great importance both for creating diagnostic systems for assessing oxidative stress and for choosing strategies aimed at restoring the normal functioning of the microbiota and, through it, restoring human health. In this review, the practical application of probiotic strains with proven antioxidant properties to prevent oxidative stress is also considered.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Mariya V. Marsova
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
- Institute of Ecology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
6
|
Markkinen N, Pariyani R, Jokioja J, Kortesniemi M, Laaksonen O, Yang B. NMR-based metabolomics approach on optimization of malolactic fermentation of sea buckthorn juice with Lactiplantibacillus plantarum. Food Chem 2021; 366:130630. [PMID: 34333181 DOI: 10.1016/j.foodchem.2021.130630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
This work investigated the impact of malolactic fermentation on the metabolomic profile of sea buckthorn juice to optimize the fermentation process for flavor modification. Six strains of L. plantarum were used with varied pH of the juice, cell acclimation, and fermentation time. 1H-NOESY spectra were acquired from fresh and fermented juices with a total of 46 metabolites identified. Less sugars and quinic acid were metabolized at pH 2.7 while oxidation of ascorbic acid was reduced at pH 3.5. l-Malic acid, essential amino acids, and nucleosides were consumed early during fermentation while sugars in general were consumed later in the fermentation. If deacidification is the main target of fermentation, strains that produce less acids and ferment less sugars, shorter fermentation time, and lower starter pH should be used. Higher starter pH and longer fermentation time promote formation of antimicrobial compounds and potentially increase antioxidant stability.
Collapse
Affiliation(s)
- N Markkinen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - R Pariyani
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - J Jokioja
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - M Kortesniemi
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - O Laaksonen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - B Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| |
Collapse
|
7
|
Transcriptional and Metabolic Response of Wine-Related Lactiplantibacillus plantarum to Different Conditions of Aeration and Nitrogen Availability. FERMENTATION 2021. [DOI: 10.3390/fermentation7020068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lactic acid bacteria (LAB) perform the process of malolactic fermentation (MLF) in wine. Availability of oxygen and nitrogen nutrients could influence LAB growth, malolactic activity, and other metabolic pathways, impacting the subsequent wine quality. The impact of these two factors has received limited investigation within LAB, especially on a transcriptome level. The aim of this study was to evaluate metabolic changes in the strain Lactiplantibacillus plantarum IWBT B063, growing in synthetic grape juice medium (GJM) under different oxygen exposure conditions, and with low availability of nitrogen-based nutrients. Next-generation sequencing was used to analyze expression across the transcriptome (RNA-seq), in combination with conventional microbiological and chemical analysis. L. plantarum consumed the malic acid present in all the conditions evaluated, with a slight delay and impaired growth for nitrogen limitation and for anaerobiosis. Comparison of L. plantarum transcriptome during growth in GJM with and without O2 revealed differential expression of 148 functionally annotated genes, which were mostly involved in carbohydrate metabolism, genetic information processing, and signaling and cellular processes. In particular, genes with a protective role against oxidative stress and genes related to amino acid metabolism were differentially expressed. This study confirms the suitability of L. plantarum IWBT B063 to carry out MLF in different environmental conditions due to its potential adaption to the stress conditions tested and provides a better understanding of the genetic background of an industrially relevant strain.
Collapse
|
8
|
Effect of hydrogen peroxide on the dehydrogenase and quinone-reductase activity of irradiated Lactobacillus plantarum cells. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Shekhawat K, Patterton H, Bauer FF, Setati ME. RNA-seq based transcriptional analysis of Saccharomyces cerevisiae and Lachancea thermotolerans in mixed-culture fermentations under anaerobic conditions. BMC Genomics 2019; 20:145. [PMID: 30777005 PMCID: PMC6379982 DOI: 10.1186/s12864-019-5511-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 02/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background In wine fermentation starter cultures, the blending of non-Saccharomyces yeast with Saccharomyces cerevisiae to improve the complexity of wine has become common practice, but data regarding the impact of co-cultivation on yeast physiology and on genetic and metabolic regulation remain limited. Here we describe a transcriptomic analysis of mixed fermentations of Saccharomyces cerevisiae and Lachancea thermotolerans. The fermentations were carried out in carefully controlled environmental conditions in a bioreactor to reduce transcriptomic responses that would be due to factors other than the presence of the second species. Results The transcriptomic data revealed that both yeast species showed a clear response to the presence of the other. Affected genes primarily belonged to two groups: genes whose expression can be linked to the competition for certain trace elements such as copper and iron, as well as genes required for cell wall structure and integrity. Furthermore, the data revealed divergent transcriptional responses with regard to carbon metabolism in response to anoxic conditions. Conclusions The results suggest that the mixed fermentation created a more competitive and stressful environment for the two species than single strain fermentations independently from total biomass, i.e. competition between cells of the same species is less stressful, or may present a different set of challenges, than interspecies competition. The changes in cell wall and adhesion properties encoding genes suggest that the adjustment of physical contact between cells may play a direct role in the response to the presence of competing species. Electronic supplementary material The online version of this article (10.1186/s12864-019-5511-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kirti Shekhawat
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Hugh Patterton
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Florian F Bauer
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Mathabatha E Setati
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, Western Cape, South Africa.
| |
Collapse
|
10
|
Ming T, Han J, Li Y, Lu C, Qiu D, Li Y, Zhou J, Su X. A metabolomics and proteomics study of the Lactobacillus plantarum in the grass carp fermentation. BMC Microbiol 2018; 18:216. [PMID: 30563460 PMCID: PMC6299570 DOI: 10.1186/s12866-018-1354-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
Background Lactobacillus plantarum, a versatile lactic acid-fermenting bacterium, isolated from the traditional pickles in Ningbo of China, was chosen for grass carp fermentation, which could also improve the flavor of grass carp. We here explored the central metabolic pathways of L. plantarum by using metabolomic approach, and further proved the potential for metabolomics combined with proteomics approaches for the basic research on the changes of metabolites and the corresponding fermentation mechanism of L. plantarum fermentation. Results This study provides a cellular material footprinting of more than 77 metabolites and 27 proteins in L. plantarum during the grass carp fermentation. Compared to control group, cells displayed higher levels of proteins associated with glycolysis and nucleotide synthesis, whereas increased levels of serine, ornithine, aspartic acid, 2-piperidinecarboxylic acid, and fumarate, along with decreased levels of alanine, glycine, threonine, tryptophan, and lysine. Conclusions Our results may provide a deeper understanding of L. plantarum fermentation mechanism based on metabolomics and proteomic analysis and facilitate future investigations into the characterization of L. plantarum during the grass carp fermentation. Electronic supplementary material The online version of this article (10.1186/s12866-018-1354-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tinghong Ming
- College of Food and Pharmaceutical Sciences, Ningbo University, 169 Qixing South Road, Meishan, Ningbo, China.,School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, China
| | - Jiaojiao Han
- College of Food and Pharmaceutical Sciences, Ningbo University, 169 Qixing South Road, Meishan, Ningbo, China.,School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, China
| | - Yanyan Li
- Department of Food Science, Cornell University, New York, USA
| | - Chenyang Lu
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, China
| | - Dihong Qiu
- Hangzhou Medical College, Hangzhou, China
| | - Ye Li
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, China
| | - Jun Zhou
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, China
| | - Xiurong Su
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, China.
| |
Collapse
|
11
|
Dijkstra AR, Starrenburg MJC, Todt T, van Hijum SAFT, Hugenholtz J, Bron PA. Transcriptome Analysis of a Spray Drying-Resistant Subpopulation Reveals a Zinc-Dependent Mechanism for Robustness in L. lactis SK11. Front Microbiol 2018; 9:2418. [PMID: 30374338 PMCID: PMC6196286 DOI: 10.3389/fmicb.2018.02418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/20/2018] [Indexed: 11/20/2022] Open
Abstract
The viability of starter cultures is essential for an adequate contribution to the fermentation process and end-product. Therefore, robustness during processing and storage is an important characteristic of starter culture strains. For instance, during spray drying cells are exposed to heat and oxidative stress, generally resulting in loss of viability. In this study, we exposed the industrially relevant but stress-sensitive Lactococcus lactis strain SK11 to two cycles of heat stress, with intermediate recovery and cultivation at moderate temperatures. After these two cycles of heat exposure, the abundance of robust derivatives was increased as compared with the original culture, which enabled isolation of heat-resistant subpopulations displaying up to 1,000-fold enhanced heat stress survival. Moreover, this heat-resistant subpopulation demonstrated an increased survival during spray drying. Derivatives from two independent lineages displayed different transcriptome changes as compared with the wild type strain, indicating that the increased robustness within these lineages was established by different adaptive strategies. Nevertheless, an overlap in differential gene expression in all five derivatives tested in both lineages included three genes in an operon involved in zinc transport. The link between zinc homeostasis and heat stress survival in L. lactis was experimentally established by culturing of the wild type strain SK11 in medium with various levels of zinc ions, which resulted in alterations in heat stress survival phenotypes. This study demonstrates that robust derivatives of a relatively sensitive L. lactis strain can be isolated by repeated exposure to heat stress. Moreover, this work demonstrates that transcriptome analysis of these robust derivatives can provide clues for improvement of the robustness of the original strain. This could boost the industrial application of strains with specific desirable traits but inadequate robustness characteristics.
Collapse
Affiliation(s)
- Annereinou R Dijkstra
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, Netherlands.,Nederlands Instituut Voor Zuivel Oonderzoek (NIZO), Ede, Netherlands.,Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, Netherlands
| | | | - Tilman Todt
- Centre for Molecular and Biomolecular Informatics, Radboud umc, Nijmegen, Netherlands
| | - Sacha A F T van Hijum
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, Netherlands.,Nederlands Instituut Voor Zuivel Oonderzoek (NIZO), Ede, Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud umc, Nijmegen, Netherlands
| | - Jeroen Hugenholtz
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, Netherlands
| | - Peter A Bron
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, Netherlands.,Nederlands Instituut Voor Zuivel Oonderzoek (NIZO), Ede, Netherlands
| |
Collapse
|
12
|
Filannino P, De Angelis M, Di Cagno R, Gozzi G, Riciputi Y, Gobbetti M. How Lactobacillus plantarum
shapes its transcriptome in response to contrasting habitats. Environ Microbiol 2018; 20:3700-3716. [DOI: 10.1111/1462-2920.14372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Pasquale Filannino
- Department of Soil, Plant and Food Sciences; University of Bari Aldo Moro; Bari Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences; University of Bari Aldo Moro; Bari Italy
| | | | - Giorgia Gozzi
- Department of Agricultural and Food Sciences; Alma Mater Studiorum, University of Bologna; Bologna Italy
| | - Ylenia Riciputi
- Department of Agricultural and Food Sciences; Alma Mater Studiorum, University of Bologna; Bologna Italy
| | - Marco Gobbetti
- Faculty of Science and Technology; Free University of Bozen Italy
| |
Collapse
|
13
|
Alves de Oliveira R, Komesu A, Vaz Rossell CE, Maciel Filho R. Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.03.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Constraint-based modeling in microbial food biotechnology. Biochem Soc Trans 2018; 46:249-260. [PMID: 29588387 PMCID: PMC5906707 DOI: 10.1042/bst20170268] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022]
Abstract
Genome-scale metabolic network reconstruction offers a means to leverage the value of the exponentially growing genomics data and integrate it with other biological knowledge in a structured format. Constraint-based modeling (CBM) enables both the qualitative and quantitative analyses of the reconstructed networks. The rapid advancements in these areas can benefit both the industrial production of microbial food cultures and their application in food processing. CBM provides several avenues for improving our mechanistic understanding of physiology and genotype–phenotype relationships. This is essential for the rational improvement of industrial strains, which can further be facilitated through various model-guided strain design approaches. CBM of microbial communities offers a valuable tool for the rational design of defined food cultures, where it can catalyze hypothesis generation and provide unintuitive rationales for the development of enhanced community phenotypes and, consequently, novel or improved food products. In the industrial-scale production of microorganisms for food cultures, CBM may enable a knowledge-driven bioprocess optimization by rationally identifying strategies for growth and stability improvement. Through these applications, we believe that CBM can become a powerful tool for guiding the areas of strain development, culture development and process optimization in the production of food cultures. Nevertheless, in order to make the correct choice of the modeling framework for a particular application and to interpret model predictions in a biologically meaningful manner, one should be aware of the current limitations of CBM.
Collapse
|
15
|
Das G, Patra JK, Lee SY, Kim C, Park JG, Baek KH. Analysis of metabolomic profile of fermented Orostachys japonicus A. Berger by capillary electrophoresis time of flight mass spectrometry. PLoS One 2017; 12:e0181280. [PMID: 28704842 PMCID: PMC5509444 DOI: 10.1371/journal.pone.0181280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022] Open
Abstract
Microbial cell performance in food biotechnological processes has become an important concern for improving human health worldwide. Lactobacillus plantarum, which is widely distributed in nature, is a lactic acid bacterium with many industrial applications for fermented foods or functional foods (e.g., probiotics). In the present study, using capillary electrophoresis time of flight mass spectrometry, the metabolomic profile of dried Orostachys japonicus A. Berger, a perennial medicinal herb with L. plantarum was compared with that of O. japonicus fermented with L. plantarum to elucidate the metabolomic changes induced by the fermentation process. The levels of several metabolites were changed by the fermentation process, indicating their involvement in microbial performance. For example, glycolysis, the pentose phosphate pathway, the TCA cycle, the urea cycle-related metabolism, nucleotide metabolism, and lipid and amino acid metabolism were altered significantly by the fermentation process. Although the fermented metabolites were not tested using in vivo studies to increase human health benefits, our findings provide an insight into the alteration of metabolites induced by fermentation, and indicated that the metabolomic analysis for the process should be accompanied by fermenting strains and conditions.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do, Republic of Korea
| | - Sun-Young Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Changgeon Kim
- Pohang Center for Evaluation Biomaterials (POCEB), Pohang Technopark Foundation, Pohang, Gyeongbuk, Republic of Korea
| | - Jae Gyu Park
- Pohang Center for Evaluation Biomaterials (POCEB), Pohang Technopark Foundation, Pohang, Gyeongbuk, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| |
Collapse
|
16
|
Zotta T, Parente E, Ricciardi A. Aerobic metabolism in the genusLactobacillus: impact on stress response and potential applications in the food industry. J Appl Microbiol 2017; 122:857-869. [DOI: 10.1111/jam.13399] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/07/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Affiliation(s)
- T. Zotta
- Istituto di Scienze dell'Alimentazione-CNR; Avellino Italy
| | - E. Parente
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - A. Ricciardi
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali; Università degli Studi della Basilicata; Potenza Italy
| |
Collapse
|
17
|
Influence of Lactobacillus plantarum WCFS1 on post-acidification, metabolite formation and survival of starter bacteria in set-yoghurt. Food Microbiol 2016; 59:14-22. [DOI: 10.1016/j.fm.2016.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/26/2016] [Indexed: 01/05/2023]
|
18
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
19
|
Transcriptional reprogramming and phenotypic switching associated with the adaptation of Lactobacillus plantarum C2 to plant niches. Sci Rep 2016; 6:27392. [PMID: 27273017 PMCID: PMC4895336 DOI: 10.1038/srep27392] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 05/17/2016] [Indexed: 01/08/2023] Open
Abstract
Lactobacillus plantarum has been isolated from a large variety of ecological niches, thus highlighting its remarkable environmental adaptability as a generalist. Plant fermentation conditions markedly affect the functional features of L. plantarum strains. We investigated the plant niche-specific traits of L. plantarum through whole-transcriptome and phenotypic microarray profiles. Carrot (CJ) and pineapple (PJ) juices were chosen as model systems, and MRS broth was used as a control. A set of 3,122 genes was expressed, and 21 to 31% of genes were differentially expressed depending on the plant niche and cell physiological state. L. plantarum C2 seemed to specifically respond to plant media conditions. When L. plantarum was cultured in CJ, useful pathways were activated, which were aimed to sense the environment, save energy and adopt alternative routes for NAD+ regeneration. In PJ the acidic environment caused a transcriptional switching, which was network-linked to an acid tolerance response involving carbohydrate flow, amino acid and protein metabolism, pH homeostasis and membrane fluidity. The most prominent phenotypic dissimilarities observed in cells grown in CJ and PJ were related to carbon and nitrogen metabolism, respectively. Summarising, a snapshot of a carrot and pineapple sensing and adaptive regulation model for L. plantarum C2 was proposed.
Collapse
|
20
|
Saint-Cyr MJ, Guyard-Nicodème M, Messaoudi S, Chemaly M, Cappelier JM, Dousset X, Haddad N. Recent Advances in Screening of Anti-Campylobacter Activity in Probiotics for Use in Poultry. Front Microbiol 2016; 7:553. [PMID: 27303366 PMCID: PMC4885830 DOI: 10.3389/fmicb.2016.00553] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022] Open
Abstract
Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Campylobacter species involved in this infection usually include the thermotolerant species Campylobacter jejuni. The major reservoir for C. jejuni leading to human infections is commercial broiler chickens. Poultry flocks are frequently colonized by C. jejuni without any apparent symptoms. Risk assessment analyses have identified the handling and consumption of poultry meat as one of the most important sources of human campylobacteriosis, so elimination of Campylobacter in the poultry reservoir is a crucial step in the control of this foodborne infection. To date, the use of probiotics has demonstrated promising results to reduce Campylobacter colonization. This review provides recent insights into methods used for probiotic screening to reduce the prevalence and colonization of Campylobacter at the farm level. Different eukaryotic epithelial cell lines are employed to screen probiotics with an anti-Campylobacter activity and yield useful information about the inhibition mechanism involved. These in vitro virulence models involve only human intestinal or cervical cell lines whereas the use of avian cell lines could be a preliminary step to investigate mechanisms of C. jejuni colonization in poultry in the presence of probiotics. In addition, in vivo trials to evaluate the effect of probiotics on Campylobacter colonization are conducted, taking into account the complexity introduced by the host, the feed, and the microbiota. However, the heterogeneity of the protocols used and the short time duration of the experiments lead to results that are difficult to compare and draw conclusions at the slaughter-age of broilers. Nevertheless, the combined approach using complementary in vitro and in vivo tools (cell cultures and animal experiments) leads to a better characterization of probiotic strains and could be employed to assess reduced Campylobacter spp. colonization in chickens if some parameters are optimized.
Collapse
Affiliation(s)
| | - Muriel Guyard-Nicodème
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | - Soumaya Messaoudi
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | | | - Xavier Dousset
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Nabila Haddad
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| |
Collapse
|
21
|
Keenan MJ, Marco ML, Ingram DK, Martin RJ. Improving healthspan via changes in gut microbiota and fermentation. AGE (DORDRECHT, NETHERLANDS) 2015; 37:98. [PMID: 26371059 PMCID: PMC5005825 DOI: 10.1007/s11357-015-9817-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/13/2015] [Indexed: 04/17/2023]
Abstract
Dietary resistant starch impact on intestinal microbiome and improving healthspan is the topic of this review. In the elderly population, dietary fiber intake is lower than recommended. Dietary resistant starch as a source of fiber produces a profound change in gut microbiota and fermentation in animal models of aging. Dietary resistant starch has the potential for improving healthspan in the elderly through multiple mechanisms as follows: (1) enhancing gut microbiota profile and production of short-chain fatty acids, (2) improving gut barrier function, (3) increasing gut peptides that are important in glucose homeostasis and lipid metabolism, and (4) mimicking many of the effects of caloric restriction including upregulation of genes involved in xenobiotic metabolism.
Collapse
Affiliation(s)
- Michael J Keenan
- Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Maria L Marco
- Robert Mondavi Institute for Wine and Food Science, 1136 RMI North, 392 Old Davis Rd, Davis, CA, 95616, USA
| | | | - Roy J Martin
- Western Human Nutrition Research Center, Davis, CA, USA.
| |
Collapse
|
22
|
Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing. PLoS One 2015; 10:e0134149. [PMID: 26230316 PMCID: PMC4521753 DOI: 10.1371/journal.pone.0134149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/06/2015] [Indexed: 11/19/2022] Open
Abstract
The Lactobacillus buchneri CD034 strain, known to improve the ensiling process of green fodder and the quality of the silage itself was transcriptionally analyzed by sequencing of transcriptomes isolated under anaerobic vs. aerobic conditions. L. buchneri CD034 was first cultivated under anaerobic conditions and then shifted to aerobic conditions by aeration with 21% oxygen. Cultivations already showed that oxygen was consumed by L. buchneri CD034 after aeration of the culture while growth of L. buchneri CD034 was still observed. RNA sequencing data revealed that irrespective of the oxygen status of the culture, the most abundantly transcribed genes are required for basic cell functions such as protein biosynthesis, energy metabolism and lactic acid fermentation. Under aerobic conditions, 283 genes were found to be transcriptionally up-regulated while 198 genes were found to be down-regulated (p-value < 0.01). Up-regulated genes i. a. play a role in oxygen consumption via oxidation of pyruvate or lactate (pox, lctO). Additionally, genes encoding proteins required for decomposition of reactive oxygen species (ROS) such as glutathione reductase or NADH peroxidase were also found to be up-regulated. Genes related to pH homeostasis and redox potential balance were found to be down-regulated under aerobic conditions. Overall, genes required for lactic acid fermentation were hardly affected by the growth conditions applied. Genes identified to be differentially transcribed depending on the aeration status of the culture are suggested to specify the favorable performance of the strain in silage formation.
Collapse
|
23
|
Alkema W, Boekhorst J, Wels M, van Hijum SAFT. Microbial bioinformatics for food safety and production. Brief Bioinform 2015; 17:283-92. [PMID: 26082168 PMCID: PMC4793891 DOI: 10.1093/bib/bbv034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 12/14/2022] Open
Abstract
In the production of fermented foods, microbes play an important role. Optimization of fermentation processes or starter culture production traditionally was a trial-and-error approach inspired by expert knowledge of the fermentation process. Current developments in high-throughput 'omics' technologies allow developing more rational approaches to improve fermentation processes both from the food functionality as well as from the food safety perspective. Here, the authors thematically review typical bioinformatics techniques and approaches to improve various aspects of the microbial production of fermented food products and food safety.
Collapse
|
24
|
Bachmann H, Pronk JT, Kleerebezem M, Teusink B. Evolutionary engineering to enhance starter culture performance in food fermentations. Curr Opin Biotechnol 2015; 32:1-7. [DOI: 10.1016/j.copbio.2014.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/05/2014] [Accepted: 09/12/2014] [Indexed: 01/08/2023]
|
25
|
Krügel H, Klimina KM, Mrotzek G, Tretyakov A, Schöfl G, Saluz HP, Brantl S, Poluektova EU, Danilenko VN. Expression of the toxin-antitoxin genes yefM(Lrh), yoeB(Lrh) in human Lactobacillus rhamnosus isolates. J Basic Microbiol 2015; 55:982-91. [PMID: 25832734 DOI: 10.1002/jobm.201400904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/13/2015] [Indexed: 11/07/2022]
Abstract
Lactobacilli are important microorganisms in various activities, for example, diary products, meat ripening, bread and pickles, but, moreover, are associated directly with human skin and cavities (e.g., mouth, gut, or vagina). Some of them are used as probiotics. Therefore, the molecular biological investigation of these bacteria is important. Earlier we described several toxin antitoxin systems (type II) in lactobacilli. Here, we describe the structure and transcriptional regulation of genes, encoding TA system YefM-YoeB(Lrh) in three strains of Lactobacillus rhamnosus comparing stationary and exponential growth phases, the influence of stress factors and mRNA stability. The same TA system is responding to physiological and stress conditions differently in related strains. Using primer extension and RLM-RACE methods we determined three transcription start sites of RNAs in the operon. The promoter region of the operon is preceded by a conserved BOX element occurring at multiple positions in the genomes of L. rhamnosus strains. Downstream of and partially overlapping with the 3' end of the yoeB(Lrh) toxin gene, a divergently transcribed unexpected RNA was detected.
Collapse
Affiliation(s)
- Hans Krügel
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Ksenia M Klimina
- Department of Post-genomic Biotechnology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Grit Mrotzek
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Alexander Tretyakov
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Gerhard Schöfl
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Hans-Peter Saluz
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany.,Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Elena U Poluektova
- Department of Post-genomic Biotechnology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Valery N Danilenko
- Department of Post-genomic Biotechnology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
26
|
Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, Tsakalidou E. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 2015; 6:58. [PMID: 25741323 PMCID: PMC4330916 DOI: 10.3389/fmicb.2015.00058] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/17/2015] [Indexed: 12/13/2022] Open
Abstract
Over the past decades the food industry has been revolutionized toward the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer’s health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut–brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms.
Collapse
Affiliation(s)
- Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Georgia Zoumpopoulou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Benoit Foligné
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Université Lille Nord de France, CNRS UMR8204, Lille France
| | - Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Bruno Pot
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Université Lille Nord de France, CNRS UMR8204, Lille France
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| |
Collapse
|
27
|
Ricciardi A, Castiglione Morelli MA, Ianniello RG, Parente E, Zotta T. Metabolic profiling and stress response of anaerobic and respiratory cultures of Lactobacillus plantarum C17 grown in a chemically defined medium. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-1003-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
28
|
Dijkstra AR, Alkema W, Starrenburg MJC, Hugenholtz J, van Hijum SAFT, Bron PA. Fermentation-induced variation in heat and oxidative stress phenotypes of Lactococcus lactis MG1363 reveals transcriptome signatures for robustness. Microb Cell Fact 2014; 13:148. [PMID: 25366036 PMCID: PMC4229599 DOI: 10.1186/s12934-014-0148-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/12/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Lactococcus lactis is industrially employed to manufacture various fermented dairy products. The most cost-effective method for the preservation of L. lactis starter cultures is spray drying, but during this process cultures encounter heat and oxidative stress, typically resulting in low survival rates. However, viability of starter cultures is essential for their adequate contribution to milk fermentation, supporting the ambition to better understand and improve their robustness phenotypes. RESULTS This study describes a transcriptome-phenotype matching approach in which the starter L. lactis MG1363 was fermented under a variety of conditions that differed in the levels of oxygen and/or salt, as well as the fermentation pH and temperature. Samples derived from these fermentations in the exponential phase of bacterial growth were analyzed by full-genome transcriptomics and the assessment of heat and oxidative stress phenotypes. Variations in the fermentation conditions resulted in up to 1000-fold differences in survival during heat and oxidative stress. More specifically, aeration during fermentation induced protection against heat stress, whereas a relatively high fermentation temperature resulted in enhanced robustness towards oxidative stress. Concomitantly, oxygen levels and fermentation temperature induced differential expression of markedly more genes when compared with the other fermentation parameters. Correlation analysis of robustness phenotypes and gene expression levels revealed transcriptome signatures for oxidative and/or heat stress survival, including the metC-cysK operon involved in methionine and cysteine metabolism. To validate this transcriptome-phenotype association we grew L. lactis MG1363 in the absence of cysteine which led to enhanced robustness towards oxidative stress. CONCLUSIONS Overall, we demonstrated the importance of careful selection of fermentation parameters prior to industrial processing of starter cultures. Furthermore, established stress genes as well as novel genes were associated with robustness towards heat and/or oxidative stress. Assessment of the expression levels of this group of genes could function as an indicator for enhanced selection of fermentation parameters resulting in improved robustness during spray drying. The increased robustness after growth without cysteine appeared to confirm the role of expression of the metC-cysK operon as an indicator of robustness and suggests that sulfur amino acid metabolism plays a pivotal role in oxidative stress survival.
Collapse
Affiliation(s)
- Annereinou R Dijkstra
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600, Delft, GA, The Netherlands.
- NIZO food research, P.O. Box 20, 6710, Ede, BA, The Netherlands.
- Universiteit van Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098, Amsterdam, XH, The Netherlands.
| | - Wynand Alkema
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600, Delft, GA, The Netherlands.
- NIZO food research, P.O. Box 20, 6710, Ede, BA, The Netherlands.
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, P.O. Box 9101, 6500, Nijmegen, HB, The Netherlands.
| | | | - Jeroen Hugenholtz
- Universiteit van Amsterdam, Swammerdam Institute for Life Sciences, Science Park 904, 1098, Amsterdam, XH, The Netherlands.
| | - Sacha A F T van Hijum
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600, Delft, GA, The Netherlands.
- NIZO food research, P.O. Box 20, 6710, Ede, BA, The Netherlands.
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, P.O. Box 9101, 6500, Nijmegen, HB, The Netherlands.
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709, Wageningen, PA, The Netherlands.
| | - Peter A Bron
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600, Delft, GA, The Netherlands.
- NIZO food research, P.O. Box 20, 6710, Ede, BA, The Netherlands.
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709, Wageningen, PA, The Netherlands.
| |
Collapse
|
29
|
Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E. Towards lactic acid bacteria-based biorefineries. Biotechnol Adv 2014; 32:1216-1236. [PMID: 25087936 DOI: 10.1016/j.biotechadv.2014.07.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Francesca Bosco
- Department of Applied Science and Technology (DISAT), Politecnico of Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
| | - Itzhak Mizrahi
- Institute of Animal Science, ARO, Volcani Research Center, P.O. Box 6Â, Bet Dagan 50-250, Israel.
| | - Edward A Bayer
- Department of Biological Chemistry, the Weizmann Institute of Science, Rehovot 76100 Israel.
| | - Enrica Pessione
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
30
|
Siragusa S, De Angelis M, Calasso M, Campanella D, Minervini F, Di Cagno R, Gobbetti M. Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions. J Proteomics 2013; 96:366-80. [PMID: 24231110 DOI: 10.1016/j.jprot.2013.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED This study aimed at investigating the proteomic adaptation of Lactobacillus plantarum strains. Cultivation of L. plantarum strains under food-like conditions (wheat flour hydrolyzed, whey milk, tomato juice) affected some metabolic traits (e.g., consumption of carbohydrates and synthesis of organic acids) compared to de Man, Rogosa and Sharpe (MRS) broth. The analysis of the fermentation profile showed that the highest number of carbon sources metabolized by L. plantarum strains was found using cells cultivated in media containing low concentration of glucose or no glucose at all. The proteomic maps of the strains were comparatively determined after growth on MRS broth and under food-like conditions. The amount of proteins depended on strain and, especially, on culture conditions. Proteins showing decreased or increased amounts under food-like conditions were identified using MALDI-TOF-MS/MS or LC-nano-ESI-MS/MS. Changes of the proteome concerned proteins that are involved in carbohydrate transport and metabolism, energy metabolism, Sec-dependent secretion system, stress response, nucleotide metabolism, regulation of nitrogen metabolism, and protein biosynthesis. A catabolic repression by glucose on carbohydrate transport and metabolism was also found. The characterization of the proteomes in response to changing environmental conditions could be useful to get L. plantarum strains adapted for specific applications. BIOLOGICAL SIGNIFICANCE Microbial cell performance during food biotechnological processes has become one of the greatest concerns all over the world. L. plantarum is a lactic acid bacterium with a large industrial application for fermented foods or functional foods (e.g., probiotics). The present study compared the fermentation and proteomic profiling of L. plantarum strains during growth under food-like conditions and under optimal laboratory conditions (MRS broth). This study provides specific mechanisms of proteomic adaptation involved in the microbial performances (carbohydrates utilization, energy metabolism, stress resistance, etc.) affecting the main biotechnological tracts of L. plantarum strains. The finding of this study provides evidences that may be exploited to get strains adapted for specific applications in food biotechnology.
Collapse
Affiliation(s)
- Sonya Siragusa
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Maria Calasso
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Daniela Campanella
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Fabio Minervini
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Raffaella Di Cagno
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Science, Via G. Amendola 165/a, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
31
|
|
32
|
Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures. Appl Environ Microbiol 2013; 79:5949-61. [PMID: 23872557 DOI: 10.1128/aem.01115-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the cocultures, five mechanisms of interaction were identified. (i) Lb. delbrueckii subsp. bulgaricus hydrolyzes lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. delbrueckii subsp. bulgaricus, is excreted and provides a carbon source for yeast. (ii) In pure cultures, Lb. delbrueckii subsp. bulgaricus grows only in the presence of increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. (iii) Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacterium. (iv) A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. delbrueckii subsp. bulgaricus. (v) Transcriptome analysis of Lb. delbrueckii subsp. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipid metabolism, suggesting either a competition of the two microorganisms for fatty acids or a response to the ethanol produced by S. cerevisiae. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigate microbial interactions in mixed populations.
Collapse
|
33
|
Zotta T, Guidone A, Ianniello RG, Parente E, Ricciardi A. Temperature and respiration affect the growth and stress resistance of Lactobacillus plantarum C17. J Appl Microbiol 2013; 115:848-58. [PMID: 23782242 DOI: 10.1111/jam.12285] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/10/2013] [Accepted: 06/14/2013] [Indexed: 11/28/2022]
Abstract
AIMS The aim of the study is to gain further insight on the respiratory behaviour of Lactobacillus plantarum and its consequences on stress tolerance. METHODS AND RESULTS We investigated the effect of temperature and respiration on the growth and stress (heat, oxidative, freezing, freeze-drying) response of Lact. plantarum C17 during batch cultivations. Temperature as well as respiration clearly affected the physiological state of cells, and generally, cultures grown under respiratory conditions exhibited improved tolerance of some stresses (heat, oxidative, freezing) compared to those obtained in anaerobiosis. Our results revealed that the activities in cell-free extracts of the main enzymes related to aerobic metabolism, POX (pyruvate oxidase) and NPR (NADH peroxidase), were significantly affected by temperature. POX was completely inhibited at 37°C, while the activity of NPR slightly increased at 25°C, indicating that in Lact. plantarum, the temperature of growth may be involved in the activation and modulation of aerobic/respiratory metabolism. CONCLUSIONS We confirmed that respiration confers robustness to Lact. plantarum cells, allowing a greater stress tolerance and advantages in the production of starter and probiotic cultures. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study on respiratory metabolism on a strain other than the model strains WCFS1; novel information on the role of temperature in the modulation of aerobic/respiratory metabolism in Lact. plantarum is presented.
Collapse
Affiliation(s)
- T Zotta
- Istituto di Scienze dell'Alimentazione-CNR, Avellino, Italy.
| | | | | | | | | |
Collapse
|
34
|
Bron PA, Tomita S, Mercenier A, Kleerebezem M. Cell surface-associated compounds of probiotic lactobacilli sustain the strain-specificity dogma. Curr Opin Microbiol 2013; 16:262-9. [PMID: 23810459 DOI: 10.1016/j.mib.2013.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 12/31/2022]
Abstract
Probiotic lactobacilli can positively impact on the health status of targeted (diseased) populations but efficacy depends strongly on the strain employed and the molecular basis for this phenomenon is poorly understood. This review discusses the current state-of-the-art in the field of molecular probiotic-host interactions, focusing on subtle strain-specific differences in the biochemical characteristics of cell surface-associated probiotic ligands and the consequences thereof for the immune responses elicited. This research is bound to enhance our understanding of strain-specificity in relation to probiotic functionality and will allow molecular science-based design of screening and characterization assays targeted to improved selection of probiotic candidate strains. Moreover, identified bioactive effector molecules could be isolated or produced for administration in a more pharmacological regime.
Collapse
Affiliation(s)
- Peter A Bron
- TI Food and Nutrition, Nieuwe Kanaal 9A, 6709PA Wageningen, The Netherlands
| | | | | | | |
Collapse
|
35
|
Burton JP, Wescombe PA, Macklaim JM, Chai MHC, Macdonald K, Hale JDF, Tagg J, Reid G, Gloor GB, Cadieux PA. Persistence of the oral probiotic Streptococcus salivarius M18 is dose dependent and megaplasmid transfer can augment their bacteriocin production and adhesion characteristics. PLoS One 2013; 8:e65991. [PMID: 23785463 PMCID: PMC3681767 DOI: 10.1371/journal.pone.0065991] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/29/2013] [Indexed: 01/29/2023] Open
Abstract
Bacteriocin-producing probiotic Streptococcus salivarius M18 offers beneficial modulatory capabilities within the oral microbiome, apparently through potent inhibitory activity against potentially deleterious bacteria, such as Streptococcus pyogenes. The oral cavity persistence of S. salivarius M18 was investigated in 75 subjects receiving four different doses for 28 days. Sixty per cent of the subjects already had some inhibitor-producing S. salivarius in their saliva prior to probiotic intervention. Strain M18's persistence was dependent upon the dose, but not the period of administration. Culture analysis indicated that in some individuals the introduced strain had almost entirely replaced the indigenous S. salivarius, though the total numbers of the species did not increase. Selected subjects showing either high or low probiotic persistence had their salivary populations profiled using Illumina sequencing of the V6 region of the 16S rRNA gene. Analysis indicated that while certain bacterial phenotypes were markedly modulated, the overall composition of the oral microbiome was not modified by the probiotic treatment. Megaplasmids encoding bacteriocins and adhesion factors were transferred in vitro to generate a transconjugant S. salivarius exhibiting enhanced antimicrobial production and binding capabilities to HEp-2 cells. Since no widespread perturbation of the existing indigenous microbiota was associated with oral instillation and given its antimicrobial activity against potentially pathogenic streptococci, it appears that application of probiotic strain M18 offers potential low impact alternative to classical antibiotic prophylaxis. For candidate probiotic strains having relatively poor antimicrobial or adhesive properties, unique derivatives displaying improved probiotic performance may be engineered in vitro by megaplasmid transfer.
Collapse
Affiliation(s)
- Jeremy P Burton
- Canadian Research and Development Centre for Probiotics, Lawson Health Research Institute, London, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Identification of critical genes for growth in olive brine by transposon mutagenesis of Lactobacillus pentosus C11. Appl Environ Microbiol 2013; 79:4568-75. [PMID: 23686273 DOI: 10.1128/aem.01159-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Olive brine represents a stressful environment due to the high NaCl concentration, presence of phenolic compounds known as antimicrobials, and low availability of nutrients. Thus, only a few strains of lactic acid bacteria (LAB) are adapted to grow in and ferment table olives. To identify the mechanisms by which these few strains are able to grow in olive brine, Lactobacillus pentosus C11, a particularly resistant strain isolated from naturally fermented table olives, was mutagenized by random transposition using the P(junc)-TpaseIS1223 system (H. Licandro-Seraut, S. Brinster, M. van de Guchte, H. Scornec, E. Maguin, P. Sansonetti, J. F. Cavin, and P. Serror, Appl. Environ. Microbiol. 78:5417-5423, 2012). A library of 6,000 mutants was generated and screened for adaptation and subsequent growth in a medium, named BSM (brine screening medium), which presents the stressful conditions encountered in olive brine. Five transposition mutants impaired in growth on BSM were identified. Transposition occurred in two open reading frames and in three transcription terminators affecting stability of transcripts. Thus, several essential genes for adaptation and growth of L. pentosus C11 in olive brine were identified.
Collapse
|
37
|
Dutilh BE, Backus L, Edwards RA, Wels M, Bayjanov JR, van Hijum SAFT. Explaining microbial phenotypes on a genomic scale: GWAS for microbes. Brief Funct Genomics 2013; 12:366-80. [PMID: 23625995 PMCID: PMC3743258 DOI: 10.1093/bfgp/elt008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There is an increasing availability of complete or draft genome sequences for microbial organisms. These data form a potentially valuable resource for genotype-phenotype association and gene function prediction, provided that phenotypes are consistently annotated for all the sequenced strains. In this review, we address the requirements for successful gene-trait matching. We outline a basic protocol for microbial functional genomics, including genome assembly, annotation of genotypes (including single nucleotide polymorphisms, orthologous groups and prophages), data pre-processing, genotype-phenotype association, visualization and interpretation of results. The methodologies for association described herein can be applied to other data types, opening up possibilities to analyze transcriptome-phenotype associations, and correlate microbial population structure or activity, as measured by metagenomics, to environmental parameters.
Collapse
Affiliation(s)
- Bas E Dutilh
- CMBI, NCMLS, Radboud University Medical Centre. Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Marco ML, Tachon S. Environmental factors influencing the efficacy of probiotic bacteria. Curr Opin Biotechnol 2013; 24:207-13. [DOI: 10.1016/j.copbio.2012.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/24/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
|
39
|
The quest for probiotic effector molecules—Unraveling strain specificity at the molecular level. Pharmacol Res 2013; 69:61-74. [DOI: 10.1016/j.phrs.2012.09.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 12/25/2022]
|
40
|
Rolain T, Bernard E, Courtin P, Bron PA, Kleerebezem M, Chapot-Chartier MP, Hols P. Identification of key peptidoglycan hydrolases for morphogenesis, autolysis, and peptidoglycan composition of Lactobacillus plantarum WCFS1. Microb Cell Fact 2012; 11:137. [PMID: 23066986 PMCID: PMC3533731 DOI: 10.1186/1475-2859-11-137] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lactobacillus plantarum is commonly used in industrial fermentation processes. Selected strains are also marketed as probiotics for their health beneficial effects. Although the functional role of peptidoglycan-degrading enzymes is increasingly documented to be important for a range of bacterial processes and host-microbe interactions, little is known about their functional roles in lactobacilli. This knowledge holds important potential for developing more robust strains resistant to autolysis under stress conditions as well as peptidoglycan engineering for a better understanding of the contribution of released muramyl-peptides as probiotic immunomodulators. RESULTS Here, we explored the functional role of the predicted peptidoglycan hydrolase (PGH) complement encoded in the genome of L. plantarum by systematic gene deletion. From twelve predicted PGH-encoding genes, nine could be individually inactivated and their corresponding mutant strains were characterized regarding their cell morphology, growth, and autolysis under various conditions. From this analysis, we identified two PGHs, the predicted N-acetylglucosaminidase Acm2 and NplC/P60 D,L-endopeptidase LytA, as key determinants in the morphology of L. plantarum. Acm2 was demonstrated to be required for the ultimate step of cell separation of daughter cells, whereas LytA appeared to be required for cell shape maintenance and cell-wall integrity. We also showed by autolysis experiments that both PGHs are involved in the global autolytic process with a dominant role for Acm2 in all tested conditions, identifying Acm2 as the major autolysin of L. plantarum WCFS1. In addition, Acm2 and the putative N-acetylmuramidase Lys2 were shown to play redundant roles in both cell separation and autolysis under stress conditions. Finally, the analysis of the peptidoglycan composition of Acm2- and LytA-deficient derivatives revealed their potential hydrolytic activities by the disappearance of specific cleavage products. CONCLUSION In this study, we showed that two PGHs of L. plantarum have a predominant physiological role in a range of growth conditions. We demonstrate that the N-acetylglucosaminidase Acm2 is the major autolysin whereas the D,L-endopeptidase LytA is a key morphogenic determinant. In addition, both PGHs have a direct impact on PG structure by generating a higher diversity of cleavage products that could be of importance for interaction with the innate immune system.
Collapse
Affiliation(s)
- Thomas Rolain
- Biochimie et Génétique Moléculaire Bactérienne, Institut des Sciences de la Vie, Université catholique de Louvain, Place Croix du Sud 5/L7,07,06, Louvain-la-Neuve, B-1348, Belgium
| | | | | | | | | | | | | |
Collapse
|
41
|
Bron PA, Tomita S, van Swam II, Remus DM, Meijerink M, Wels M, Okada S, Wells JM, Kleerebezem M. Lactobacillus plantarum possesses the capability for wall teichoic acid backbone alditol switching. Microb Cell Fact 2012; 11:123. [PMID: 22967304 PMCID: PMC3511166 DOI: 10.1186/1475-2859-11-123] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/28/2012] [Indexed: 02/06/2023] Open
Abstract
Background Specific strains of Lactobacillus plantarum are marketed as health-promoting probiotics. The role and interplay of cell-wall compounds like wall- and lipo-teichoic acids (WTA and LTA) in bacterial physiology and probiotic-host interactions remain obscure. L. plantarum WCFS1 harbors the genetic potential to switch WTA backbone alditol, providing an opportunity to study the impact of WTA backbone modifications in an isogenic background. Results Through genome mining and mutagenesis we constructed derivatives that synthesize alternative WTA variants. The mutants were shown to completely lack WTA, or produce WTA and LTA that lack D-Ala substitution, or ribitol-backbone WTA instead of the wild-type glycerol-containing backbone. DNA micro-array experiments established that the tarIJKL gene cluster is required for the biosynthesis of this alternative WTA backbone, and suggest ribose and arabinose are precursors thereof. Increased tarIJKL expression was not observed in any of our previously performed DNA microarray experiments, nor in qRT-PCR analyses of L. plantarum grown on various carbon sources, leaving the natural conditions leading to WTA backbone alditol switching, if any, to be identified. Human embryonic kidney NF-κB reporter cells expressing Toll like receptor (TLR)-2/6 were exposed to purified WTAs and/or the TA mutants, indicating that WTA is not directly involved in TLR-2/6 signaling, but attenuates this signaling in a backbone independent manner, likely by affecting the release and exposure of immunomodulatory compounds such as LTA. Moreover, human dendritic cells did not secrete any cytokines when purified WTAs were applied, whereas they secreted drastically decreased levels of the pro-inflammatory cytokines IL-12p70 and TNF-α after stimulation with the WTA mutants as compared to the wild-type. Conclusions The study presented here correlates structural differences in WTA to their functional characteristics, thereby providing important information aiding to improve our understanding of molecular host-microbe interactions and probiotic functionality.
Collapse
Affiliation(s)
- Peter A Bron
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
van Bokhorst-van de Veen H, van Swam I, Wels M, Bron PA, Kleerebezem M. Congruent strain specific intestinal persistence of Lactobacillus plantarum in an intestine-mimicking in vitro system and in human volunteers. PLoS One 2012; 7:e44588. [PMID: 22970257 PMCID: PMC3435264 DOI: 10.1371/journal.pone.0044588] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/08/2012] [Indexed: 01/17/2023] Open
Abstract
Background An important trait of probiotics is their capability to reach their intestinal target sites alive to optimally exert their beneficial effects. Assessment of this trait in intestine-mimicking in vitro model systems has revealed differential survival of individual strains of a species. However, data on the in situ persistence characteristics of individual or mixtures of strains of the same species in the gastrointestinal tract of healthy human volunteers have not been reported to date. Methodology/Principal Findings The GI-tract survival of individual L. plantarum strains was determined using an intestine mimicking model system, revealing substantial inter-strain differences. The obtained data were correlated to genomic diversity of the strains using comparative genome hybridization (CGH) datasets, but this approach failed to discover specific genetic loci that explain the observed differences between the strains. Moreover, we developed a next-generation sequencing-based method that targets a variable intergenic region, and employed this method to assess the in vivo GI-tract persistence of different L. plantarum strains when administered in mixtures to healthy human volunteers. Remarkable consistency of the strain-specific persistence curves were observed between individual volunteers, which also correlated significantly with the GI-tract survival predicted on basis of the in vitro assay. Conclusion The survival of individual L. plantarum strains in the GI-tract could not be correlated to the absence or presence of specific genes compared to the reference strain L. plantarum WCFS1. Nevertheless, in vivo persistence analysis in the human GI-tract confirmed the strain-specific persistence, which appeared to be remarkably similar in different healthy volunteers. Moreover, the relative strain-specific persistence in vivo appeared to be accurately and significantly predicted by their relative survival in the intestine-mimicking in vitro assay, supporting the use of this assay for screening of strain-specific GI persistence.
Collapse
Affiliation(s)
- Hermien van Bokhorst-van de Veen
- TI Food & Nutrition, Wageningen, The Netherlands
- NIZO food research, Ede, The Netherlands
- Laboratory of Microbiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Iris van Swam
- TI Food & Nutrition, Wageningen, The Netherlands
- NIZO food research, Ede, The Netherlands
| | - Michiel Wels
- TI Food & Nutrition, Wageningen, The Netherlands
- NIZO food research, Ede, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI 260), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter A. Bron
- TI Food & Nutrition, Wageningen, The Netherlands
- NIZO food research, Ede, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- * E-mail:
| | - Michiel Kleerebezem
- TI Food & Nutrition, Wageningen, The Netherlands
- NIZO food research, Ede, The Netherlands
- Laboratory of Microbiology, Wageningen University and Research Centre, Wageningen, The Netherlands
- Host-Microbe Interactomics, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|