1
|
Bello SF, Xu H, Bolaji UFO, Aloryi KD, Adeola AC, Gibril BAA, Popoola MA, Zhu W, Zhang D, Zhang X, Ji C, Nie Q. Expression profiling and single nucleotide polymorphism of mitogen-activated protein kinase kinase kinase 8 MAP3K8 in white muscovy ducks (Cairina moschata). Gene 2025; 932:148901. [PMID: 39209181 DOI: 10.1016/j.gene.2024.148901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
A previous study on ovarian and hypothalami transcriptome analysis in white Muscovy duck revealed that MAP3K8 gene participated in MAPK signaling pathway that influence egg production. Additionally, MAP3K8 was predicted as a target gene of miRNA-509-3p that promotes the secretion of oestradiol which is an important hormone in egg ovulation. This suggested that MAP3K8 might have a functional role in the reproductive performance "egg production" of white Muscovy ducks. Herein, we focused on expression level of MAP3K8 in reproductive and non-reproductive tissues of highest (HP) and lowest (LP) egg producing white Muscovy ducks and identified the polymorphism in MAP3K8 and its association with three egg production traits; Age at first egg (AFE), number of eggs at 300 days (N300D) and 59 weeks (N59W). The results of expression level indicated that mRNA of MAP3K8 was significantly (p < 0.01) expressed in the oviduct than in the ovary and hypothalamus. Seven synonymous SNPs were detected, and association analysis showed that g.148303340 G>A and g.148290065 A>G were significantly (p < 0.05) associated with N300D and N59W. The results of this study might serve as molecular marker for marker-assisted selection of white Muscovy ducks for egg production.
Collapse
Affiliation(s)
- Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Agriculture Research Group, Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305-00100, Nairobi, Kenya
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Umar-Faruq Olayinka Bolaji
- Department of Animal Production, College of Food Science and Agriculture King Saud University, Riyadh, Saudi Arabia
| | - Kelvin Dodzi Aloryi
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Adeniyi Charles Adeola
- Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 Yunnan, China
| | - Bahareldin Ali Abdalla Gibril
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Institute of Biological Technology, Nanchang Normal University, Nanchang 330032, China
| | - Moshood Abiola Popoola
- Federal College of Animal Health and Production Technology, Moor Plantation, Apata, Ibadan, Nigeria; National Dairy Research Institute, Karnal, India
| | - Weijian Zhu
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Congliang Ji
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China.
| |
Collapse
|
2
|
Gutierrez AH, Mazariegos MS, Alemany S, Nevzorova YA, Cubero FJ, Sanz-García C. Tumor progression locus 2 (TPL2): A Cot-plicated progression from inflammation to chronic liver disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166660. [PMID: 36764206 DOI: 10.1016/j.bbadis.2023.166660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
The cytoplasmic protein tumor progression locus 2 (TPL2), also known as cancer Osaka thyroid (Cot), or MAP3K8, is thought to have a significant role in a variety of cancers and illnesses and it is a key component in the activation pathway for the expression of inflammatory mediators. Despite the tight connection between inflammation and TPL2, its function has not been extensively studied in chronic liver disease (CLD), a major cause of morbidity and mortality worldwide. Here, we analyze more in detail the significance of TPL2 in CLD to shed light on the pathological and molecular transduction pattern of TPL2 during the progression of CLD. This might result in important advancements and enable progress in the diagnosis and treatment of CLD.
Collapse
Affiliation(s)
- Alejandro H Gutierrez
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Marina S Mazariegos
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Susana Alemany
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Biomedicine Unit (Unidad Asociada al CSIC), Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas, Spain
| | - Yulia A Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Carlos Sanz-García
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
| |
Collapse
|
3
|
Gong J, Fang C, Zhang P, Wang PX, Qiu Y, Shen LJ, Zhang L, Zhu XY, Tian S, Li F, Wang Z, Huang Z, Wang A, Zhang XD, She ZG. Tumor Progression Locus 2 in Hepatocytes Potentiates Both Liver and Systemic Metabolic Disorders in Mice. Hepatology 2019; 69:524-544. [PMID: 29381809 DOI: 10.1002/hep.29820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/25/2018] [Indexed: 12/27/2022]
Abstract
Tumor progression locus 2 (TPL2), a serine/threonine kinase, has been regarded as a potentially interesting target for the treatment of various diseases with an inflammatory component. However, the function of TPL2 in regulating hepatocyte metabolism and liver inflammation during the progression of nonalcoholic fatty liver disease (NAFLD) is poorly understood. Here, we report that TPL2 protein expression was significantly increased in fatty liver from diverse species, including humans, monkeys, and mice. Further investigations revealed that compared to wild-type (WT) littermates, hepatocyte-specific TPL2 knockout (HKO) mice exhibited improved lipid and glucose imbalance, reserved insulin sensitivity, and alleviated inflammation in response to high-fat diet (HFD) feeding. Overexpression of TPL2 in hepatocytes led to the opposite phenotype. Regarding the mechanism, we found that mitogen-activated protein kinase kinase 7 (MKK7) was the specific substrate of TPL2 for c-Jun N-terminal kinase (JNK) activation. TPL2-MKK7-JNK signaling in hepatocytes represents a promising drugable target for treating NAFLD and associated metabolic disorders. Conclusion: In hepatocytes, TPL2 acts as a key mediator that promotes both liver and systemic metabolic disturbances by specifically increasing MKK7-JNK activation.
Collapse
Affiliation(s)
- Jun Gong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China
| | - Chun Fang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Peng Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Pi-Xiao Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yixing Qiu
- Lab of Animal Models and Functional Genomics (LAMFG), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,TCM and Ethnomedicine Innovation & Development Laboratory, Sino-Pakistan TCM Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li-Jun Shen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Li Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xue-Yong Zhu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Song Tian
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Feng Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China
| | - Zhihua Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zan Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Aibing Wang
- Lab of Animal Models and Functional Genomics (LAMFG), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiao-Dong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Berthou F, Ceppo F, Dumas K, Massa F, Vergoni B, Alemany S, Cormont M, Tanti JF. The Tpl2 Kinase Regulates the COX-2/Prostaglandin E2 Axis in Adipocytes in Inflammatory Conditions. Mol Endocrinol 2015; 29:1025-36. [PMID: 26020725 DOI: 10.1210/me.2015-1027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bioactive lipid mediators such as prostaglandin E2 (PGE2) have emerged as potent regulator of obese adipocyte inflammation and functions. PGE2 is produced by cyclooxygenases (COXs) from arachidonic acid, but inflammatory signaling pathways controlling COX-2 expression and PGE2 production in adipocytes remain ill-defined. Here, we demonstrated that the MAP kinase kinase kinase tumor progression locus 2 (Tpl2) controls COX-2 expression and PGE2 secretion in adipocytes in response to different inflammatory mediators. We found that pharmacological- or small interfering RNA-mediated Tpl2 inhibition in 3T3-L1 adipocytes decreased by 50% COX-2 induction in response to IL-1β, TNF-α, or a mix of the 2 cytokines. PGE2 secretion induced by the cytokine mix was also markedly blunted. At the molecular level, nuclear factor κB was required for Tpl2-induced COX-2 expression in response to IL-1β but was inhibitory for the TNF-α or cytokine mix response. In a coculture between adipocytes and macrophages, COX-2 was mainly increased in adipocytes and pharmacological inhibition of Tpl2 or its silencing in adipocytes markedly reduced COX-2 expression and PGE2 secretion. Further, Tpl2 inhibition in adipocytes reduces by 60% COX-2 expression induced by a conditioned medium from lipopolysaccharide (LPS)-treated macrophages. Importantly, LPS was less efficient to induce COX-2 mRNA in adipose tissue explants of Tpl2 null mice compared with wild-type and Tpl2 null mice displayed low COX-2 mRNA induction in adipose tissue in response to LPS injection. Collectively, these data established that activation of Tpl2 by inflammatory stimuli in adipocytes and adipose tissue contributes to increase COX-2 expression and production of PGE2 that could participate in the modulation of adipose tissue inflammation during obesity.
Collapse
Affiliation(s)
- Flavien Berthou
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Franck Ceppo
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Karine Dumas
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Fabienne Massa
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Bastien Vergoni
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Susana Alemany
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Mireille Cormont
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| | - Jean-François Tanti
- Inserm (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Unit 1065, Centre Méditerranéen de Médecine Moléculaire, Team 7 "Molecular and Cellular Physiopathology of Obesity and Diabetes," and Université Nice Sophia Antipolis (F.B., F.C., K.D., F.M., B.V., M.C., J.-F.T.), Centre Méditerranéen de Médecine Moléculaire, 06204 Cedex 3 Nice, France; and Instituto Investigaciones Biomédicas Alberto Sols (S.A.), Consejo Superior de Investigaciones Científicas-Universidad Autonoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
5
|
Ceppo F, Jager J, Berthou F, Giorgetti-Peraldi S, Cormont M, Bost F, Tanti JF. [Implication of MAP kinases in obesity-induced inflammation and insulin resistance]. Biol Aujourdhui 2014; 208:97-107. [PMID: 25190570 DOI: 10.1051/jbio/2014014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Indexed: 12/16/2022]
Abstract
Insulin resistance is often associated with obesity and is a major risk factor for development of type 2 diabetes as well as cardiovascular and hepatic diseases. Insulin resistance may also increase the incidence or the aggressiveness of some cancers. Insulin resistance occurs owing to defects in insulin signaling in target tissues of this hormone. During the last ten years, it became evident that the chronic low-grade inflammatory state that develops during obesity plays an important role in insulin resistance development. Indeed, inflammatory cytokines activate several signaling pathways that impinge on the insulin signaling pathway. Among them, this review will focus on the implication of the MAP kinases JNK and ERK1/2 signaling in the development of insulin signaling alterations and will discuss the possibility to target these pathways in order to fight insulin resistance.
Collapse
Affiliation(s)
- Franck Ceppo
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Jennifer Jager
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France - Adresse actuelle : Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, PA 19104, Philadelphia, USA
| | - Flavien Berthou
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Sophie Giorgetti-Peraldi
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Mireille Cormont
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Fréderic Bost
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| | - Jean-François Tanti
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Route de Saint-Antoine de Ginestière, 06204 Nice Cedex 3, France
| |
Collapse
|
6
|
Ceppo F, Berthou F, Jager J, Dumas K, Cormont M, Tanti JF. Implication of the Tpl2 kinase in inflammatory changes and insulin resistance induced by the interaction between adipocytes and macrophages. Endocrinology 2014; 155:951-64. [PMID: 24424060 DOI: 10.1210/en.2013-1815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adipose tissue inflammation is associated with the development of insulin resistance. In obese adipose tissue, lipopolysaccharides (LPSs) and saturated fatty acids trigger inflammatory factors that mediate a paracrine loop between adipocytes and macrophages. However, the inflammatory signaling proteins underlying this cross talk remain to be identified. The mitogen-activated protein kinase kinase kinase tumor progression locus 2 (Tpl2) is activated by inflammatory stimuli, including LPS, and its expression is up-regulated in obese adipose tissue, but its role in the interaction between adipocytes and macrophages remains ill-defined. To assess the implication of Tpl2 in the cross talk between these 2 cell types, we used coculture system and conditioned medium (CM) from macrophages. Pharmacological inhibition of Tpl2 in the coculture markedly reduced lipolysis and cytokine production and prevented the decrease in adipocyte insulin signaling. Tpl2 knockdown in cocultured adipocytes reduced lipolysis but had a weak effect on cytokine production and did not prevent the alteration of insulin signaling. By contrast, Tpl2 silencing in cocultured macrophages resulted in a marked inhibition of cytokine production and prevented the alteration of adipocyte insulin signaling. Further, when Tpl2 was inhibited in LPS-activated macrophages, the produced CM did not alter adipocyte insulin signaling and did not induce an inflammatory response in adipocytes. By contrast, Tpl2 silencing in adipocytes did not prevent the deleterious effects of a CM from LPS-activated macrophages. Together, these data establish that Tpl2, mainly in macrophages, is involved in the cross talk between adipocytes and macrophages that promotes inflammatory changes and alteration of insulin signaling in adipocytes.
Collapse
Affiliation(s)
- Franck Ceppo
- INSERM Unité 1065/Centre Méditerranéen de Médecine Moléculaire (C3M) and Université de Nice Sophia Antipolis (F.C., F.B., J.J., K.D, M.C., J.-F.T.), F-06204, Nice, France
| | | | | | | | | | | |
Collapse
|
7
|
MAP3K8 (TPL2/COT) affects obesity-induced adipose tissue inflammation without systemic effects in humans and in mice. PLoS One 2014; 9:e89615. [PMID: 24586913 PMCID: PMC3933658 DOI: 10.1371/journal.pone.0089615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 01/24/2014] [Indexed: 12/16/2022] Open
Abstract
Chronic low-grade inflammation in adipose tissue often accompanies obesity, leading to insulin resistance and increasing the risk for metabolic diseases. MAP3K8 (TPL2/COT) is an important signal transductor and activator of pro-inflammatory pathways that has been linked to obesity-induced adipose tissue inflammation. We used human adipose tissue biopsies to study the relationship of MAP3K8 expression with markers of obesity and expression of pro-inflammatory cytokines (IL-1β, IL-6 and IL-8). Moreover, we evaluated obesity-induced adipose tissue inflammation and insulin resistance in mice lacking MAP3K8 and WT mice on a high-fat diet (HFD) for 16 weeks. Individuals with a BMI >30 displayed a higher mRNA expression of MAP3K8 in adipose tissue compared to individuals with a normal BMI. Additionally, high mRNA expression levels of IL-1β, IL-6 and IL-8, but not TNF -α, in human adipose tissue were associated with higher expression of MAP3K8. Moreover, high plasma SAA and CRP did not associate with increased MAP3K8 expression in adipose tissue. Similarly, no association was found for MAP3K8 expression with plasma insulin or glucose levels. Mice lacking MAP3K8 had similar bodyweight gain as WT mice, yet displayed lower mRNA expression levels of IL-1β, IL-6 and CXCL1 in adipose tissue in response to the HFD as compared to WT animals. However, MAP3K8 deficient mice were not protected against HFD-induced adipose tissue macrophage infiltration or the development of insulin resistance. Together, the data in both human and mouse show that MAP3K8 is involved in local adipose tissue inflammation, specifically for IL-1β and its responsive cytokines IL-6 and IL-8, but does not seem to have systemic effects on insulin resistance.
Collapse
|
8
|
Tanti JF, Ceppo F, Jager J, Berthou F. Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front Endocrinol (Lausanne) 2012; 3:181. [PMID: 23316186 PMCID: PMC3539134 DOI: 10.3389/fendo.2012.00181] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/19/2012] [Indexed: 12/12/2022] Open
Abstract
Obesity is characterized by the development of a low-grade chronic inflammatory state in different metabolic tissues including adipose tissue and liver. This inflammation develops in response to an excess of nutrient flux and is now recognized as an important link between obesity and insulin resistance. Several dietary factors like saturated fatty acids and glucose as well as changes in gut microbiota have been proposed as triggers of this metabolic inflammation through the activation of pattern-recognition receptors (PRRs), including Toll-like receptors (TLR), inflammasome, and nucleotide oligomerization domain (NOD). The consequences are the production of pro-inflammatory cytokines and the recruitment of immune cells such as macrophages and T lymphocytes in metabolic tissues. Inflammatory cytokines activate several kinases like IKKβ, mTOR/S6 kinase, and MAP kinases as well as SOCS proteins that interfere with insulin signaling and action in adipocytes and hepatocytes. In this review, we summarize recent studies demonstrating that PRRs and stress kinases are important integrators of metabolic and inflammatory stress signals in metabolic tissues leading to peripheral and central insulin resistance and metabolic dysfunction. We discuss recent data obtained with genetically modified mice and pharmacological approaches suggesting that these inflammatory pathways are potential novel pharmacological targets for the management of obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Jean-François Tanti
- INSERM U1065, Mediterranean Center of Molecular Medicine (C3M), Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”Nice, France
- Faculty of Medicine, University of Nice Sophia-AntipolisNice, France
- *Correspondence: Jean-François Tanti, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Bâtiment Archimed, 151, route de St. Antoine de Ginestière, BP 2 3194, 06204, Nice Cedex 3, France. e-mail:
| | - Franck Ceppo
- INSERM U1065, Mediterranean Center of Molecular Medicine (C3M), Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”Nice, France
- Faculty of Medicine, University of Nice Sophia-AntipolisNice, France
| | - Jennifer Jager
- INSERM U1065, Mediterranean Center of Molecular Medicine (C3M), Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”Nice, France
- Faculty of Medicine, University of Nice Sophia-AntipolisNice, France
| | - Flavien Berthou
- INSERM U1065, Mediterranean Center of Molecular Medicine (C3M), Team “Molecular and Cellular Physiopathology of Obesity and Diabetes”Nice, France
- Faculty of Medicine, University of Nice Sophia-AntipolisNice, France
| |
Collapse
|