1
|
Wang KN, Liu LY, Mao D, Hou MX, Tan CP, Mao ZW, Liu B. A Nuclear-Targeted AIE Photosensitizer for Enzyme Inhibition and Photosensitization in Cancer Cell Ablation. Angew Chem Int Ed Engl 2022; 61:e202114600. [PMID: 35132748 DOI: 10.1002/anie.202114600] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 12/24/2022]
Abstract
The nucleus is considered the ideal target for anti-tumor therapy because DNA and some enzymes in the nucleus are the main causes of cell canceration and malignant proliferation. However, nuclear target drugs with good biosafety and high efficiency in cancer treatment are rare. Herein, a nuclear-targeted material MeTPAE with aggregation-induced emission (AIE) characteristics was developed based on a triphenylamine structure skeleton. MeTPAE can not only interact with histone deacetylases (HDACs) to inhibit cell proliferation but also damage telomere and nucleic acids precisely through photodynamic treatment (PDT). The cocktail strategy of MeTPAE caused obvious cell cycle arrest and showed excellent PDT anti-tumor activity, which offered new opportunities for the effective treatment of malignant tumors.
Collapse
Affiliation(s)
- Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Duo Mao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Ming-Xuan Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
2
|
Wang K, Liu L, Mao D, Hou M, Tan C, Mao Z, Liu B. A Nuclear‐Targeted AIE Photosensitizer for Enzyme Inhibition and Photosensitization in Cancer Cell Ablation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Kang‐Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Duo Mao
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Ming‐Xuan Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry State Key Laboratory of Oncology in South China Sun Yat-Sen University China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
3
|
Singu PS, Chilakamarthi U, Mahadik NS, Keerti B, Valipenta N, Mokale SN, Nagesh N, Kumbhare RM. Benzimidazole-1,2,3-triazole hybrid molecules: synthesis and study of their interaction with G-quadruplex DNA. RSC Med Chem 2021; 12:416-429. [PMID: 34046624 DOI: 10.1039/d0md00414f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022] Open
Abstract
A series of new benzimidazole-1,2,3-triazole hybrid derivatives have been synthesized via 'click' reaction and evaluated for their in vitro cytotoxicity as well as DNA binding affinity. MTT assay showed that all the six compounds are cytotoxic to PC3 and B16-F10 cancer cell lines. Though all the compounds showed moderate interaction with G4, c-Myc promoter DNA and dsDNA, 4f exhibited selective interaction with G-quadruplex DNA over duplex DNA as demonstrated by spectroscopic experiments like UV-vis spectroscopy, fluorescence spectroscopy, CD spectroscopy, thermal melting and fluorescence lifetime experiments. They also confirm the G-quadruplex DNA stabilizing potential of 4f. Viscosity measurements also confirm that 4f exhibits high G-quadruplex DNA selectivity over duplex DNA. Docking studies supported the spectroscopic observations. Cell cycle analysis showed that 4f induces G2/M phase arrest and induces apoptosis. Hence, from these experimental results it is evident that compound 4f may be a G-quadruplex DNA groove binding molecule with anticancer activity.
Collapse
Affiliation(s)
- Padma S Singu
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Ushasri Chilakamarthi
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Namita S Mahadik
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Bhamidipati Keerti
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Narasimhulu Valipenta
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Santosh N Mokale
- Y. B. Chavan College of Pharmacy Dr. Rafiq Zakaria Campus Aurangabad-431001 India
| | - Narayana Nagesh
- Medical Biotechnology Complex, CSIR-Centre for Cellular and Molecular Biology ANNEXE II, Uppal Road Hyderabad 500007 India
| | - Ravindra M Kumbhare
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
4
|
Verma S, Ravichandiran V, Ranjan N, Flora SJS. Recent Advances in Therapeutic Applications of Bisbenzimidazoles. Med Chem 2021; 16:454-486. [PMID: 31038072 DOI: 10.2174/1573406415666190416120801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/19/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Nitrogen-containing heterocycles are one of the most common structural motifs in approximately 80% of the marketed drugs. Of these, benzimidazoles analogues are known to elicit a wide spectrum of pharmaceutical activities such as anticancer, antibacterial, antiparasitic, antiviral, antifungal as well as chemosensor effect. Based on the benzimidazole core fused heterocyclic compounds, crescent-shaped bisbenzimidazoles were developed which provided an early breakthrough in the sequence-specific DNA recognition. Over the years, a number of functional variations in the bisbenzimidazole core have led to the emergence of their unique properties and established them as versatile ligands against several classes of pathogens. The present review provides an overview of diverse pharmacological activities of the bisbenzimidazole analogues in the past decade with a brief account of its development through the years.
Collapse
Affiliation(s)
- Smita Verma
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli, 229010, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata, 700054, India
| | - Vishnuvardh Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata, 700054, India
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli, 229010, India
| | - Swaran J S Flora
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli, 229010, India
| |
Collapse
|
5
|
Zhao J, Zhai Q. Recent advances in the development of ligands specifically targeting telomeric multimeric G-quadruplexes. Bioorg Chem 2020; 103:104229. [DOI: 10.1016/j.bioorg.2020.104229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 01/24/2023]
|
6
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
7
|
Liu W, Zhong YF, Liu LY, Shen CT, Zeng W, Wang F, Yang D, Mao ZW. Solution structures of multiple G-quadruplex complexes induced by a platinum(II)-based tripod reveal dynamic binding. Nat Commun 2018; 9:3496. [PMID: 30158518 PMCID: PMC6115404 DOI: 10.1038/s41467-018-05810-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/16/2018] [Indexed: 11/24/2022] Open
Abstract
DNA G-quadruplexes are not only attractive drug targets for cancer therapeutics, but also have important applications in supramolecular assembly. Here, we report a platinum(II)-based tripod (Pt-tripod) specifically binds the biological relevant hybrid-1 human telomeric G-quadruplex (Tel26), and strongly inhibits telomerase activity. Further investigations illustrate Pt-tripod induces the formation of monomeric and multimeric Pt-tripod‒Tel26 complex structures in solution. We solve the 1:1 and the unique dimeric 4:2 Pt-tripod–Tel26 complex structures by NMR. The structures indicate preferential binding of Pt-tripod to the 5ʹ-end of Tel26 at a low Pt-tripod/Tel26 ratio of 0–1.0. After adding more Pt-tripod, the Pt-tripod binds the 3ʹ-end of Tel26, unexpectedly inducing a unique dimeric 4:2 structure interlocked by an A:A non-canonical pair at the 3ʹ-end. Our structures provide a structural basis for understanding the dynamic binding of small molecules with G-quadruplex and DNA damage mechanisms, and insights into the recognition and assembly of higher-order G-quadruplexes. DNA G-quadruplexes occur in oncologically relevant regions, thus are interesting targets for cancer research and treatment. Here, the authors solved the 1:1 and 4:2 (ligand/DNA) NMR structures of human telomeric DNA in complex with platinum(II)-tripod ligand and show that the binding is dynamic.
Collapse
Affiliation(s)
- Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yi-Fang Zhong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chu-Tong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wenjuan Zeng
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA.
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China. .,College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Abstract
Guanine-rich nucleic acid sequences able to form four-stranded structures (G-quadruplexes, G4) play key cellular regulatory roles and are considered as promising drug targets for anticancer therapy. On the basis of the organization of their structural elements, G4 ligands can be divided into three major families: one, fused heteroaromatic polycyclic systems; two, macrocycles; three, modular aromatic compounds. The design of modular G4 ligands emerged as the answer to achieve not only more drug-like compounds but also more selective ligands by targeting the diversity of the G4 loops and grooves. The rationale behind the design of a very comprehensive set of ligands, with particular focus on the structural features required for binding to G4, is discussed and combined with the corresponding biochemical/biological data to highlight key structure-G4 interaction relationships. Analysis of the data suggests that the shape of the ligand is the major factor behind the G4 stabilizing effect of the ligands. The information here critically reviewed will certainly contribute to the development of new and better G4 ligands with application either as therapeutics or probes.
Collapse
Affiliation(s)
- Ana Rita Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Enrico Cadoni
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana S Ressurreição
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Paulo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Saintomé C, Alberti P, Guinot N, Lejault P, Chatain J, Mailliet P, Riou JF, Bugaut A. Binding properties of mono- and dimeric pyridine dicarboxamide ligands to human telomeric higher-order G-quadruplex structures. Chem Commun (Camb) 2018; 54:1897-1900. [PMID: 29393312 DOI: 10.1039/c7cc07048a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here, we report on the in vitro binding properties of the known pyridine dicarboxamide G-quadruplex ligand 360A and a new dimeric analogue (360A)2A to human telomeric DNA higher-order G-quadruplex (G4) structures. This study points to original binding features never reported for G4 ligands, and reveals a greater efficiency for the dimeric ligand to displace RPA (a ssDNA binding protein involved in telomere replication) from telomeric DNA.
Collapse
Affiliation(s)
- C Saintomé
- "Structure and Instability of Genomes" laboratory, Sorbonne Universités, Muséum National d'Histoire Naturelle (MNHN), Inserm U1154, CNRS UMR 7196, 75005 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ali A, Kamra M, Roy S, Muniyappa K, Bhattacharya S. Novel Oligopyrrole Carboxamide based Nickel(II) and Palladium(II) Salens, Their Targeting of Human G-Quadruplex DNA, and Selective Cancer Cell Toxicity. Chem Asian J 2016; 11:2542-54. [DOI: 10.1002/asia.201600655] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/16/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Asfa Ali
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560 012 India
| | - Mohini Kamra
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560 012 India
| | - Soma Roy
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560 012 India
| | - K. Muniyappa
- Department of Biochemistry; Indian Institute of Science; Bangalore 560 012 India
| | - Santanu Bhattacharya
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560 012 India
- Director's Research Unit; Indian Association for the Cultivation of Science; Kolkata 700 032 India
| |
Collapse
|
11
|
Recent advances in targeting the telomeric G-quadruplex DNA sequence with small molecules as a strategy for anticancer therapies. Future Med Chem 2016; 8:1259-90. [PMID: 27442231 DOI: 10.4155/fmc-2015-0017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human telomeric DNA (hTelo), present at the ends of chromosomes to protect their integrity during cell division, comprises tandem repeats of the sequence d(TTAGGG) which is known to form a G-quadruplex secondary structure. This unique structural formation of DNA is distinct from the well-known helical structure that most genomic DNA is thought to adopt, and has recently gained prominence as a molecular target for new types of anticancer agents. In particular, compounds that can stabilize the intramolecular G-quadruplex formed within the human telomeric DNA sequence can inhibit the activity of the enzyme telomerase which is known to be upregulated in tumor cells and is a major contributor to their immortality. This provides the basis for the discovery and development of small molecules with the potential for selective toxicity toward tumor cells. This review summarizes the various families of small molecules reported in the literature that have telomeric quadruplex stabilizing properties, and assesses the potential for compounds of this type to be developed as novel anticancer therapies. A future perspective is also presented, emphasizing the need for researchers to adopt approaches that will allow the discovery of molecules with more drug-like properties in order to improve the chances of lead molecules reaching the clinic in the next decade.
Collapse
|
12
|
Maji B, Kumar K, Muniyappa K, Bhattacharya S. New dimeric carbazole-benzimidazole mixed ligands for the stabilization of human telomeric G-quadruplex DNA and as telomerase inhibitors. A remarkable influence of the spacer. Org Biomol Chem 2016; 13:8335-48. [PMID: 26149178 DOI: 10.1039/c5ob00675a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of G-quadruplex (G4) DNA binding small molecules has become an important strategy for selectively targeting cancer cells. Herein, we report the design and evolution of a new kind of carbazole-based benzimidazole dimers for their efficient telomerase inhibition activity. Spectroscopic titrations reveal the ligands high affinity toward the G4 DNA with significantly higher selectivity over duplex-DNA. The electrophoretic mobility shift assay shows that the ligands efficiently promote the formation of G4 DNA even at a lower concentration of the stabilizing K(+) ions. The TRAP-LIG assay demonstrates the ligand's potential telomerase inhibition activity and also establishes that the activity proceeds via G4 DNA stabilization. An efficient nuclear internalization of the ligands in several common cancer cells (HeLa, HT1080, and A549) also enabled differentiation between normal HFF cells in co-cultures of cancer and normal ones. The ligands induce significant apoptotic response and antiproliferative activity toward cancer cells selectively when compared to the normal cells.
Collapse
Affiliation(s)
- Basudeb Maji
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India.
| | | | | | | |
Collapse
|
13
|
Ali A, Bansal M, Bhattacharya S. Ligand 5,10,15,20-tetra(N-methyl-4-pyridyl)porphine (TMPyP4) prefers the parallel propeller-type human telomeric G-quadruplex DNA over its other polymorphs. J Phys Chem B 2014; 119:5-14. [PMID: 25526532 DOI: 10.1021/jp505792z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The binding of ligand 5,10,15,20-tetra(N-methyl-4-pyridyl)porphine (TMPyP4) with telomeric and genomic G-quadruplex DNA has been extensively studied. However, a comparative study of interactions of TMPyP4 with different conformations of human telomeric G-quadruplex DNA, namely, parallel propeller-type (PP), antiparallel basket-type (AB), and mixed hybrid-type (MH) G-quadruplex DNA, has not been done. We considered all the possible binding sites in each of the G-quadruplex DNA structures and docked TMPyP4 to each one of them. The resultant most potent sites for binding were analyzed from the mean binding free energy of the complexes. Molecular dynamics simulations were then carried out, and analysis of the binding free energy of the TMPyP4-G-quadruplex complex showed that the binding of TMPyP4 with parallel propeller-type G-quadruplex DNA is preferred over the other two G-quadruplex DNA conformations. The results obtained from the change in solvent excluded surface area (SESA) and solvent accessible surface area (SASA) also support the more pronounced binding of the ligand with the parallel propeller-type G-quadruplex DNA.
Collapse
Affiliation(s)
- Asfa Ali
- Department of Organic Chemistry, Indian Institute of Science , Bangalore 560 012, India
| | | | | |
Collapse
|
14
|
Tang WJ, Yang YA, Xu H, Shi JB, Liu XH. Synthesis and discovery of 18α-GAMG as anticancer agent in vitro and in vivo via down expression of protein p65. Sci Rep 2014; 4:7106. [PMID: 25407586 PMCID: PMC4236752 DOI: 10.1038/srep07106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/28/2014] [Indexed: 01/13/2023] Open
Abstract
Glycyrrhizic acid (GA) is a natural product with favorable antitumor activity. But, glycyrrhetinic acid monoglucuronide (GAMG) showed stronger antitumor activity than GA. It is of our interest to generate and identify novel compounds with regulation telomerase for cancer therapy. So, in this study, 18α-GAMG was synthesized via biotransformation. In vitro studies showed that it displayed potent anticancer activity and high selectivity on tumor liver cell SMMC-7721 versus human normal liver cell L-02. The further results in vivo confirmed that it could significantly improve pathological changes of N,N-diethylnitrosamine (DEN)-induced rat hepatic tumor. Western blot and immunofluorescence results indicated that the expression of p65-telomerase reverse transcriptase (TERT) was clearly down-regulated treated with it. Taken together, this study for the first time identified an active compound with high selectivity on tumor liver cell in mice. Furthermore, the title compound could inhibit the expression of protein p65 and TERT. These data support further studies to assess the rational design of more efficient p65 modulators in the future.
Collapse
Affiliation(s)
- Wen-jian Tang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yong-an Yang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - He Xu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Jing-bo Shi
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xin-hua Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
15
|
Maji B, Kumar K, Kaulage M, Muniyappa K, Bhattacharya S. Design and Synthesis of New Benzimidazole–Carbazole Conjugates for the Stabilization of Human Telomeric DNA, Telomerase Inhibition, and Their Selective Action on Cancer Cells. J Med Chem 2014; 57:6973-88. [DOI: 10.1021/jm500427n] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Basudeb Maji
- Department of Organic
Chemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Krishan Kumar
- Department of Organic
Chemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Mangesh Kaulage
- Department of Organic
Chemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
- Department
of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - K. Muniyappa
- Department
of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Santanu Bhattacharya
- Department of Organic
Chemistry, Indian Institute of Science, Bangalore, Karnataka 560 012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka 560 012, India
| |
Collapse
|
16
|
DNA binders in clinical trials and chemotherapy. Bioorg Med Chem 2014; 22:4506-21. [DOI: 10.1016/j.bmc.2014.05.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/09/2014] [Accepted: 05/14/2014] [Indexed: 01/09/2023]
|
17
|
Xu CX, Shen Y, Hu Q, Zheng YX, Cao Q, Qin PZ, Zhao Y, Ji LN, Mao ZW. Stabilization of human telomeric G-quadruplex and inhibition of telomerase activity by propeller-shaped trinuclear Pt(II) complexes. Chem Asian J 2014; 9:2519-26. [PMID: 24996049 DOI: 10.1002/asia.201402258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/15/2014] [Indexed: 12/21/2022]
Abstract
Two novel propeller-shaped, trigeminal-ligand-containing, flexible trinuclear Pt(II) complexes, {[Pt(dien)]3(ptp)}(NO3)6 (1) and {[Pt(dpa)]3(ptp)}(NO3)6 (2) (dien: diethylenetriamine; dpa: bis-(2-pyridylmethyl)amine; ptp: 6'-(pyridin-3-yl)-3,2':4',3''-terpyridine), have been designed and synthesized, and their interactions with G-quadruplex (G4) sequences are characterized. A combination of biophysical and biochemical assays reveals that both Pt(II) complexes exhibit higher affinity for human telomeric (hTel) and c-myc promoter G4 sequences than duplex DNA. Complex 1 binds and stabilizes hTel G4 sequence more effectively than complex 2. Both complexes are found to induce and stabilize either antiparallel or parallel conformation of G4 structures. Molecular docking studies indicate that complex 1 binds into the large groove of the antiparallel hTel G4 structure (PDB ID: 143D) and complex 2 stacks onto the exposed G-quartet of the parallel hTel G4 structure (PDB ID: 1KF1). Telomeric repeat amplification protocol assays demonstrate that both complexes are good telomerase inhibitors, with IC50 values of (16.0±0.4) μM and (4.20±0.25) μM for 1 and 2, respectively. Collectively, the results suggest that these propeller-shaped flexible trinuclear Pt(II) complexes are effective and selective G4 binders and good telomerase inhibitors. This work provides valuable information for the interaction between multinuclear metal complexes with G4 DNA.
Collapse
Affiliation(s)
- Cui-Xia Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510275 (China), Fax: (+86) 20-84112245
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Maji B, Bhattacharya S. Advances in the molecular design of potential anticancer agents via targeting of human telomeric DNA. Chem Commun (Camb) 2014; 50:6422-38. [DOI: 10.1039/c4cc00611a] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Telomerase is an attractive drug target to develop new generation drugs against cancer.
Collapse
Affiliation(s)
- Basudeb Maji
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore-560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore-560012, India
- Chemical Biology Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
| |
Collapse
|
19
|
Zhao C, Wu L, Ren J, Xu Y, Qu X. Targeting Human Telomeric Higher-Order DNA: Dimeric G-Quadruplex Units Serve as Preferred Binding Site. J Am Chem Soc 2013; 135:18786-9. [DOI: 10.1021/ja410723r] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chuanqi Zhao
- Division
of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth
Resource Utilization and Laboratory of Chemical Biology, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Li Wu
- Division
of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth
Resource Utilization and Laboratory of Chemical Biology, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jinsong Ren
- Division
of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth
Resource Utilization and Laboratory of Chemical Biology, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yan Xu
- Division
of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Xiaogang Qu
- Division
of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth
Resource Utilization and Laboratory of Chemical Biology, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
20
|
Biver T. Stabilisation of non-canonical structures of nucleic acids by metal ions and small molecules. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Mahesh Kumar J, Idris MM, Srinivas G, Vinay Kumar P, Meghah V, Kavitha M, Reddy CR, Mainkar PS, Pal B, Chandrasekar S, Nagesh N. Phenyl 1,2,3-triazole-thymidine ligands stabilize G-quadruplex DNA, inhibit DNA synthesis and potentially reduce tumor cell proliferation over 3'-azido deoxythymidine. PLoS One 2013; 8:e70798. [PMID: 23976957 PMCID: PMC3747139 DOI: 10.1371/journal.pone.0070798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/24/2013] [Indexed: 01/10/2023] Open
Abstract
Triazoles are known for their non-toxicity, higher stability and therapeutic activity. Few nucleoside (L1, L2 and L3) and non-nucleoside 1,2,3-triazoles (L4-L14) were synthesised using click chemistry and they were screened for tumor cell cytotoxicity and proliferation. Among these triazole ligands studied, nucleoside ligands exhibited higher potential than non-nucleoside ligands. The nucleoside triazole analogues, 3'-Phenyl-1,2,3- triazole-thymidine (L2) and 3'-4-Chlorophenyl-1,2,3-triazole-thymidine (L3), demonstrated higher cytotoxicity in tumor cells than in normal cells. The IC₅₀ value for L3 was lowest (50 µM) among the ligands studied. L3 terminated cell cycle at S, G2/M phases and enhanced sub-G1 populations, manifesting induction of apoptosis in tumor cells. Confocal studies indicated that nucleoside triazole ligands (L2/L3) cause higher DNA fragmentation than other ligands. Preclinical experiments with tumor-induced mice showed greater reduction in tumor size with L3. In vitro DNA synthesis reaction with L3 exhibited higher DNA synthesis inhibition with quadruplex forming DNA (QF DNA) than non quadruplex forming DNA (NQF DNA). T(m) of quadruplex DNA increased in the presence of L3, indicating its ability to enhance stability of quadruplex DNA at elevated temperature and the results indicate that it had higher affinity towards quadruplex DNA than the other forms of DNA (like dsDNA and ssDNA). From western blot experiment, it was noticed that telomerase expression levels in the tissues of tumor-induced mice were found to be reduced on L3 treatment. Microcalorimetry results emphasise that two nucleoside triazole ligands (L2/L3) interact with quadruplex DNA with significantly higher affinity (K(d)≈10⁻⁷ M). Interestingly the addition of an electronegative moiety to the phenyl group of L2 enhanced its anti-proliferative activity. Though IC₅₀ values are not significantly low with L3, the studies on series of synthetic 1,2,3-triazole ligands are useful for improving and building potential pro-apoptotic ligands.
Collapse
Affiliation(s)
| | | | - Gunda Srinivas
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Mitta Kavitha
- CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | | | - Biswajit Pal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
22
|
Paul A, Maji B, Misra SK, Jain AK, Muniyappa K, Bhattacharya S. Stabilization and structural alteration of the G-quadruplex DNA made from the human telomeric repeat mediated by Tröger's base based novel benzimidazole derivatives. J Med Chem 2012; 55:7460-71. [PMID: 22827615 DOI: 10.1021/jm300442r] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ligand-induced stabilization of the G-quadruplex DNA structure derived from the single-stranded 3'-overhang of the telomeric DNA is an attractive strategy for the inhibition of the telomerase activity. The agents that can induce/stabilize a DNA sequence into a G-quadruplex structure are therefore potential anticancer drugs. Herein we present the first report of the interactions of two novel bisbenzimidazoles (TBBz1 and TBBz2) based on Tröger's base skeleton with the G-quadruplex DNA (G4DNA). These Tröger's base molecules stabilize the G4DNA derived from a human telomeric sequence. Evidence of their strong interaction with the G4DNA has been obtained from CD spectroscopy, thermal denaturation, and UV-vis titration studies. These ligands also possess significantly higher affinity toward the G4DNA over the duplex DNA. The above results obtained are in excellent agreement with the biological activity, measured in vitro using a modified TRAP assay. Furthermore, the ligands are selectively more cytotoxic toward the cancerous cells than the corresponding noncancerous cells. Computational studies suggested that the adaptive scaffold might allow these ligands to occupy not only the G-quartet planes but also the grooves of the G4DNA.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | | | |
Collapse
|