1
|
Shimada K, Suzuki K, Sunohara M. Comparative in situ characterization of erythroid cells found throughout the developing tongue tissue, circulation, and liver of fetal mice. Ann Anat 2025; 258:152370. [PMID: 39689786 DOI: 10.1016/j.aanat.2024.152370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Erythroid cells contribute to embryonic organ development and adult tissue repair supplying oxygen to tissues. During mouse development, the primitive erythroid cells produced in the extraembryonic blood islands of the yolk sac begin to circulate as immature and nucleated erythroblasts with the onset of cardiac contractions around embryonic day 9.5 (E9.5). On the other hand, the definitive erythroid progenitors derived from the yolk sac and arterial vessels colonize the fetal liver, where they mature into small, enucleated definitive erythrocytes that are released into circulation at E11.5. In many cases, however, erythroblasts are also generated in situ during the development of tissue vasculature. We hypothesized that the properties of erythroid cells generated by peripheral tissue hematopoiesis may differ from those of contemporaneously circulating erythroid cells because hematopoiesis is spatiotemporally distinct from typical primitive and definitive hematopoiesis. METHODS Comparative in situ protein expression analyses of erythroid cells in developing tongue, circulation, and liver of fetal mice were performed at E12.5 and E14.5, using immunofluorescence staining of several marker proteins for erythroid and endothelial cells. RESULTS At E12.5, irregularly elongated immature vascular endothelial cells, many of which were in contact with nucleated erythroblasts, were distributed in the developing tongue. In the three fetal locations examined (tongue, circulation, and liver), most erythroid cells at E12.5 expressed CD31, which is involved in cell-cell interactions; however, the expression was downregulated by E14.5. Interestingly, at E12.5, several erythroblasts strongly expressing CD31 were found in the tongue, but less abundant in the circulation and fetal liver. Nearly all erythroblasts in E12.5 fetuses expressed primitive erythroid cell-specific βH1-globin; however, those strongly expressing the embryonic globin were scattered, particularly in the tongue, fewer in the circulation and fetal liver. On the contrary, erythroid cells expressing adult β1-globin were scarcely found in the tongue, which is in stark contrast to those in the circulation and fetal liver, where nearly all erythroid cells weakly expressed β1-globin at the embryonic stage. At E14.5, the number of βH1-globin-expressing cells drastically decreased; however, it was still significantly higher in the tongue than in the circulation and fetal liver. In all three locations, β1-globin accumulation and the enucleation of erythroid cells progressed uniformly and rapidly from E12.5 to E14.5. CONCLUSION The results indicate that primitive erythroblasts in the tongue highly express CD31, mature more slowly, and are replaced by definitive erythroid cells more slowly than those in the circulation and fetal liver. Primitive erythroblasts produced together with immature vascular endothelial cells during vasculogenesis in the developing tongue may perform functions other than oxygen supply, such as regulating vascular remodeling.
Collapse
Affiliation(s)
- Kazuto Shimada
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Kingo Suzuki
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| |
Collapse
|
2
|
Sunohara M, Morikawa S, Shimada K, Suzuki K. Spatiotemporal expression profiles of c-Mpl mRNA in the tooth germ: Comparative expression dynamics of vascularization-related genes. Ann Anat 2024; 253:152227. [PMID: 38336176 DOI: 10.1016/j.aanat.2024.152227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Vascularization is an essential event for both embryonic organ development and tissue repair in adults. During mouse tooth development, endothelial cells migrate into dental papilla during the cap stage, and form blood vessels through angiogenesis. Megakaryocytes and/or platelets, as other hematopoietic cells, express angiogenic molecules and can promote angiogenesis in adult tissues. However, it remains unknown which cells are responsible for attracting and leading blood vessels through the dental papilla during tooth development. METHODS Here we analyzed the spatiotemporal expression of c-Mpl mRNA in developing molar teeth of fetal mice. Expression patterns were then compared with those of several markers of hematopoietic cells as well as of angiogenic elements including CD41, erythropoietin receptor, CD34, angiopoietin-1 (Ang-1), Tie-2, and vascular endothelial growth factor receptor2 (VEGFR2) through in situ hybridization or immunohistochemistry. RESULTS Cells expressing c-Mpl mRNA was found in several parts of the developing tooth germ, including the peridental mesenchyme, dental papilla, enamel organ, and dental lamina. This expression occurred in a spatiotemporally controlled fashion. CD41-expressing cells were not detected during tooth development. The spatiotemporal expression pattern of c-Mpl mRNA in the dental papilla was similar to that of Ang-1, which preceded invasion of endothelial cells. Eventually, at the early bell stage, the c-Mpl mRNA signal was detected in morphologically differentiating odontoblasts that accumulated in the periphery of the dental papilla along the inner enamel epithelium layer of the future cusp region. CONCLUSION During tooth development, several kinds of cells express c-Mpl mRNA in a spatiotemporally controlled fashion, including differentiating odontoblasts. We hypothesize that c-Mpl-expressing cells appearing in the forming dental papilla at the cap stage are odontoblast progenitor cells that migrate to the site of odontoblast differentiation. There they attract vascular endothelial cells into the forming dental papilla and lead cells toward the inner enamel epithelium layer through production of angiogenic molecules (e.g., Ang-1) during migration to the site of differentiation. C-Mpl may regulate apoptosis and/or proliferation of expressing cells in order to execute normal development of the tooth.
Collapse
Affiliation(s)
- Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuto Shimada
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Kingo Suzuki
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Spinello I, Saulle E, Quaranta MT, Pelosi E, Castelli G, Cerio A, Pasquini L, Morsilli O, Dupuis ML, Labbaye C. AC-73 and Syrosingopine Inhibit SARS-CoV-2 Entry into Megakaryocytes by Targeting CD147 and MCT4. Viruses 2024; 16:82. [PMID: 38257782 PMCID: PMC10818282 DOI: 10.3390/v16010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Coagulation disorders are described in COVID-19 and long COVID patients. In particular, SARS-CoV-2 infection in megakaryocytes, which are precursors of platelets involved in thrombotic events in COVID-19, long COVID and, in rare cases, in vaccinated individuals, requires further investigation, particularly with the emergence of new SARS-CoV-2 variants. CD147, involved in the regulation of inflammation and required to fight virus infection, can facilitate SARS-CoV-2 entry into megakaryocytes. MCT4, a co-binding protein of CD147 and a key player in the glycolytic metabolism, could also play a role in SARS-CoV-2 infection. Here, we investigated the susceptibility of megakaryocytes to SARS-CoV-2 infection via CD147 and MCT4. We performed infection of Dami cells and human CD34+ hematopoietic progenitor cells induced to megakaryocytic differentiation with SARS-CoV-2 pseudovirus in the presence of AC-73 and syrosingopine, respective inhibitors of CD147 and MCT4 and inducers of autophagy, a process essential in megakaryocyte differentiation. Both AC-73 and syrosingopine enhance autophagy during differentiation but only AC-73 enhances megakaryocytic maturation. Importantly, we found that AC-73 or syrosingopine significantly inhibits SARS-CoV-2 infection of megakaryocytes. Altogether, our data indicate AC-73 and syrosingopine as inhibitors of SARS-CoV-2 infection via CD147 and MCT4 that can be used to prevent SARS-CoV-2 binding and entry into megakaryocytes, which are precursors of platelets involved in COVID-19-associated coagulopathy.
Collapse
Affiliation(s)
- Isabella Spinello
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (E.S.); (M.T.Q.); (M.L.D.)
| | - Ernestina Saulle
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (E.S.); (M.T.Q.); (M.L.D.)
| | - Maria Teresa Quaranta
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (E.S.); (M.T.Q.); (M.L.D.)
| | - Elvira Pelosi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (G.C.); (A.C.)
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (G.C.); (A.C.)
| | - Annamaria Cerio
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (G.C.); (A.C.)
| | - Luca Pasquini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Ornella Morsilli
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Luisa Dupuis
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (E.S.); (M.T.Q.); (M.L.D.)
| | - Catherine Labbaye
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (E.S.); (M.T.Q.); (M.L.D.)
| |
Collapse
|
4
|
Sim HJ, Bhattarai G, Kim MH, So HS, Poudel SB, Cho ES, Kook SH, Lee JC. Local and Systemic Overexpression of COMP-Ang1 Induces Ang1/Tie2-Related Thrombocytopenia and SDF-1/CXCR4-Dependent Anemia. Stem Cells 2022; 41:93-104. [PMID: 36368017 PMCID: PMC9887089 DOI: 10.1093/stmcls/sxac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
While supplemental angiopoietin-1 (Ang1) improves hematopoiesis, excessive Ang1 induces bone marrow (BM) impairment, hematopoietic stem cell (HSC) senescence, and erythropoietic defect. Here, we examined how excessive Ang1 disturbs hematopoiesis and explored whether hematopoietic defects were related to its level using K14-Cre;c-Ang1 and Col2.3-Cre;c-Ang1 transgenic mice that systemically and locally overexpress cartilage oligomeric matrix protein-Ang1, respectively. We also investigated the impacts of Tie2 inhibitor and AMD3100 on hematopoietic development. Transgenic mice exhibited excessive angiogenic phenotypes, but K14-Cre;c-Ang1 mice showed more severe defects in growth and life span with higher presence of Ang1 compared with Col2.3-Cre;c-Ang1 mice. Dissimilar to K14-Cre;c-Ang1 mice, Col2.3-Cre;c-Ang1 mice did not show impaired BM retention or senescence of HSCs, erythropoietic defect, or disruption of the stromal cell-derived factor 1 (SDF-1)/CXCR4 axis. However, these mice exhibited a defect in platelet production depending on the expression of Tie2 and globin transcription factor 1 (GATA-1), but not GATA-2, in megakaryocyte progenitor (MP) cells. Treatment with Tie2 inhibitor recovered GATA-1 expression in MP cells and platelet production without changes in circulating RBC in transgenic mice. Consecutive AMD3100 administration not only induced irrecoverable senescence of HSCs but also suppressed formation of RBC, but not platelets, via correlated decreases in number of erythroblasts and their GATA-1 expression in B6 mice. Our results indicate that genetic overexpression of Ang1 impairs hematopoietic development depending on its level, in which megakaryopoiesis is preferentially impaired via activation of Ang1/Tie2 signaling, whereas erythropoietic defect is orchestrated by HSC senescence, inflammation, and disruption of the SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Hyun-Jaung Sim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea,Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| | - Govinda Bhattarai
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Min-Hye Kim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| | - Han-Sol So
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| | - Sher Bahadur Poudel
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Sung-Ho Kook
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea,Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| | - Jeong-Chae Lee
- Corresponding author: Jeong-Chae Lee, PhD, School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea. Tel: +82 63 270 4049; Fax: +82 63 270 4004; ; or, Sung-Ho Kook, PhD, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, South Korea. Tel: +82 63 270 3327; Fax: +82 63 270 4312; E-mail: ; or, Eui-Sic Cho, PhD, DDS, School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea. Tel: +82 63 270 4045; Fax: +82 63 270 4004;
| |
Collapse
|
5
|
Ngo MT, Barnhouse VR, Gilchrist AE, Mahadik BP, Hunter CJ, Hensold JN, Petrikas N, Harley BAC. Hydrogels Containing Gradients in Vascular Density Reveal Dose-Dependent Role of Angiocrine Cues on Stem Cell Behavior. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101541. [PMID: 35558090 PMCID: PMC9090181 DOI: 10.1002/adfm.202101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 05/05/2023]
Abstract
Biomaterials that replicate patterns of microenvironmental signals from the stem cell niche offer the potential to refine platforms to regulate stem cell behavior. While significant emphasis has been placed on understanding the effects of biophysical and biochemical cues on stem cell fate, vascular-derived or angiocrine cues offer an important alternative signaling axis for biomaterial-based stem cell platforms. Elucidating dose-dependent relationships between angiocrine cues and stem cell fate are largely intractable in animal models and 2D cell cultures. In this study, microfluidic mixing devices are leveraged to generate 3D hydrogels containing lateral gradients in vascular density alongside murine hematopoietic stem cells (HSCs). Regional differences in vascular density can be generated via embossed gradients in cell, matrix, or growth factor density. HSCs co-cultured alongside vascular gradients reveal spatial patterns of HSC phenotype in response to angiocrine signals. Notably, decreased Akt signaling in high vessel density regions led to increased expansion of lineage-positive hematopoietic cells. This approach offers a combinatorial tool to rapidly screen a continuum of microenvironments with varying vascular, biophysical, and biochemical cues to reveal the influence of local angiocrine signals on HSC fate.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victoria R Barnhouse
- Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aidan E Gilchrist
- Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bhushan P Mahadik
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christine J Hunter
- Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joy N Hensold
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nathan Petrikas
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Abstract
Megakaryocytes give rise to platelets, which have a wide variety of functions in coagulation, immune response, inflammation, and tissue repair. Dysregulation of megakaryocytes is a key feature of in the myeloproliferative neoplasms, especially myelofibrosis. Megakaryocytes are among the main drivers of myelofibrosis by promoting myeloproliferation and bone marrow fibrosis. In vivo targeting of megakaryocytes by genetic and pharmacologic approaches ameliorates the disease, underscoring the important role of megakaryocytes in myeloproliferative neoplasms. Here we review the current knowledge of the function of megakaryocytes in the JAK2, CALR, and MPL-mutant myeloproliferative neoplasms.
Collapse
|
7
|
Li W, Zhang W, Zhang C, Zhu C, Yi X, Zhou Y, Lv Y. Soluble Tei2 fusion protein inhibits retinopathy of prematurity occurrence via regulation of the Ang/Tie2 pathway. Exp Ther Med 2019; 18:614-620. [PMID: 31258697 PMCID: PMC6566045 DOI: 10.3892/etm.2019.7608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/23/2019] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to investigate the potential mechanism of retinopathy of prematurity (ROP) using an oxygen-induced retinopathy (OIR) mouse model. For experiments, mice were divided into either the OIR group or control group. Fluorescein isothiocyanate-dextran cardiac perfusion and stretched retina preparation were performed. The total retina area, area of instillation, density of microvascular network, area of new blood vessels, vein width and the tortuosity of arteries were measured. Next, mice were randomly assigned into the PBS, soluble TEK receptor tyrosine kinase (sTie2)-fusion protein (Fc), angiopoietin 1 (Ang1), ranibizumab, ranibizumab + sTie2-Fc and ranibizumab + Ang1 treatment groups. Following housing for 5 days, the body weight of each mouse was recorded. Mice in the OIR group presented smaller total retina area and larger area of instillation, larger area of new blood vessels, and higher microvascular network density compared with the control PBS group. Obvious retinal vein dilatation and arterial tortuosity were identified in the OIR group. The amount of endotheliocyte nuclei of new vessels beyond the inner limiting membrane was larger in the OIR group compared with the control group. Furthermore in the next set of experiments, a larger area of instillation, smaller area of new blood vessels and decreased amount of endotheliocyte nuclei of new vessels were observed in the sTie2-Fc group, Ang1 group, ranibizumab group, ranibizumab + sTie2-Fc group and ranibizumab + Ang1 group compared with the PBS group. Specifically, the ranibizumab + sTie2-Fc group and ranibizumab + Ang1 group demonstrated markedly reduced retina instillation area and microvascular network density in the instillation area. Total retina area and body weight following 10 days of the experiment for the ranibizumab group were significantly lower compared with other groups. In conclusion, the combined regulation of the Ang/Tie2 and the vascular endothelial growth factor (VEGF)/VEGF receptor pathways markedly increased the efficacy of treatment with retinal neovascularization (RNV). Regulation of these pathways has a potential for treating RNV, in particular ROP.
Collapse
Affiliation(s)
- Weijing Li
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Weihua Zhang
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Cuiying Zhang
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Chunfang Zhu
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xiangling Yi
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yan Zhou
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yan Lv
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
8
|
Megakaryocyte Contribution to Bone Marrow Fibrosis: many Arrows in the Quiver. Mediterr J Hematol Infect Dis 2018; 10:e2018068. [PMID: 30416700 PMCID: PMC6223581 DOI: 10.4084/mjhid.2018.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
In Primary Myelofibrosis (PMF), megakaryocyte dysplasia/hyperplasia determines the release of inflammatory cytokines that, in turn, stimulate stromal cells and induce bone marrow fibrosis. The pathogenic mechanism and the cells responsible for progression to bone marrow fibrosis in PMF are not completely understood. This review article aims to provide an overview of the crucial role of megakaryocytes in myelofibrosis by discussing the role and the altered secretion of megakaryocyte-derived soluble factors, enzymes and extracellular matrices that are known to induce bone marrow fibrosis.
Collapse
|
9
|
Nowicki M, Wierzbowska A, Małachowski R, Robak T, Grzybowska-Izydorczyk O, Pluta A, Szmigielska-Kapłon A. VEGF, ANGPT1, ANGPT2, and MMP-9 expression in the autologous hematopoietic stem cell transplantation and its impact on the time to engraftment. Ann Hematol 2017; 96:2103-2112. [PMID: 28956132 DOI: 10.1007/s00277-017-3133-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/15/2017] [Indexed: 12/29/2022]
Abstract
As a site of complicated interactions among cytokines, bone marrow niche has been the subject of many scientific studies, mainly in the context of the proteins influencing damage or recovery of endothelium after allogeneic hematopoietic stem cell transplantation (HSCT). In this study, we aimed at exploring mutual correlations of bone marrow niche cytokines involved in the homing and mobilization of hematopoietic stem cells, as well as in angiogenesis. The aim of our study was to evaluate levels of cytokines: VEGF, angiopoietin-1 (ANGPT1), angiopoietin-2 (ANGPT2), and matrix metalloproteinase 9 (MMP-9) during autologous HSCT and to examine their influence on hematological recovery. Forty-three patients with hematological malignancies (33 multiple myeloma, 10 lymphoma) were enrolled in the study. Plasma samples were taken at five time points: before conditioning treatment (BC), on transplantation day (0) and 7 (+7), 14 (+14), and 21 (+21) days after HSCT. The cytokine levels were evaluated by ELISA method. Our study revealed decreased levels of VEGF, ANGPT1, and MMP-9 in the early post-transplant period as compared to the baseline (BC). ANGPT2 was decreased after conditioning treatment, but tended to increase from day +7. On day +7, positive correlations between ANGPT1 level as well as MMP-9 and the time to engraftment were observed. As opposite to ANGPT1, negative correlation between ANGPT2 level on day +7 after HSCT and the time to hematological recovery was noticed. Our study suggests that investigated cytokines are an important part of bone marrow environment and significantly influence the time to engraftment after HSCT.
Collapse
Affiliation(s)
- Mateusz Nowicki
- Department of Hematology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer and Traumatology Center, Pabianicka 62, 93-513, Lodz, Poland.
| | - Agnieszka Wierzbowska
- Department of Hematology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer and Traumatology Center, Pabianicka 62, 93-513, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Roman Małachowski
- Department of Hematology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer and Traumatology Center, Pabianicka 62, 93-513, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer and Traumatology Center, Pabianicka 62, 93-513, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Olga Grzybowska-Izydorczyk
- Department of Hematology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer and Traumatology Center, Pabianicka 62, 93-513, Lodz, Poland.,Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Pluta
- Department of Hematology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer and Traumatology Center, Pabianicka 62, 93-513, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Anna Szmigielska-Kapłon
- Department of Hematology, Copernicus Memorial Hospital in Lodz Comprehensive Cancer and Traumatology Center, Pabianicka 62, 93-513, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Alqudah M, Qandeel H, Al-Zoubi N, Alqudah A, Bani-Ahmad M, Alzoubi A. Changes of serum growth factors profiles in patients with venous thromboembolism. Scandinavian Journal of Clinical and Laboratory Investigation 2017; 77:595-600. [DOI: 10.1080/00365513.2017.1379607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohammad Alqudah
- Department of Pathology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Haitham Qandeel
- Department of General Surgery, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nabil Al-Zoubi
- Department of General Surgery, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Mohammad Bani-Ahmad
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdallah Alzoubi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
11
|
Horrillo A, Porras G, Ayuso MS, González-Manchón C. Loss of endothelial barrier integrity in mice with conditional ablation of podocalyxin (Podxl) in endothelial cells. Eur J Cell Biol 2016; 95:265-76. [PMID: 27289182 DOI: 10.1016/j.ejcb.2016.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 11/29/2022] Open
Abstract
Podocalyxin (Podxl) has an essential role in the development and function of the kidney glomerular filtration barrier. It is also expressed by vascular endothelia but perinatal lethality of podxl(-/-) mice has precluded understanding of its function in adult vascular endothelial cells (ECs). In this work, we show that conditional knockout mice with deletion of Podxl restricted to the vascular endothelium grow normally but most die spontaneously around three months of age. Histological analysis showed a nonspecific inflammatory infiltrate within the vessel wall frequently associated with degenerative changes, and involving vessels of different caliber in one or more organs. Podxl-deficient lung EC cultures exhibit increased permeability to dextran and macrophage transmigration. After thrombin stimulation, ECs lacking Podxl showed delayed recovery of VE-cadherin cell contacts, persistence of F-actin stress fibers, and sustained phosphorylation of the ERM complex and activation of RhoA, suggesting a failure in endothelial barrier stabilization. The results suggest that Podxl has an essential role in the regulation of endothelial permeability by influencing the mechanisms involved in the restoration of endothelial barrier integrity after injury.
Collapse
Affiliation(s)
- Angélica Horrillo
- Department of Cellular and Molecular Medicine, Centre of Biological Research-CIB, CSIC, Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Gracia Porras
- Department of Cellular and Molecular Medicine, Centre of Biological Research-CIB, CSIC, Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Matilde S Ayuso
- Department of Cellular and Molecular Medicine, Centre of Biological Research-CIB, CSIC, Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Consuelo González-Manchón
- Department of Cellular and Molecular Medicine, Centre of Biological Research-CIB, CSIC, Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
12
|
Liu S, Wang X, Lu Y, Xiao J, Liang J, Zhong X, Chen Y. The combined use of cytokine-induced killer cells and cyclosporine a for the treatment of aplastic anemia in a mouse model. J Interferon Cytokine Res 2015; 35:401-10. [PMID: 25714796 DOI: 10.1089/jir.2014.0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we investigated the combined use of cytokine-induced killer (CIK) cells and cyclosporine A (CsA) to treat a mouse model of aplastic anemia (AA). CIK cells were cultured and injected alone or in combination with CsA into mice that had previously been induced into AA by busulfan and mouse interferon-γ (IFN-γ). The CIK cell-treated group had a survival rate of 55%, which was similar to the 60% survival rate observed in the CsA-treated group. The combination group showed a survival rate as high as 90%, while none of the mice in the no-treatment group survived to the end of the experiment. The CIK cells produced multiple cytokines, including several hematopoietic growth factors, which could promote the expansion of mouse bone marrow mononuclear cells in vitro. CsA reduced the proportion of CD4(+) T cells and the level of IFN-γ. The combined CIK cell and CsA treatment exhibited the best curative effect, a finding that might be due to the influence of these factors on both hematopoiesis and immunity. These data suggest that the combination of CIK cells and immunosuppressive therapy might be a candidate therapy for AA in the future.
Collapse
Affiliation(s)
- Shousheng Liu
- 1 Department of Hematology, First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
13
|
The Italian National Centre for Rare Diseases: where research and public health translate into action. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2014; 12 Suppl 3:s591-605. [PMID: 24922300 DOI: 10.2450/2014.0040-14s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Deutsch VR, Tomer A. Advances in megakaryocytopoiesis and thrombopoiesis: from bench to bedside. Br J Haematol 2013; 161:778-93. [PMID: 23594368 DOI: 10.1111/bjh.12328] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Megakaryocytopoiesis involves the commitment of haematopoietic stem cells, proliferation and terminal differentiation of megakaryocytic progenitors (MK-p) and maturation of megakaryocytes (MKs) to produce functional platelets. This complex process occurs in specialized niches in the bone marrow where MKs align adjacent to vascular endothelial cells, form proplatelet projections and release platelets into the circulation. Thrombopoietin (THPO, TPO) is the primary growth factor for the MK lineage and necessary at all stages of development. THPO is constitutively produced in the liver, and binds to MPL (c-Mpl) receptor on platelets and MKs. This activates a cascade of signalling molecules, which induce transcription factors to drive MK development and thrombopoiesis. Decreased turnover rate and platelet number result in increased levels of free THPO, which induces a concentration-dependent compensatory response of marrow-MKs to enhance platelet production. Newly developed thrombopoietic agents operating via MPL receptor facilitate platelet production in thrombocytopenic states, primarily immune thrombocytopenia. Other drugs are available for attenuating malignant thrombocytosis. Herein, we review the regulation of megakaryocytopoiesis and platelet production in normal and disease states, and the innovative drugs and therapeutic modalities to stimulate or decrease thrombopoiesis.
Collapse
Affiliation(s)
- Varda R Deutsch
- The Haematology Institute, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel.
| | | |
Collapse
|
15
|
Badalucco S, Di Buduo CA, Campanelli R, Pallotta I, Catarsi P, Rosti V, Kaplan DL, Barosi G, Massa M, Balduini A. Involvement of TGFβ1 in autocrine regulation of proplatelet formation in healthy subjects and patients with primary myelofibrosis. Haematologica 2013; 98:514-7. [PMID: 23403314 DOI: 10.3324/haematol.2012.076752] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Megakaryocytes release platelets into the bloodstream by elongating proplatelets. In this study, we showed that human megakaryocytes constitutively release Transforming Growth Factor β1 and express its receptors. Importantly, Transforming Growth Factor β1 downstream signaling, through SMAD2/3 phosphorylation, was shown to be active in megakaryocytes extending proplatelets, indicating a type of autocrine stimulation on megakaryocyte development. Furthermore, inactivation of Transforming Growth Factor β1 signaling, by the receptor inhibitors SB431542 and Stemolecule ALK5 inhibitor, determined a significant decrease in proplatelet formation. Recent studies indicated a crucial role of Transforming Growth Factor β1 in the pathogenesis of primary myelofibrosis. We demonstrated that primary myelofibrosis-derived megakaryocytes expressed increased levels of bioactive Transforming Growth Factor β1; however, higher levels of released Transforming Growth Factor β1 did not lead to enhanced activation of downstream pathways. Overall, these data propose Transforming Growth Factor β1 as a new element in the autocrine regulation of proplatelet formation in vitro. Despite the increase in Transforming Growth Factor β1 this mechanism seems to be preserved in primary myelofibrosis.
Collapse
Affiliation(s)
- Stefania Badalucco
- Biotechnology Laboratories, Department of Molecular Medicine, University of Pavia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tamura S, Nagasawa A, Masuda Y, Tsunematsu T, Hayasaka K, Matsuno K, Shimizu C, Ozaki Y, Moriyama T. BDNF, produced by a TPO-stimulated megakaryocytic cell line, regulates autocrine proliferation. Biochem Biophys Res Commun 2012; 427:542-6. [PMID: 23022197 DOI: 10.1016/j.bbrc.2012.09.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/30/2022]
Abstract
While human platelets release endogenous brain-derived neurotrophic factor (BDNF) upon activation, a previous report on MEG-01, a megakaryocytic cell line, found no trace of BDNF production, and the pathophysiological function of platelet BDNF has remained elusive. In the present study, we demonstrate that MEG-01 produces BDNF in the presence of TPO and that this serves to potentiate cell proliferation. Our in vitro findings suggest that BDNF regulates MEG-01 proliferation in an autocrine manner, and we suggest that BDNF may be a physiological autocrine regulator of megakaryocyte progenitors.
Collapse
Affiliation(s)
- Shogo Tamura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|