1
|
Gokaltun A, Asik E, Byrne D, Yarmush ML, Usta OB. Supercooled preservation of cultured primary rat hepatocyte monolayers. Front Bioeng Biotechnol 2024; 12:1429412. [PMID: 39076209 PMCID: PMC11284110 DOI: 10.3389/fbioe.2024.1429412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Supercooled preservation (SCP) is a technology that involves cooling a substance below its freezing point without initiating ice crystal formation. It is a promising alternative to prolong the preservation time of cells, tissues, engineered tissue products, and organs compared to the current practices of hypothermic storage. Two-dimensional (2D) engineered tissues are extensively used in in vitro research for drug screening and development and investigation of disease progression. Despite their widespread application, there is a lack of research on the SCP of 2D-engineered tissues. In this study, we presented the effects of SCP at -2 and -6°C on primary rat hepatocyte (PRH) monolayers for the first time and compared cell viability and functionality with cold storage (CS, + 4°C). We preserved PRH monolayers in two different commercially available solutions: Hypothermosol-FRS (HTS-FRS) and the University of Wisconsin (UW) with and without supplements (i.e., polyethylene glycol (PEG) and 3-O-Methyl-Α-D-Glucopyranose (3-OMG)). Our findings revealed that UW with and without supplements were inadequate for the short-term preservation of PRH monolayers for both SCP and CS with high viability, functionality, and monolayer integrity. The combination of supplements (PEG and 3-OMG) in the HTS-FRS solution outperformed the other groups and yielded the highest viability and functional capacity. Notably, PRH monolayers exhibited superior viability and functionality when stored at -2°C through SCP for up to 3 days compared to CS. Overall, our results demonstrated that SCP is a feasible approach to improving the short-term preservation of PRH monolayers and enables readily available 2D-engineered tissues to advance in vitro research. Furthermore, our findings provide insights into preservation outcomes across various biological levels, from cells to tissues and organs, contributing to the advancement of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
- Department of Chemical Engineering, Hacettepe University, Ankara, Türkiye
| | - Eda Asik
- Shriners Hospitals for Children, Boston, MA, United States
- Department of Bioengineering, Hacettepe University, Ankara, Türkiye
| | - Delaney Byrne
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
- Department of Biomedical Engineering, Rutgers University, Newark, NJ, United States
| | - O. Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| |
Collapse
|
2
|
Windisch J, Reinhardt O, Duin S, Schütz K, Rodriguez NJN, Liu S, Lode A, Gelinsky M. Bioinks for Space Missions: The Influence of Long-Term Storage of Alginate-Methylcellulose-Based Bioinks on Printability as well as Cell Viability and Function. Adv Healthc Mater 2023; 12:e2300436. [PMID: 37125819 PMCID: PMC11468998 DOI: 10.1002/adhm.202300436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/14/2023] [Indexed: 05/02/2023]
Abstract
Bioprinting is considered a key technology for future space missions and is currently being established on the International Space Station (ISS). With the aim to perform bioink production as a critical and resource-consuming preparatory step already on Earth and transport a bioink cartridge "ready to use" to the ISS, the storability of bioinks is investigated. Hydrogel blends based on alginate and methylcellulose are laden with either green microalgae of the species Chlorella vulgaris or with different human cell lines including immortilized human mesenchymal stem cells, SaOS-2 and HepG2, as well as with primary human dental pulp stem cells. The bioinks are filled into printing cartridges and stored at 4°C for up to four weeks. Printability of the bioinks is maintained after storage. Viability and function of the cells embedded in constructs bioprinted from the stored bioinks are investigated during subsequent cultivation: The microalgae survive the storage period very well and show no loss of growth and functionality, however a significant decrease is visible for human cells, varying between the different cell types. The study demonstrates that storage of bioinks is in principle possible and is a promising starting point for future research, making complex printing processes more effective and reproducible.
Collapse
Affiliation(s)
- Johannes Windisch
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Olena Reinhardt
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Sarah Duin
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Nuria Juliana Novoa Rodriguez
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Suihong Liu
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue ResearchFaculty of MedicineTU DresdenFetscherstrasse 7401307DresdenGermany
| |
Collapse
|
3
|
Tigges J, Eggerbauer F, Worek F, Thiermann H, Rauen U, Wille T. Optimization of long-term cold storage of rat precision-cut lung slices with a tissue preservation solution. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1023-L1035. [PMID: 34643087 DOI: 10.1152/ajplung.00076.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Precision-cut lung slices (PCLS) are used as ex vivo model of the lung to fill the gap between in vitro and in vivo experiments. To allow optimal utilization of PCLS, possibilities to prolong slice viability via cold storage using optimized storage solutions were evaluated. Rat PCLS were cold stored in DMEM/F-12 or two different preservation solutions for up to 28 days at 4°C. After rewarming in DMEM/F-12, metabolic activity, live/dead staining, and mitochondrial membrane potential was assessed to analyze overall tissue viability. Single-cell suspensions were prepared and proportions of CD45+, EpCAM+, CD31+, and CD90+ cells were analyzed. As functional parameters, TNF-α expression was analyzed to detect inflammatory activity and bronchoconstriction was evaluated after acetylcholine stimulus. After 14 days of cold storage, viability and mitochondrial membrane potential were significantly better preserved after storage in solution 1 (potassium chloride rich) and solution 2 (potassium- and lactobionate-rich analog) compared with DMEM/F-12. Analysis of cell populations revealed efficient preservation of EpCAM+, CD31+, and CD90+ cells. Proportion of CD45+ cells decreased during cold storage but was better preserved by both modified solutions than by DMEM/F-12. PCLS stored in solution 1 responded substantially longer to inflammatory stimulation than those stored in DMEM/F-12 or solution 2. Analysis of bronchoconstriction revealed total loss of function after 14 days of storage in DMEM/F-12 but, in contrast, a good response in PCLS stored in the optimized solutions. An improved base solution with a high potassium chloride concentration optimizes cold storage of PCLS and allows shipment between laboratories and stockpiling of tissue samples.
Collapse
Affiliation(s)
- Jonas Tigges
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Florian Eggerbauer
- Walther Straub Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Ursula Rauen
- Institute of Physiological Chemistry, University Hospital, Essen, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
4
|
von Horn C, Wilde B, Rauen U, Paul A, Minor T. Use of the new preservation solution Custodiol-MP for ex vivo reconditioning of kidney grafts. Artif Organs 2021; 45:1117-1123. [PMID: 33683761 DOI: 10.1111/aor.13951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/12/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023]
Abstract
Organ shortage and the increasing use of extended criteria donor grafts for transplantation drives efforts for more efficient organ preservation strategies from simple cold storage toward dynamic organ reconditioning. The choice of a suitable preservation solution is of high relevance in different organ preservation or reconditioning situations. Custodiol-MP is a new machine perfusion solution giving the opportunity to add colloids according to organ requirements. The present study aimed to compare new Custodiol-MP with clinically established Belzer MPS solution. Porcine kidneys were ischemically predamaged and cold stored for 20 hours. Ex vivo machine reconditioning was performed either with Custodiol-MP (n = 6) or with Belzer MPS solution (n = 6) for 90 minutes with controlled oxygenated rewarming up to 20°C. Kidney function was evaluated using an established ex vivo reperfusion model. In this experimental setting, differences between both types of perfusion solutions could not be observed. Machine perfusion with Custodiol-MP resulted in higher creatinine clearance (7.4 ± 8.6 mL/min vs. 2.8 ± 2.5 mL/min) and less TNC perfusate levels (0.22 ± 0.25 ng/mL vs. 0.09 ± 0.08 ng/mL), although differences did not reach significance. For short-term kidney perfusion Custodiol-MP is safe and applicable. Particularly, the unique feature of flexible colloid supplementation makes the solution attractive in specific experimental and clinical settings.
Collapse
Affiliation(s)
- Charlotte von Horn
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Rauen
- Institut für Physiologische Chemie, Universitätsklinikum Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Paul
- Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thomas Minor
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Ruoß M, Vosough M, Königsrainer A, Nadalin S, Wagner S, Sajadian S, Huber D, Heydari Z, Ehnert S, Hengstler JG, Nussler AK. Towards improved hepatocyte cultures: Progress and limitations. Food Chem Toxicol 2020; 138:111188. [PMID: 32045649 DOI: 10.1016/j.fct.2020.111188] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Hepatotoxicity is among the most frequent reasons for drug withdrawal from the market. Therefore, there is an urgent need for reliable predictive in vitro tests, which unfailingly identify hepatotoxic drug candidates, reduce drug development time, expenses and the number of test animals. Currently, human hepatocytes represent the gold standard. However, the use of hepatocytes is challenging since the cells are not constantly available and lose their metabolic activity in culture. To solve these problems many different approaches have been developed in the past decades. The aim of this review is to present these approaches and to discuss the possibilities and limitations as well as future opportunities and directions.
Collapse
Affiliation(s)
- Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Silvio Nadalin
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Silvia Wagner
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Sahar Sajadian
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Diana Huber
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Zahra Heydari
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Andreas K Nussler
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Pless-Petig G, Walter B, Bienholz A, Rauen U. Mitochondrial Impairment as a Key Factor for the Lack of Attachment after Cold Storage of Hepatocyte Suspensions. Cell Transplant 2018; 26:1855-1867. [PMID: 29390882 PMCID: PMC5802638 DOI: 10.1177/0963689717743254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/106 cells after cold storage, 5 ± 3 nmol/106 cells after rewarming vs. control 29 ± 6 nmol/106 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec-1 per 106 cells after rewarming vs. control 232 ± 83 pmol sec-1 per 106 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/106 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production-as elicited by an inhibitor of the respiratory chain, antimycin A-can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment with subsequent energy deficiency is a key factor for the lack of attachment of cold-stored hepatocyte suspensions.
Collapse
Affiliation(s)
- Gesine Pless-Petig
- 1 Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | - Björn Walter
- 1 Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | - Anja Bienholz
- 2 Klinik für Nephrologie, Universitätsklinikum Essen, Essen, Germany
| | - Ursula Rauen
- 1 Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
7
|
Ruoß M, Häussling V, Schügner F, Olde Damink LHH, Lee SML, Ge L, Ehnert S, Nussler AK. A Standardized Collagen-Based Scaffold Improves Human Hepatocyte Shipment and Allows Metabolic Studies over 10 Days. Bioengineering (Basel) 2018; 5:E86. [PMID: 30332824 PMCID: PMC6316810 DOI: 10.3390/bioengineering5040086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 02/06/2023] Open
Abstract
Due to pronounced species differences, hepatotoxicity of new drugs often cannot be detected in animal studies. Alternatively, human hepatocytes could be used, but there are some limitations. The cells are not always available on demand or in sufficient amounts, so far there has been only limited success to allow the transport of freshly isolated hepatocytes without massive loss of function or their cultivation for a long time. Since it is well accepted that the cultivation of hepatocytes in 3D is related to an improved function, we here tested the Optimaix-3D Scaffold from Matricel for the transport and cultivation of hepatocytes. After characterization of the scaffold, we shipped cells on the scaffold and/or cultivated them over 10 days. With the evaluation of hepatocyte functions such as urea production, albumin synthesis, and CYP activity, we showed that the metabolic activity of the cells on the scaffold remained nearly constant over the culture time whereas a significant decrease in metabolic activity occurred in 2D cultures. In addition, we demonstrated that significantly fewer cells were lost during transport. In summary, the collagen-based scaffold allows the transport and cultivation of hepatocytes without loss of function over 10 days.
Collapse
Affiliation(s)
- Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| | - Victor Häussling
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| | | | | | - Serene M L Lee
- Hepacult GmbH, 82152 Martinsried/Planegg, Germany.
- Biobank of the Department of General, Visceral and Transplantation Surgery, Hospital of the LMU, 81377 Munich, Germany.
| | - Liming Ge
- Hepacult GmbH, 82152 Martinsried/Planegg, Germany.
| | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| | - Andreas K Nussler
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Pless-Petig G, Knoop S, Rauen U. Serum- and albumin-free cryopreservation of endothelial monolayers with a new solution. Organogenesis 2018; 14:107-121. [PMID: 30081735 PMCID: PMC6150062 DOI: 10.1080/15476278.2018.1501136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cryopreservation is the only long-term storage option for the storage of vessels and vascular constructs. However, endothelial barrier function is almost completely lost after cryopreservation in most established cryopreservation solutions. We here aimed to improve endothelial function after cryopreservation using the 2D-model of porcine aortic endothelial cell monolayers. The monolayers were cryopreserved in cell culture medium or cold storage solutions based on the 4°C vascular preservation solution TiProtec®, all supplemented with 10% DMSO, using different temperature gradients. After short-term storage at −80°C, monolayers were rapidly thawed and re-cultured in cell culture medium. Thawing after cryopreservation in cell culture medium caused both immediate and delayed cell death, resulting in 11 ± 5% living cells after 24 h of re-culture. After cryopreservation in TiProtec and chloride-poor modifications thereof, the proportion of adherent viable cells was markedly increased compared to cryopreservation in cell culture medium (TiProtec: 38 ± 11%, modified TiProtec solutions ≥ 50%). Using these solutions, cells cryopreserved in a sub-confluent state were able to proliferate during re-culture. Mitochondrial fragmentation was observed in all solutions, but was partially reversible after cryopreservation in TiProtec and almost completely reversible in modified solutions within 3 h of re-culture. The superior protection of TiProtec and its modifications was apparent at all temperature gradients; however, best results were achieved with a cooling rate of −1°C/min. In conclusion, the use of TiProtec or modifications thereof as base solution for cryopreservation greatly improved cryopreservation results for endothelial monolayers in terms of survival and of monolayer and mitochondrial integrity.
Collapse
Affiliation(s)
- Gesine Pless-Petig
- a Institut für Physiologische Chemie , Universitätsklinikum Essen , Essen , Germany
| | - Sven Knoop
- a Institut für Physiologische Chemie , Universitätsklinikum Essen , Essen , Germany
| | - Ursula Rauen
- a Institut für Physiologische Chemie , Universitätsklinikum Essen , Essen , Germany
| |
Collapse
|
9
|
Pless-Petig G, Rauen U. Serum-Free Cryopreservation of Primary Rat Hepatocytes in a Modified Cold Storage Solution: Improvement of Cell Attachment and Function. Biopreserv Biobank 2018; 16:285-295. [DOI: 10.1089/bio.2018.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Gesine Pless-Petig
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | - Ursula Rauen
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
10
|
Beckmann E, Kensah G, Neumann A, Benecke N, Martens A, Martin U, Gruh I, Haverich A. Prolonged myocardial protection during hypothermic storage: potential application for cardiac surgery and myocardial tissue engineering. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Gröger M, Dinger J, Kiehntopf M, Peters FT, Rauen U, Mosig AS. Preservation of Cell Structure, Metabolism, and Biotransformation Activity of Liver-On-Chip Organ Models by Hypothermic Storage. Adv Healthc Mater 2018; 7. [PMID: 28960916 DOI: 10.1002/adhm.201700616] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/31/2017] [Indexed: 01/09/2023]
Abstract
The liver is a central organ in the metabolization of nutrition, endogenous and exogenous substances, and xenobiotic drugs. The emerging organ-on-chip technology has paved the way to model essential liver functions as well as certain aspects of liver disease in vitro in liver-on-chip models. However, a broader use of this technology in biomedical research is limited by a lack of protocols that enable the short-term preservation of preassembled liver-on-chip models for stocking or delivery to researchers outside the bioengineering community. For the first time, this study tested the ability of hypothermic storage of liver-on-chip models to preserve cell viability, tissue morphology, metabolism and biotransformation activity. In a systematic study with different preservation solutions, liver-on-chip function can be preserved for up to 2 d using a derivative of the tissue preservation solution TiProtec, containing high chloride ion concentrations and the iron chelators LK614 and deferoxamine, supplemented with polyethylene glycol (PEG). Hypothermic storage in this solution represents a promising method to preserve liver-on-chip function for at least 2 d and allows an easier access to liver-on-chip technology and its versatile and flexible use in biomedical research.
Collapse
Affiliation(s)
- Marko Gröger
- Center for Sepsis Control and Care; Jena University Hospital; 07747 Jena Germany
| | - Julia Dinger
- Institute of Forensic Medicine; Jena University Hospital; 07747 Jena Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics; Jena University Hospital; 07747 Jena Germany
| | - Frank T. Peters
- Institute of Forensic Medicine; Jena University Hospital; 07747 Jena Germany
| | - Ursula Rauen
- Institut für Physiologische Chemie; Universitätsklinikum Essen; 45112 Essen Germany
| | - Alexander S. Mosig
- Center for Sepsis Control and Care; Jena University Hospital; 07747 Jena Germany
| |
Collapse
|
12
|
Bienholz A, Walter B, Pless-Petig G, Guberina H, Kribben A, Witzke O, Rauen U. Characterization of injury in isolated rat proximal tubules during cold incubation and rewarming. PLoS One 2017; 12:e0180553. [PMID: 28672023 PMCID: PMC5495391 DOI: 10.1371/journal.pone.0180553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 06/16/2017] [Indexed: 01/27/2023] Open
Abstract
Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules. The tissue storage solution TiProtec® and a chloride-poor modification, each with and without iron chelators, were used for cold incubation. Incubation was performed 4°C for up to 168 h, followed by rewarming in an extracellular buffer (3 h at 37°C). After 48, 120 and 168 h of cold incubation LDH release was lower in solutions containing iron chelators. After rewarming, injury increased especially after cold incubation in chelator-free solutions. Without addition of iron chelators LDH release showed a tendency to be higher in chloride-poor solutions. Following rewarming after 48 h of cold incubation lipid peroxidation was significantly decreased and metabolic activity was tendentially better in tubules incubated with iron chelators. Morphological alterations included mitochondrial swelling and fragmentation being partially reversible during rewarming. ATP content was better preserved in chloride-rich solutions. During rewarming, there was a further decline of ATP content in the so far best conditions and minor alterations under the other conditions, while oxygen consumption was not significantly different compared to non-stored control tubules. Results show an iron-dependent component of preservation injury during cold incubation and rewarming in rat proximal renal tubules and reveal a benefit of chloride for the maintenance of tubular energy state during cold incubation.
Collapse
Affiliation(s)
- Anja Bienholz
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Björn Walter
- Institute of Physiological Chemistry, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gesine Pless-Petig
- Institute of Physiological Chemistry, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hana Guberina
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Rauen
- Institute of Physiological Chemistry, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Jorns C, Gramignoli R, Saliem M, Zemack H, Mörk LM, Isaksson B, Nowak G, Ericzon BG, Strom S, Ellis E. Strategies for short-term storage of hepatocytes for repeated clinical infusions. Cell Transplant 2015; 23:1009-18. [PMID: 25199147 DOI: 10.3727/096368913x667484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hepatocyte transplantation is an upcoming treatment for patients with metabolic liver diseases. Repeated cell infusions over 1-2 days improve clinical outcome. Isolated hepatocytes are usually cold stored in preservation solutions between repeated infusions. However, during cold storage isolated hepatocytes undergo cell death. We investigated if tissue preservation and repeated isolations are better than storage of isolated hepatocytes when cold preserving human hepatocytes. Liver tissue obtained from liver surgery or organ donors was divided into two pieces. Hepatocytes were isolated by collagenase digestion. Hepatocytes were analyzed directly after isolation (fresh) or after storage for 48 h at 4°C in University of Wisconsin solution (UW cells). Liver tissue from the same donor was stored at 4°C in UW and hepatocytes were isolated after 48 h (UW tissue cells). Hepatocyte viability and function was evaluated by trypan blue exclusion, plating efficiency, ammonia metabolism, CYP 1A1/2, 2C9, 3A7, and 3A4 activities, phase II conjugation, and apoptosis evaluation by TUNEL assay and caspase-3/7 activities. Hepatocytes stored in UW showed a significantly lower viability compared to fresh cells or hepatocytes isolated from tissue stored for 48 h (54% vs. 71% vs. 79%). Plating efficiency was significantly decreased for cells stored in UW (40%) compared to fresh and UW tissue cells (63% vs. 55%). No significant differences between UW cells and UW tissue cells could be shown for CYP activities or ammonia metabolism. Hepatocytes stored in UW showed a strong increase in TUNEL-positive cells, whereas TUNEL staining in cold-stored liver tissue and hepatocytes isolated after 48 h was unchanged. This observation was confirmed by increased caspase-3/7 activities in UW cells. Although preservation of isolated hepatocytes in UW maintains function, cold storage of liver tissue and repeated hepatocyte isolations is superior to cold storage of isolated hepatocytes in preserving hepatocyte viability and function.
Collapse
Affiliation(s)
- Carl Jorns
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Duret C, Moreno D, Balasiddaiah A, Roux S, Briolotti P, Raulet E, Herrero A, Ramet H, Biron-Andreani C, Gerbal-Chaloin S, Ramos J, Navarro F, Hardwigsen J, Maurel P, Aldabe R, Daujat-Chavanieu M. Cold Preservation of Human Adult Hepatocytes for Liver Cell Therapy. Cell Transplant 2015; 24:2541-55. [PMID: 25622096 DOI: 10.3727/096368915x687020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte transplantation is a promising alternative therapy for the treatment of hepatic failure, hepatocellular deficiency, and genetic metabolic disorders. Hypothermic preservation of isolated human hepatocytes is potentially a simple and convenient strategy to provide on-demand hepatocytes in sufficient quantity and of the quality required for biotherapy. In this study, first we assessed how cold storage in three clinically safe preservative solutions (UW, HTS-FRS, and IGL-1) affects the viability and in vitro functionality of human hepatocytes. Then we evaluated whether such cold-preserved human hepatocytes could engraft and repopulate damaged livers in a mouse model of liver failure. Human hepatocytes showed comparable viabilities after cold preservation in the three solutions. The ability of fresh and cold-stored hepatocytes to attach to a collagen substratum and to synthesize and secrete albumin, coagulation factor VII, and urea in the medium after 3 days in culture was also equally preserved. Cold-stored hepatocytes were then transplanted in the spleen of immunodeficient mice previously infected with adenoviruses containing a thymidine kinase construct and treated with a single dose of ganciclovir to induce liver injury. Engraftment and liver repopulation were monitored over time by measuring the blood level of human albumin and by assessing the expression of specific human hepatic mRNAs and proteins in the recipient livers by RT-PCR and immunohistochemistry, respectively. Our findings show that cold-stored human hepatocytes in IGL-1 and HTS-FRS preservative solutions can survive, engraft, and proliferate in a damaged mouse liver. These results demonstrate the usefulness of human hepatocyte hypothermic preservation for cell transplantation.
Collapse
Affiliation(s)
- Cedric Duret
- INSERM, U1040, Institut de Recherche en Biothérapie, F-34295 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu H, Yu Y, Glorioso J, Mao S, Rodysil B, Amiot BP, Rinaldo P, Nyberg SL. Cold Storage of Rat Hepatocyte Spheroids. Cell Transplant 2014; 23:819-30. [DOI: 10.3727/096368913x664847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cell-based therapies for liver disease rely on a high-quality supply of hepatocytes and a means for storage during transportation from site of isolation to site of usage. Unfortunately, frozen cryopreservation is associated with unacceptable loss of hepatocyte viability after thawing. The purpose of this study was to optimize conditions for cold storage of rat hepatocyte spheroids without freezing. Rat hepatocytes were isolated by a two-step perfusion method; hepatocyte spheroids were formed during 48 h of rocked culture in serum-free medium (SFM). Spheroids were then maintained in rocked culture at 37°C (control condition) or cold stored at 4°C for 24 or 48 h in six different cold storage solutions: SFM alone; SFM + 1 mM deferoxamine (Def); SFM + 1 μM cyclosporin A (CsA); SFM + 1 mM Def + 1 μM CsA, University of Wisconsin (UW) solution alone, UW + 1 mM Def. Performance metrics after cold storage included viability, gene expression, albumin production, and functional activity of cytochrome P450 enzymes and urea cycle proteins. We observed that cold-induced injury was reduced significantly by the addition of the iron chelator (Def) to both SFM and UW solution. Performance metrics (ammonia detoxification, albumin production) of rat hepatocyte spheroids stored in SFM + Def for 24 h were significantly increased from SFM alone and approached those in control conditions, while performance metrics after cold storage in SFM alone or cold storage for 48 h were both significantly reduced. A serum-free medium supplemented with Def allowed hepatocyte spheroids to tolerate 24 h of cold storage with less than 10% loss in viability and functionality. Further research is warranted to optimize a solution for extended cold storage of hepatocyte spheroids.
Collapse
Affiliation(s)
- Hongling Liu
- Division of Experimental Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
- Liver Failure Diagnosis and Treatment Center, 302 Military Hospital, Beijing, P.R. China
| | - Yue Yu
- Division of Experimental Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Jaime Glorioso
- Division of Experimental Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Shennen Mao
- Division of Experimental Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Brian Rodysil
- Division of Experimental Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Piero Rinaldo
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Scott L. Nyberg
- Division of Experimental Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
16
|
Kawata J, Kikuchi M, Saitoh H. Genomic DNAs in a human leukemia cell line unfold after cold shock, with formation of neutrophil extracellular trap-like structures. Biotechnol Lett 2013; 36:241-50. [PMID: 24101247 DOI: 10.1007/s10529-013-1364-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Cells are generally stored at low temperature which slows their cellular metabolism. However, the stress induced by cold shock can lead to cell injury or death. Here, we found that exposing human leukemia HL-60 cells to cold shock followed by rewarming (CS/RW) increased the number of dead cells with remodeled genomic structures in which DNA fibers fully unfold and extrude into extracellular space, similar to neutrophil extracellular traps (NETs). The unfolded DNA was associated with NET marker proteins, such as neutrophil elastase and histone H3, and could trap significant numbers of Escherichia coli. We also found that reactive oxygen species-a requisite for NET generation-accumulated during CS/RW in HL-60 cells. This treatment of HL-60 cells to trigger global DNA structural alterations has not been reported before, and helps to elucidate the mechanisms of human cellular response to cold stress.
Collapse
Affiliation(s)
- Jin Kawata
- Department of New Frontier Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | | | | |
Collapse
|
17
|
Usta OB, Kim Y, Ozer S, Bruinsma BG, Lee J, Demir E, Berendsen TA, Puts CF, Izamis ML, Uygun K, Uygun BE, Yarmush ML. Supercooling as a viable non-freezing cell preservation method of rat hepatocytes. PLoS One 2013; 8:e69334. [PMID: 23874947 PMCID: PMC3713052 DOI: 10.1371/journal.pone.0069334] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/09/2013] [Indexed: 12/17/2022] Open
Abstract
Supercooling preservation holds the potential to drastically extend the preservation time of organs, tissues and engineered tissue products, and fragile cell types that do not lend themselves well to cryopreservation or vitrification. Here, we investigate the effects of supercooling preservation (SCP at -4(o)C) on primary rat hepatocytes stored in cryovials and compare its success (high viability and good functional characteristics) to that of static cold storage (CS at +4(o)C) and cryopreservation. We consider two prominent preservation solutions a) Hypothermosol (HTS-FRS) and b) University of Wisconsin solution (UW) and a range of preservation temperatures (-4 to -10 (o)C). We find that there exists an optimum temperature (-4(o)C) for SCP of rat hepatocytes which yields the highest viability; at this temperature HTS-FRS significantly outperforms UW solution in terms of viability and functional characteristics (secretions and enzymatic activity in suspension and plate culture). With the HTS-FRS solution we show that the cells can be stored for up to a week with high viability (~56%); moreover we also show that the preservation can be performed in large batches (50 million cells) with equal or better viability and no loss of functionality as compared to smaller batches (1.5 million cells) performed in cryovials.
Collapse
Affiliation(s)
- O. Berk Usta
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
- * E-mail:
| | - Yeonhee Kim
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Sinan Ozer
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Bote G. Bruinsma
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Jungwoo Lee
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Esin Demir
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Tim A. Berendsen
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Catheleyne F. Puts
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Maria-Louisa Izamis
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Korkut Uygun
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Basak E. Uygun
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Martin L. Yarmush
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Pless-Petig G, Metzenmacher M, Türk TR, Rauen U. Aggravation of cold-induced injury in Vero-B4 cells by RPMI 1640 medium - identification of the responsible medium components. BMC Biotechnol 2012; 12:73. [PMID: 23046946 PMCID: PMC3534012 DOI: 10.1186/1472-6750-12-73] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/04/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND In modern biotechnology, there is a need for pausing cell lines by cold storage to adapt large-scale cell cultures to the variable demand for their products. We compared various cell culture media/solutions for cold storage of Vero-B4 kidney cells, a cell line widely used in biotechnology. RESULTS Cold storage in RPMI 1640 medium, a recommended cell culture medium for Vero-B4 cells, surprisingly, strongly enhanced cold-induced cell injury in these cells in comparison to cold storage in Krebs-Henseleit buffer or other cell culture media (DMEM, L-15 and M199). Manufacturer, batch, medium supplements and the most likely components with concentrations outside the range of the other media/solutions (vitamin B12, inositol, biotin, p-aminobenzoic acid) did not cause this aggravation of cold-induced injury in RPMI 1640. However, a modified Krebs-Henseleit buffer with a low calcium concentration (0.42 mM), a high concentration of inorganic phosphate (5.6 mM), and glucose (11.1 mM; i.e. concentrations as in RPMI 1640) evoked a cell injury and loss of metabolic function corresponding to that observed in RPMI 1640. Deferoxamine improved cell survival and preserved metabolic function in modified Krebs-Henseleit buffer as well as in RPMI 1640. Similar Ca2+ and phosphate concentrations did not increase cold-induced cell injury in the kidney cell line LLC-PK1, porcine aortic endothelial cells or rat hepatocytes. However, more extreme conditions (Ca2+ was nominally absent and phosphate concentration raised to 25 mM as in the organ preservation solution University of Wisconsin solution) also increased cold-induced injury in rat hepatocytes and porcine aortic endothelial cells. CONCLUSION These data suggest that the combination of low calcium and high phosphate concentrations in the presence of glucose enhances cold-induced, iron-dependent injury drastically in Vero-B4 cells, and that a tendency for this pathomechanism also exists in other cell types.
Collapse
Affiliation(s)
- Gesine Pless-Petig
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr, 55, 45122, Essen, Germany
| | | | | | | |
Collapse
|