1
|
Epithelial barrier function properties of the 16HBE14o- human bronchial epithelial cell culture model. Biosci Rep 2021; 40:226530. [PMID: 32985670 PMCID: PMC7569203 DOI: 10.1042/bsr20201532] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 01/23/2023] Open
Abstract
The human bronchial epithelial cell line, 16HBE14o- (16HBE), is widely used as a model for respiratory epithelial diseases and barrier function. During differentiation, transepithelial electrical resistance (TER) increased to approximately 800 Ohms × cm2, while 14C-d-mannitol flux rates (Jm) simultaneously decreased. Tight junctions (TJs) were shown by diffusion potential studies to be anion-selective with PC1/PNa = 1.9. Transepithelial leakiness could be induced by the phorbol ester, protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), and the proinflammatory cytokine, tumor necrosis factor-α (TNF-α). Basal barrier function could not be improved by the micronutrients, zinc, or quercetin. Of methodological significance, TER was observed to be more variable and to spontaneously, significantly decrease after initial barrier formation, whereas Jm did not significantly fluctuate or increase. Unlike the strong inverse relationship between TER and Jm during differentiation, differentiated cell layers manifested no relationship between TER and Jm. There was also much greater variability for TER values compared with Jm. Investigating the dependence of 16HBE TER on transcellular ion conductance, inhibition of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel with GlyH-101 produced a large decrease in short-circuit current (Isc) and a slight increase in TER, but no significant change in Jm. A strong temperature dependence was observed not only for Isc, but also for TER. In summary, research utilizing 16HBE as a model in airway barrier function studies needs to be aware of the complexity of TER as a parameter of barrier function given the influence of CFTR-dependent transcellular conductance on TER.
Collapse
|
2
|
Royo F, Azkargorta M, Lavin JL, Clos-Garcia M, Cortazar AR, Gonzalez-Lopez M, Barcena L, Del Portillo HA, Yáñez-Mó M, Marcilla A, Borras FE, Peinado H, Guerrero I, Váles-Gómez M, Cereijo U, Sardon T, Aransay AM, Elortza F, Falcon-Perez JM. Extracellular Vesicles From Liver Progenitor Cells Downregulates Fibroblast Metabolic Activity and Increase the Expression of Immune-Response Related Molecules. Front Cell Dev Biol 2021; 8:613583. [PMID: 33511119 PMCID: PMC7835421 DOI: 10.3389/fcell.2020.613583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022] Open
Abstract
Extracellular vesicles (EVs) mediate cell-to-cell crosstalk whose content can induce changes in acceptor cells and their microenvironment. MLP29 cells are mouse liver progenitor cells that release EVs loaded with signaling cues that could affect cell fate. In the current work, we incubated 3T3-L1 mouse fibroblasts with MLP29-derived EVs, and then analyzed changes by proteomics and transcriptomics. Results showed a general downregulation of protein and transcript expression related to proliferative and metabolic routes dependent on TGF-beta. We also observed an increase in the ERBB2 interacting protein (ERBIN) and Cxcl2, together with an induction of ribosome biogenesis and interferon-related response molecules, suggesting the activation of immune system signaling.
Collapse
Affiliation(s)
- Felix Royo
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Jose L Lavin
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Marc Clos-Garcia
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Ana R Cortazar
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Monika Gonzalez-Lopez
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Laura Barcena
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain
| | - Hernando A Del Portillo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Health Sciences Research Institute Germans Trias i Pujol, Badalona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - María Yáñez-Mó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Instituto de Investigaciones Sanitarias la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Valencia, Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, Valencia, Spain
| | - Francesc E Borras
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain.,REMAR-IVECAT Group-"Germans Trias i Pujol" Health Science Research Institute (IGTP), Badalona, Spain.,Nephrology Department-"Germans Trias i Pujol" University Hospital, Can Ruti Campus, Badalona, Spain
| | - Hector Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center, Madrid, Spain
| | - Isabel Guerrero
- Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain
| | - Mar Váles-Gómez
- Spanish National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | | | | | - Ana M Aransay
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Juan M Falcon-Perez
- Center for Cooperative Research in Biosciences, Bizkaia Technology Park, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Leung C, Wadsworth SJ, Yang SJ, Dorscheid DR. Structural and functional variations in human bronchial epithelial cells cultured in air-liquid interface using different growth media. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1063-L1073. [PMID: 32208929 DOI: 10.1152/ajplung.00190.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The human bronchial epithelium is an important barrier tissue that is damaged or pathologically altered in various acute and chronic respiratory conditions. To represent the epithelial component of respiratory disease, it is essential to use a physiologically relevant model of this tissue. The human bronchial epithelium is a highly organized tissue consisting of a number of specialized cell types. Primary human bronchial epithelial cells (HBEC) can be differentiated into a mucociliated tissue in air-liquid interface (ALI) cultures using appropriately supplemented media under optimized growth conditions. We compared the histology, ciliary length, and function, diffusion, and barrier properties of HBEC from donors with no respiratory disease grown in two different media, PneumaCult-ALI or Bronchial Epithelial Differentiation Medium (BEDM). In the former group, HBEC have a more physiological pseudostratified morphology and mucociliary differentiation, including increased epithelial thickness, intracellular expression of airway-specific mucin protein MUC5AC, and total expression of cilia basal-body protein compared with cells from the same donor grown in the other medium. Baseline expression levels of inflammatory mediators, thymic stromal lymphopoietin (TSLP), soluble ST2, and eotaxin-3 were lower in PneumaCult-ALI. Additionally, the physiological cilia beat frequency and electrical barrier properties with transepithelial electrical resistance were significantly different between the two groups. Our study has shown that these primary cell cultures from the same donor grown in the two media possess variable structural and functional characteristics. Therefore, it is important to objectively validate primary epithelial cell cultures before experimentation to ensure they are appropriate to answer a specific scientific question.
Collapse
Affiliation(s)
- Clarus Leung
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Samuel J Wadsworth
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - S Jasemine Yang
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Delbert R Dorscheid
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Abstract
Ferlins are multiple-C2-domain proteins involved in Ca2+-triggered membrane dynamics within the secretory, endocytic and lysosomal pathways. In bony vertebrates there are six ferlin genes encoding, in humans, dysferlin, otoferlin, myoferlin, Fer1L5 and 6 and the long noncoding RNA Fer1L4. Mutations in DYSF (dysferlin) can cause a range of muscle diseases with various clinical manifestations collectively known as dysferlinopathies, including limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. A mutation in MYOF (myoferlin) was linked to a muscular dystrophy accompanied by cardiomyopathy. Mutations in OTOF (otoferlin) can be the cause of nonsyndromic deafness DFNB9. Dysregulated expression of any human ferlin may be associated with development of cancer. This review provides a detailed description of functions of the vertebrate ferlins with a focus on muscle ferlins and discusses the mechanisms leading to disease development.
Collapse
|
5
|
Myoferlin, a Membrane Protein with Emerging Oncogenic Roles. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7365913. [PMID: 31828126 PMCID: PMC6885792 DOI: 10.1155/2019/7365913] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
Myoferlin (MYOF), initially identified in muscle cells, is a member of the Ferlin family involved in membrane fusion, membrane repair, and membrane trafficking. Dysfunction of this protein is associated with muscular dysfunction. Recently, a growing body of studies have identified MYOF as an oncogenic protein. It is overexpressed in a variety of human cancers and promotes tumorigenesis, tumor cell motility, proliferation, migration, epithelial to mesenchymal transition, angiogenesis as well as metastasis. Clinically, MYOF overexpression is associated with poor outcome in various cancers. It can serve as a prognostic marker of human malignant disease. MYOF drives the progression of cancer in various processes, including surface receptor transportation, endocytosis, exocytosis, intercellular communication, fit mitochondrial structure maintenance and cell metabolism. Depletion of MYOF demonstrates significant antitumor effects both in vitro and in vivo, suggesting that targeting MYOF may produce promising clinical benefits in the treatment of malignant disease. In the present article, we reviewed the physiological function of MYOF as well as its role in cancer, thus providing a general understanding for further exploration of this protein.
Collapse
|
6
|
Zhu W, Zhou B, Zhao C, Ba Z, Xu H, Yan X, Liu W, Zhu B, Wang L, Ren C. Myoferlin, a multifunctional protein in normal cells, has novel and key roles in various cancers. J Cell Mol Med 2019; 23:7180-7189. [PMID: 31475450 PMCID: PMC6815776 DOI: 10.1111/jcmm.14648] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/30/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
Myoferlin, a protein of the ferlin family, has seven C2 domains and exhibits activity in some cells, including myoblasts and endothelial cells. Recently, myoferlin was identified as a promising target and biomarker in non-small-cell lung cancer, breast cancer, pancreatic adenocarcinoma, hepatocellular carcinoma, colon cancer, melanoma, oropharyngeal squamous cell carcinoma, head and neck squamous cell carcinoma, clear cell renal cell carcinoma and endometrioid carcinoma. This evidence indicated that myoferlin was involved in the proliferation, invasion and migration of tumour cells, the mechanism of which mainly included promoting angiogenesis, vasculogenic mimicry, energy metabolism reprogramming, epithelial-mesenchymal transition and modulating exosomes. The roles of myoferlin in both normal cells and cancer cells are of great significance to provide novel and efficient methods of tumour treatment. In this review, we summarize recent studies and findings of myoferlin and suggest that myoferlin is a novel potential candidate for clinical diagnosis and targeted cancer therapy.
Collapse
Affiliation(s)
- Wei Zhu
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bolun Zhou
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chenxuan Zhao
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhengqing Ba
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hongjuan Xu
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xuejun Yan
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Weidong Liu
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bin Zhu
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Lei Wang
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Caiping Ren
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Peulen O, Rademaker G, Anania S, Turtoi A, Bellahcène A, Castronovo V. Ferlin Overview: From Membrane to Cancer Biology. Cells 2019; 8:cells8090954. [PMID: 31443490 PMCID: PMC6770723 DOI: 10.3390/cells8090954] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
In mammal myocytes, endothelial cells and inner ear cells, ferlins are proteins involved in membrane processes such as fusion, recycling, endo- and exocytosis. They harbour several C2 domains allowing their interaction with phospholipids. The expression of several Ferlin genes was described as altered in several tumoural tissues. Intriguingly, beyond a simple alteration, myoferlin, otoferlin and Fer1L4 expressions were negatively correlated with patient survival in some cancer types. Therefore, it can be assumed that membrane biology is of extreme importance for cell survival and signalling, making Ferlin proteins core machinery indispensable for cancer cell adaptation to hostile environments. The evidences suggest that myoferlin, when overexpressed, enhances cancer cell proliferation, migration and metabolism by affecting various aspects of membrane biology. Targeting myoferlin using pharmacological compounds, gene transfer technology, or interfering RNA is now considered as an emerging therapeutic strategy.
Collapse
Affiliation(s)
- Olivier Peulen
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium.
| | - Gilles Rademaker
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| | - Sandy Anania
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| | - Andrei Turtoi
- Tumor Microenvironment Laboratory, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, 34000 Montpellier, France
- Institut du Cancer de Montpeiller, 34000 Montpellier, France
- Université de Montpellier, 34000 Montpellier, France
| | - Akeila Bellahcène
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| |
Collapse
|
8
|
Harsini FM, Chebrolu S, Fuson KL, White MA, Rice AM, Sutton RB. FerA is a Membrane-Associating Four-Helix Bundle Domain in the Ferlin Family of Membrane-Fusion Proteins. Sci Rep 2018; 8:10949. [PMID: 30026467 PMCID: PMC6053371 DOI: 10.1038/s41598-018-29184-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022] Open
Abstract
Ferlin proteins participate in such diverse biological events as vesicle fusion in C. elegans, fusion of myoblast membranes to form myotubes, Ca2+-sensing during exocytosis in the hair cells of the inner ear, and Ca2+-dependent membrane repair in skeletal muscle cells. Ferlins are Ca2+-dependent, phospholipid-binding, multi-C2 domain-containing proteins with a single transmembrane helix that spans a vesicle membrane. The overall domain composition of the ferlins resembles the proteins involved in exocytosis; therefore, it is thought that they participate in membrane fusion at some level. But if ferlins do fuse membranes, then they are distinct from other known fusion proteins. Here we show that the central FerA domain from dysferlin, myoferlin, and otoferlin is a novel four-helix bundle fold with its own Ca2+-dependent phospholipid-binding activity. Small-angle X-ray scattering (SAXS), spectroscopic, and thermodynamic analysis of the dysferlin, myoferlin, and otoferlin FerA domains, in addition to clinically-defined dysferlin FerA mutations, suggests that the FerA domain interacts with the membrane and that this interaction is enhanced by the presence of Ca2+.
Collapse
Affiliation(s)
- Faraz M Harsini
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6551, USA
| | - Sukanya Chebrolu
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6551, USA
| | - Kerry L Fuson
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6551, USA
| | - Mark A White
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Anne M Rice
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - R Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6551, USA. .,Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6551, USA.
| |
Collapse
|
9
|
Redpath GMI, Sophocleous RA, Turnbull L, Whitchurch CB, Cooper ST. Ferlins Show Tissue-Specific Expression and Segregate as Plasma Membrane/Late Endosomal or Trans-Golgi/Recycling Ferlins. Traffic 2016; 17:245-66. [PMID: 26707827 DOI: 10.1111/tra.12370] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/10/2023]
Abstract
Ferlins are a family of transmembrane-anchored vesicle fusion proteins uniquely characterized by 5-7 tandem cytoplasmic C2 domains, Ca(2+)-regulated phospholipid-binding domains that regulate vesicle fusion in the synaptotagmin family. In humans, dysferlin mutations cause limb-girdle muscular dystrophy type 2B (LGMD2B) due to defective Ca(2+)-dependent, vesicle-mediated membrane repair and otoferlin mutations cause non-syndromic deafness due to defective Ca(2+)-triggered auditory neurotransmission. In this study, we describe the tissue-specific expression, subcellular localization and endocytic trafficking of the ferlin family. Studies of endosomal transit together with 3D-structured illumination microscopy reveals dysferlin and myoferlin are abundantly expressed at the PM and cycle to Rab7-positive late endosomes, supporting potential roles in the late-endosomal pathway. In contrast, Fer1L6 shows concentrated localization to a specific compartment of the trans-Golgi/recycling endosome, cycling rapidly between this compartment and the PM via Rab11 recycling endosomes. Otoferlin also shows trans-Golgi to PM cycling, with very low levels of PM otoferlin suggesting either brief PM residence, or rare incorporation of otoferlin molecules into the PM. Thus, type-I and type-II ferlins segregate as PM/late-endosomal or trans-Golgi/recycling ferlins, consistent with different ferlins mediating vesicle fusion events in specific subcellular locations.
Collapse
Affiliation(s)
- Gregory M I Redpath
- Institute for Neuroscience and Muscle Research, Kid's Research Institute, Children's Hospital at Westmead, Sydney, Australia.,Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Reece A Sophocleous
- Institute for Neuroscience and Muscle Research, Kid's Research Institute, Children's Hospital at Westmead, Sydney, Australia
| | - Lynne Turnbull
- Microbial Imaging Facility, The iThree Institute, University of Technology Sydney, Ultimo, Australia
| | - Cynthia B Whitchurch
- Microbial Imaging Facility, The iThree Institute, University of Technology Sydney, Ultimo, Australia
| | - Sandra T Cooper
- Institute for Neuroscience and Muscle Research, Kid's Research Institute, Children's Hospital at Westmead, Sydney, Australia.,Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Song DH, Ko GH, Lee JH, Lee JS, Lee GW, Kim HC, Yang JW, Heo RW, Roh GS, Han SY, Kim DC. Myoferlin expression in non-small cell lung cancer: Prognostic role and correlation with VEGFR-2 expression. Oncol Lett 2015; 11:998-1006. [PMID: 26893682 PMCID: PMC4734036 DOI: 10.3892/ol.2015.3988] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
Myoferlin is a protein that is associated with cellular repair following injury. The expression of myoferlin in breast cancer and pancreatic adenocarcinoma has been reported to correlate with tumor invasiveness, epithelial to mesenchymal transition and an adverse prognosis. In the present study, myoferlin expression was investigated in non-small cell lung carcinoma (NSCLC), along with its association with patient prognosis and the expression of a number of other proteins. A total of 148 patients exhibiting NSCLC were enrolled in the present study. The survival data of all patients was examined, and myoferlin, vascular endothelial growth factor receptor-2 (VEGFR-2), epidermal growth factor receptor, E-cadherin, β-catenin, thyroid transcription factor-1 and tumor protein p63 expression was investigated via immunohistochemical staining of tissue microarrays. Myoferlin expression was detected in the cytoplasm of 75/148 (50.7%) of the NSCLC cases. In the adenocarcinoma cases, myoferlin-positive patients possessed a poorer prognosis (odds ratio, 2.94; P=0.339). In the squamous cell carcinoma cases, myoferlin expression was significantly associated with VEGFR-2 expression (P=0.001). Immunohistochemical staining for VEGFR-2 and myoferlin expression indicated similar features and cytoplasmic staining in tumor cells. As VEGFR-2 is a significant target for novel anticancer therapies, it is anticipated that myoferlin may also possess the potential to become a novel clinical target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Dae Hyun Song
- Department of Pathology, Gyeonsang National University School of Medicine, Jinju, Gyeongsang 660-751, Republic of Korea; Department of Pathology, Gyeongsang National University Hospital, Jinju, Gyeongsang 660-751, Republic of Korea
| | - Gyung Hyuck Ko
- Department of Pathology, Gyeonsang National University School of Medicine, Jinju, Gyeongsang 660-751, Republic of Korea; Department of Pathology, Gyeongsang National University Hospital, Jinju, Gyeongsang 660-751, Republic of Korea; Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsang 660-751, Republic of Korea
| | - Jeong Hee Lee
- Department of Pathology, Gyeonsang National University School of Medicine, Jinju, Gyeongsang 660-751, Republic of Korea; Department of Pathology, Gyeongsang National University Hospital, Jinju, Gyeongsang 660-751, Republic of Korea; Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsang 660-751, Republic of Korea
| | - Jong Sil Lee
- Department of Pathology, Gyeonsang National University School of Medicine, Jinju, Gyeongsang 660-751, Republic of Korea; Department of Pathology, Gyeongsang National University Hospital, Jinju, Gyeongsang 660-751, Republic of Korea; Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsang 660-751, Republic of Korea
| | - Gyeong-Won Lee
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsang 660-751, Republic of Korea; Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongsang 660-751, Republic of Korea; Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Gyeongsang 660-751, Republic of Korea
| | - Hyeon Cheol Kim
- Department of Pathology, Gyeongsang National University Hospital, Jinju, Gyeongsang 660-751, Republic of Korea
| | - Jung Wook Yang
- Department of Pathology, Gyeonsang National University School of Medicine, Jinju, Gyeongsang 660-751, Republic of Korea
| | - Rok Won Heo
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsang 660-751, Republic of Korea; Department of Anatomy, Gyeongsang National University School of Medicine, Jinju, Gyeongsang 660-751, Republic of Korea
| | - Gu Seob Roh
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsang 660-751, Republic of Korea; Department of Anatomy, Gyeongsang National University School of Medicine, Jinju, Gyeongsang 660-751, Republic of Korea
| | - Sun-Young Han
- Department of Pharmacology, College of Pharmacy, Gyeongsang National University, Jinju, Gyeongsang 660-751, Republic of Korea
| | - Dong Chul Kim
- Department of Pathology, Gyeonsang National University School of Medicine, Jinju, Gyeongsang 660-751, Republic of Korea; Department of Pathology, Gyeongsang National University Hospital, Jinju, Gyeongsang 660-751, Republic of Korea; Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongsang 660-751, Republic of Korea
| |
Collapse
|
11
|
Redpath GMI, Woolger N, Piper AK, Lemckert FA, Lek A, Greer PA, North KN, Cooper ST. Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair. Mol Biol Cell 2014; 25:3037-48. [PMID: 25143396 PMCID: PMC4230592 DOI: 10.1091/mbc.e14-04-0947] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The muscular dystrophy protein dysferlin plays a key role in the calcium-activated vesicle fusion of membrane repair. This study establishes calpains as upstream regulators of dysferlin in the membrane repair cascade and further demonstrates that similar C-terminal modules are enzymatically released from other ferlin family members. Dysferlin and calpain are important mediators of the emergency response to repair plasma membrane injury. Our previous research revealed that membrane injury induces cleavage of dysferlin to release a synaptotagmin-like C-terminal module we termed mini-dysferlinC72. Here we show that injury-activated cleavage of dysferlin is mediated by the ubiquitous calpains via a cleavage motif encoded by alternately spliced exon 40a. An exon 40a–specific antibody recognizing cleaved mini-dysferlinC72 intensely labels the circumference of injury sites, supporting a key role for dysferlinExon40a isoforms in membrane repair and consistent with our evidence suggesting that the calpain-cleaved C-terminal module is the form specifically recruited to injury sites. Calpain cleavage of dysferlin is a ubiquitous response to membrane injury in multiple cell lineages and occurs independently of the membrane repair protein MG53. Our study links calpain and dysferlin in the calcium-activated vesicle fusion of membrane repair, placing calpains as upstream mediators of a membrane repair cascade that elicits cleaved dysferlin as an effector. Of importance, we reveal that myoferlin and otoferlin are also cleaved enzymatically to release similar C-terminal modules, bearing two C2 domains and a transmembrane domain. Evolutionary preservation of this feature highlights its functional importance and suggests that this highly conserved C-terminal region of ferlins represents a functionally specialized vesicle fusion module.
Collapse
Affiliation(s)
- G M I Redpath
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - N Woolger
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - A K Piper
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - F A Lemckert
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - A Lek
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - P A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, ON K7L 3N6, Canada
| | - K N North
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia, and Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC 3010, Australia
| | - S T Cooper
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|