1
|
Saeb S, Assche JV, Loustau T, Rohr O, Wallet C, Schwartz C. Suicide gene therapy in cancer and HIV-1 infection: An alternative to conventional treatments. Biochem Pharmacol 2021; 197:114893. [PMID: 34968484 DOI: 10.1016/j.bcp.2021.114893] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Suicide Gene Therapy (SGT) aims to introduce a gene encoding either a toxin or an enzyme making the targeted cell more sensitive to chemotherapy. SGT represents an alternative approach to combat pathologies where conventional treatments fail such as pancreatic cancer or the high-grade glioblastoma which are still desperately lethal. We review the possibility to use SGT to treat these cancers which have shown promising results in vitro and in preclinical trials. However, SGT has so far failed in phase III clinical trials thus further improvements are awaited. We can now take advantages of the many advances made in SGT for treating cancer to combat other pathologies such as HIV-1 infection. In the review we also discuss the feasibility to add SGT to the therapeutic arsenal used to cure HIV-1-infected patients. Indeed, preliminary results suggest that both productive and latently infected cells are targeted by the SGT. In the last section, we address the limitations of this approach and how we might improve it.
Collapse
Affiliation(s)
- Sepideh Saeb
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Clémentine Wallet
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
2
|
Oliverius M, Flasarova D, Mohelnikova-Duchonova B, Ehrlichova M, Hlavac V, Kocik M, Strouhal O, Dvorak P, Ojima I, Soucek P. KRAS pathway expression changes in pancreatic cancer models by conventional and experimental taxanes. Mutagenesis 2019; 34:403-411. [PMID: 31375828 PMCID: PMC6923165 DOI: 10.1093/mutage/gez021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/06/2019] [Indexed: 12/30/2022] Open
Abstract
The KRAS signalling pathway is pivotal for pancreatic ductal adenocarcinoma (PDAC) development. After the failure of most conventional cytotoxic and targeted therapeutics tested so far, the combination of taxane nab-paclitaxel (Abraxane) with gemcitabine recently demonstrated promising improvements in the survival of PDAC patients. This study aimed to explore interactions of conventional paclitaxel and experimental taxane SB-T-1216 with the KRAS signalling pathway expression in in vivo and in vitro PDAC models in order to decipher potential predictive biomarkers or targets for future individualised therapy. Mouse PDAC PaCa-44 xenograft model was used for evaluation of changes in transcript and protein levels of the KRAS signalling pathway caused by administration of experimental taxane SB-T-1216 in vivo. Subsequently, KRAS wild-type (BxPc-3) and mutated (MiaPaCa-2 and PaCa-44) cell line models were treated with paclitaxel to verify dysregulation of the KRAS signalling pathway gene expression profile in vitro and investigate the role of KRAS mutation status. By comparing the gene expression profiles, this study observed for the first time that in vitro cell models differ in the basal transcriptional profile of the KRAS signalling pathway, but there were no differences between KRAS mutated and wild-type cells in sensitivity to taxanes. Generally, the taxane administration caused a downregulation of the KRAS signalling pathway both in vitro and in vivo, but this effect was not dependent on the KRAS mutation status. In conclusion, putative biomarkers for prediction of taxane activity or targets for stimulation of taxane anticancer effects were not discovered by the KRAS signalling pathway profiling in various PDAC models.
Collapse
Affiliation(s)
- M Oliverius
- Department of Surgery, Faculty Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Transplantation Center, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - D Flasarova
- Department of Oncology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - B Mohelnikova-Duchonova
- Department of Oncology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
| | - M Ehrlichova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - V Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - M Kocik
- Transplantation Center, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - O Strouhal
- Department of Oncology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - P Dvorak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - I Ojima
- Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - P Soucek
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
3
|
Tokay E, Güngör T, Hacıoğlu N, Önder FC, Gülhan ÜG, Tok TT, Çelik A, Ay M, Köçkar F. Prodrugs for nitroreductase-based cancer therapy-3: Antitumor activity of the novel dinitroaniline prodrugs/Ssap-NtrB enzyme suicide gene system: Synthesis, in vitro and in silico evaluation in prostate cancer. Eur J Med Chem 2019; 187:111937. [PMID: 31841727 DOI: 10.1016/j.ejmech.2019.111937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 01/18/2023]
Abstract
Prodrugs for targeted tumor therapies have been extensively studied in recent years due to not only maximising therapeutic effects on tumor cells but also reducing or eliminating serious side effects on healthy cells. This strategy uses prodrugs which are safe for normal cells and form toxic metabolites (drugs) after selective reduction by enzymes in tumor tissues. In this study, prodrug candidates (1-36) containing nitro were designed, synthesized and characterized within the scope of chemical experiments. Drug-likeness properties of prodrug candidates were analyzed using DS 2018 to investigate undesired toxicity effects. In vitro cytotoxic effects of prodrug canditates were performed with MTT assay for human hepatoma cells (Hep3B) and prostate cancer cells (PC3) and human umbilical vein endothelial cells (HUVEC) as healthy control. Non-toxic compounds (3, 5, 7, 10, 12, 15, 17, 19 and 21-23), and also compounds (1, 2, 5, 6, 9, 11, 14, 16, 20 and 24) which had low toxic effects, were selected to examine their suitability as prodrug canditates. The reduction profiles and kinetic studies of prodrug/Ssap-NtrB combinations were performed with biochemical analyses. Then, selected prodrug/Ssap-NtrB combinations were applied to prostate cancer cells to determine toxicity. The results of theoretical, in vitro cytotoxic and biochemical studies suggest 14/Ssap-NtrB, 22/Ssap-NtrB and 24/Ssap-NtrB may be potential prodrug/enzyme combinations for nitroreductase (Ntr)-based prostate cancer therapy.
Collapse
Affiliation(s)
- Esra Tokay
- Department of Molecular Biology and Genetic, Faculty of Sciences and Arts, Balıkesir University, Balıkesir, 10145, Turkey
| | - Tuğba Güngör
- Department of Chemistry, Faculty of Sciences and Arts, Natural Products and Drug Research Laboratory, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Turkey
| | - Nelin Hacıoğlu
- Department of Molecular Biology and Genetic, Faculty of Sciences and Arts, Balıkesir University, Balıkesir, 10145, Turkey
| | - Ferah Cömert Önder
- Department of Chemistry, Faculty of Sciences and Arts, Natural Products and Drug Research Laboratory, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Turkey
| | - Ünzile Güven Gülhan
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze-Kocaeli, 41400, Turkey
| | - Tuğba Taşkın Tok
- Department of Chemistry, Faculty of Sciences and Arts, Gaziantep University, Gaziantep, 27310, Turkey
| | - Ayhan Çelik
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze-Kocaeli, 41400, Turkey
| | - Mehmet Ay
- Department of Chemistry, Faculty of Sciences and Arts, Natural Products and Drug Research Laboratory, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Turkey.
| | - Feray Köçkar
- Department of Molecular Biology and Genetic, Faculty of Sciences and Arts, Balıkesir University, Balıkesir, 10145, Turkey.
| |
Collapse
|
4
|
Mohelnikova-Duchonova B, Kocik M, Duchonova B, Brynychova V, Oliverius M, Hlavsa J, Honsova E, Mazanec J, Kala Z, Ojima I, Hughes DJ, Doherty JE, Murray HA, Crockard MA, Lemstrova R, Soucek P. Hedgehog pathway overexpression in pancreatic cancer is abrogated by new-generation taxoid SB-T-1216. THE PHARMACOGENOMICS JOURNAL 2017; 17:452-460. [PMID: 27573236 DOI: 10.1038/tpj.2016.55] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/19/2016] [Accepted: 06/06/2016] [Indexed: 02/07/2023]
Abstract
The Hedgehog pathway is one of the major driver pathways in pancreatic ductal adenocarcinoma. This study investigated prognostic importance of Hedgehog signaling pathway in pancreatic cancer patients who underwent a radical resection. Tumors and adjacent non-neoplastic pancreatic tissues were obtained from 45 patients with histologically verified pancreatic cancer. The effect of experimental taxane chemotherapy on the expression of Hedgehog pathway was evaluated in vivo using a mouse xenograft model prepared using pancreatic cancer cell line Paca-44. Mice were treated by experimental Stony Brook Taxane SB-T-1216. The transcript profile of 34 Hedgehog pathway genes in patients and xenografts was assessed using quantitative PCR. The Hedgehog pathway was strongly overexpressed in pancreatic tumors and upregulation of SHH, IHH, HHAT and PTCH1 was associated with a trend toward decreased patient survival. No association of Hedgehog pathway expression with KRAS mutation status was found in tumors. Sonic hedgehog ligand was overexpressed, but all other downstream genes were downregulated by SB-T-1216 treatment in vivo. Suppression of HH pathway expression in vivo by taxane-based chemotherapy suggests a new mechanism of action for treatment of this aggressive tumor.
Collapse
Affiliation(s)
- B Mohelnikova-Duchonova
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- Department of Oncology, Palacky University Medical School and Teaching Hospital, Olomouc, Czech Republic
| | - M Kocik
- Department of Transplantation Surgery, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - V Brynychova
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- Charles University in Prague, Prague, Czech Republic
| | - M Oliverius
- Department of Transplantation Surgery, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - J Hlavsa
- Department of Surgery, University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - E Honsova
- Department of Clinical and Transplantation Pathology, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - J Mazanec
- Department of Pathology, University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Z Kala
- Department of Surgery, University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - I Ojima
- Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - D J Hughes
- Department of Physiology &Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | | | | - R Lemstrova
- Department of Oncology, Palacky University Medical School and Teaching Hospital, Olomouc, Czech Republic
| | - P Soucek
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|
5
|
Liao X, Huang R, Liu X, Han C, Yu L, Wang S, Sun N, Li B, Ning X, Peng T. Distinct prognostic values of alcohol dehydrogenase mRNA expression in pancreatic adenocarcinoma. Onco Targets Ther 2017; 10:3719-3732. [PMID: 28769575 PMCID: PMC5533474 DOI: 10.2147/ott.s140221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Alcohol dehydrogenase (ADH) isoenzymes have been reported as a potential diagnostic marker for pancreatic cancer, but their prognostic value in pancreatic cancer remains unclear. The aim of this investigation was to identify the prognostic value of ADH genes in human patients with pancreatic adenocarcinoma (PAAD). Materials and methods An RNA sequencing dataset and corresponding survival profiles of PAAD were obtained from The Cancer Genome Atlas. Survival analysis and gene set enrichment analysis were used to investigate the prediction value and potential mechanism of ADH genes in PAAD prognosis. Results Survival analysis of ADH genes suggests that a high expression of ADH1A (adjusted P=0.037, adjusted hazard ratio [HR] =0.627, 95% CI =0.404–0.972) and ADH6 (adjusted P=0.018, adjusted HR =0.588, 95% CI =0.378–0.914) were associated with a significantly decreased risk of death, while a high expression of ADH5 was associated with a significantly increased risk of death (adjusted P=0.043, adjusted HR =1.564, 95% CI =1.013–2.414). Joint effects analysis of three ADH gene prognostic markers suggests that the prognosis difference for any marker combination was more significant than that for any individual marker. The potential mechanism of ADH1A and ADH6 in PAAD prognosis was that a high expression of ADH1A and ADH6 was involved in the P450 pathway and biological processes, while high ADH5 expression was involved in transforming growth factor β regulation-related pathways and biological processes, Wnt, the cell cycle, ErbB, and mitogen-activated protein kinase signaling pathways. Conclusion Our data suggest that ADH1A, ADH5, and ADH6 expression may be potential prognostic markers of PAAD and in combination have a strong interaction and better predictive value for PAAD prognosis.
Collapse
Affiliation(s)
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong
| | | | - Long Yu
- Department of Hepatobiliary Surgery.,Department of Hepatobiliary and Pancreatic Surgery
| | - Shijun Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan
| | - Na Sun
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Bopei Li
- Department of Gastrointestinal Surgery
| | - Xin Ning
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tao Peng
- Department of Hepatobiliary Surgery
| |
Collapse
|
6
|
Lesniewska-Kowiel MA, Muszalska I. Strategies in the designing of prodrugs, taking into account the antiviral and anticancer compounds. Eur J Med Chem 2017; 129:53-71. [DOI: 10.1016/j.ejmech.2017.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 02/05/2017] [Indexed: 12/22/2022]
|
7
|
Exploring the role and diversity of mucins in health and disease with special insight into non-communicable diseases. Glycoconj J 2015; 32:575-613. [PMID: 26239922 DOI: 10.1007/s10719-015-9606-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Mucins are major glycoprotein components of the mucus that coats the surfaces of cells lining the respiratory, digestive, gastrointestinal and urogenital tracts. They function to protect epithelial cells from infection, dehydration and physical or chemical injury, as well as to aid the passage of materials through a tract i.e., lubrication. They are also implicated in the pathogenesis of benign and malignant diseases of secretory epithelial cells. In Human there are two types of mucins, membrane-bound and secreted that are originated from mucous producing goblet cells localized in the epithelial cell layer or in mucous producing glands and encoded by MUC gene. Mucins belong to a heterogeneous family of high molecular weight proteins composed of a long peptidic chain with a large number of tandem repeats that form the so-called mucin domain. The molecular weight is generally high, ranging between 0.2 and 10 million Dalton and all mucins contain one or more domains which are highly glycosylated. The size and number of repeats vary between mucins and the genetic polymorphism represents number of repeats (VNTR polymorphisms), which means the size of individual mucins can differ substantially between individuals which can be used as markers. In human it is only MUC1 and MUC7 that have mucin domains with less than 40% serine and threonine which in turn could reduce number of PTS domains. Mucins can be considered as powerful two-edged sword, as its normal function protects from unwanted substances and organisms at an arm's length while, malfunction of mucus may be an important factor in human diseases. In this review we have unearthed the current status of different mucin proteins in understanding its role and function in various non-communicable diseases in human with special reference to its organ specific locations. The findings described in this review may be of direct relevance to the major research area in biomedicine with reference to mucin and mucin associated diseases.
Collapse
|
8
|
Gonzalez-Villasana V, Rodriguez-Aguayo C, Arumugam T, Cruz-Monserrate Z, Fuentes-Mattei E, Deng D, Hwang RF, Wang H, Ivan C, Garza RJ, Cohen E, Gao H, Armaiz-Pena GN, Del C Monroig-Bosque P, Philip B, Rashed MH, Aslan B, Erdogan MA, Gutierrez-Puente Y, Ozpolat B, Reuben JM, Sood AK, Logsdon C, Lopez-Berestein G. Bisphosphonates inhibit stellate cell activity and enhance antitumor effects of nanoparticle albumin-bound paclitaxel in pancreatic ductal adenocarcinoma. Mol Cancer Ther 2014; 13:2583-94. [PMID: 25193509 PMCID: PMC4221441 DOI: 10.1158/1535-7163.mct-14-0028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pancreatic stellate cells (PSC) have been recognized as the principal cells responsible for the production of fibrosis in pancreatic ductal adenocarcinoma (PDAC). Recently, PSCs have been noted to share characteristics with cells of monocyte-macrophage lineage (MML cells). Thus, we tested whether PSCs could be targeted with the nitrogen-containing bisphosphonates (NBP; pamidronate or zoledronic acid), which are potent MML cell inhibitors. In addition, we tested NBPs treatment combination with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to enhance antitumor activity. In vitro, we observed that PSCs possess α-naphthyl butyrate esterase (ANBE) enzyme activity, a specific marker of MML cells. Moreover, NBPs inhibited PSCs proliferation, activation, release of macrophage chemoattractant protein-1 (MCP-1), and type I collagen expression. NBPs also induced PSCs apoptosis and cell-cycle arrest in the G1 phase. In vivo, NBPs inactivated PSCs; reduced fibrosis; inhibited tumor volume, tumor weight, peritoneal dissemination, angiogenesis, and cell proliferation; and increased apoptosis in an orthotopic murine model of PDAC. These in vivo antitumor effects were enhanced when NBPs were combined with nab-paclitaxel but not gemcitabine. Our study suggests that targeting PSCs and tumor cells with NBPs in combination with nab-paclitaxel may be a novel therapeutic approach to PDAC.
Collapse
Affiliation(s)
- Vianey Gonzalez-Villasana
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Thiruvengadam Arumugam
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zobeida Cruz-Monserrate
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Enrique Fuentes-Mattei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Defeng Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rosa F Hwang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raul Joshua Garza
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Evan Cohen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Gao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guillermo N Armaiz-Pena
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paloma Del C Monroig-Bosque
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Bincy Philip
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mohammed H Rashed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Al-Azhar University, Cairo, Egypt
| | - Burcu Aslan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mumin Alper Erdogan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James M Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNAi and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Craig Logsdon
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNAi and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
9
|
Liu SX, Xia ZS, Zhong YQ. Gene therapy in pancreatic cancer. World J Gastroenterol 2014; 20:13343-68. [PMID: 25309069 PMCID: PMC4188890 DOI: 10.3748/wjg.v20.i37.13343] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/29/2013] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC.
Collapse
|
10
|
Zhou X, Liu J, Wang W. Construction and investigation of breast-cancer-specific ceRNA network based on the mRNA and miRNA expression data. IET Syst Biol 2014; 8:96-103. [PMID: 25014376 DOI: 10.1049/iet-syb.2013.0025] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It has been proved and widely acknowledged that messenger RNAs can talk to each other by competing for a limited pool of miRNAs. The competing endogenous RNAs are called as ceRNAs. Although some researchers have recently used ceRNAs to do biological function annotations, few of them have investigated the ceRNA network on specific disease systematically. In this work, using both miRNA expression data and mRNA expression data of breast cancer patient as well as the miRNA target relations, the authors proposed a computational method to construct a breast-cancer-specific ceRNA network by checking whether the shared miRNA sponges between the gene pairs are significant. The ceRNA network is shown to be scale-free, thus the topological characters such as hub nodes and communities may provide important clues for the biological mechanism. Through investigation on the communities (the dense clusters) in the network, it was found that they are related to cancer hallmarks. In addition, through function annotation of the hub genes in the network, it was found that they are related to breast cancer. Moreover, classifiers based on the discriminative hubs can significantly distinguish breast cancer patients' risks of distant metastasis in all the three independent data sets.
Collapse
Affiliation(s)
- Xionghui Zhou
- School of Computer, Wuhan University, Wuhan, People's Republic of China.
| | - Juan Liu
- School of Computer, Wuhan University, Wuhan, People's Republic of China
| | - Wei Wang
- School of Computer, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
11
|
Cheng S, Eliaz I, Lin J, Thyagarajan-Sahu A, Sliva D. Triterpenes from Poria cocos suppress growth and invasiveness of pancreatic cancer cells through the downregulation of MMP-7. Int J Oncol 2013; 42:1869-74. [PMID: 23588713 PMCID: PMC3699575 DOI: 10.3892/ijo.2013.1902] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/12/2013] [Indexed: 12/13/2022] Open
Abstract
Poria cocos is a medicinal mushroom that is widely used in traditional Asian medicine. Here, we show that a characterized mixture of triterpenes extracted from P. cocos (PTE) and three purified triterpenes: pachymic acid (PA), dehydropachymic acid (DPA) and polyporenic acid C (PPAC) suppress the proliferation of the human pancreatic cancer cell lines Panc-1, MiaPaca-2, AsPc-1 and BxPc-3. Moreover, the most effective compound, PA, only slightly affects the proliferation of HPDE-6 normal pancreatic duct epithelial cells. The anti-proliferative effects of PTE on BxPc-3 cells are mediated by the cell cycle arrest at G0/G1 phase. DNA microarray analysis demonstrated that PTE significantly downregulates the expression of KRAS and matrix metalloproteinase-7 (MMP-7) in BxPc-3 cells. In addition, PTE and PA suppress the invasive behavior of BxPc-3 cells. The inhibition of invasiveness by PTE and PA was associated with the reduction of MMP-7 at the protein level and the role of MMP-7 further confirmed by the gene silencing of MMP-7 which also suppressed the invasiveness of BxPc-3 cells. In conclusion, triterpenes from P. cocos demonstrate anticancer and anti-invasive effects on human pancreatic cancer cells and can be considered as new therapeutic agents in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Shujie Cheng
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, P.R. China
| | | | | | | | | |
Collapse
|