1
|
Chang Y, Tang N, Zhang M. The peptidoglycan synthase PBP interacts with PLASTID DIVISION2 to promote chloroplast division in Physcomitrium patens. THE NEW PHYTOLOGIST 2024; 241:1115-1129. [PMID: 37723553 DOI: 10.1111/nph.19268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/19/2023] [Indexed: 09/20/2023]
Abstract
The peptidoglycan (PG) layer, a core component of the bacterial cell wall, has been retained in the Physcomitrium patens chloroplasts. The PG layer entirely encompasses the P. patens chloroplast, including the division site, but how PG biosynthesis cooperates with the constriction of two envelope membranes at the chloroplast division site remains elusive. Here, focusing on the PG synthase penicillin-binding protein (PBP), we performed cytological and molecular analyses to dissect the mechanism of chloroplast division in P. patens. We showed that PBP, acting in the final step of PG biosynthesis, is likely a chloroplast inner envelope protein that can aggregate at mid-chloroplasts during chloroplast division. Physcomitrium patens had five orthologs of PLASTID DIVISION2 (PDV2), an outer envelope component of the chloroplast division complex. Our data indicated that PpPDV2 proteins interact with PpPBP and are responsible for recruiting PpPBP to the chloroplast division site, in addition to PpDRP5B. Furthermore, we found that PBP deletion and carbenicillin application restrain constriction of the chloroplast division complex, rather than its assembly. This work provides direct molecular evidence for a link between chloroplast division of P. patens and PG biosynthesis and indicates that PG biosynthesis is required for the constriction of the chloroplast division apparatus in P. patens.
Collapse
Affiliation(s)
- Ying Chang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ning Tang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
2
|
Dowson AJ, Lloyd AJ, Cuming AC, Roper DI, Frigerio L, Dowson CG. Plant peptidoglycan precursor biosynthesis: Conservation between moss chloroplasts and Gram-negative bacteria. PLANT PHYSIOLOGY 2022; 190:165-179. [PMID: 35471580 PMCID: PMC9434261 DOI: 10.1093/plphys/kiac176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Accumulating evidence suggests that peptidoglycan, consistent with a bacterial cell wall, is synthesized around the chloroplasts of many photosynthetic eukaryotes, from glaucophyte algae to early-diverging land plants including pteridophyte ferns, but the biosynthetic pathway has not been demonstrated. Here, we employed mass spectrometry and enzymology in a two-fold approach to characterize the synthesis of peptidoglycan in chloroplasts of the moss Physcomitrium (Physcomitrella) patens. To drive the accumulation of peptidoglycan pathway intermediates, P. patens was cultured with the antibiotics fosfomycin, D-cycloserine, and carbenicillin, which inhibit key peptidoglycan pathway proteins in bacteria. Mass spectrometry of the trichloroacetic acid-extracted moss metabolome revealed elevated levels of five of the predicted intermediates from uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) through the uridine diphosphate N-acetylmuramic acid (UDP-MurNAc)-D,L-diaminopimelate (DAP)-pentapeptide. Most Gram-negative bacteria, including cyanobacteria, incorporate meso-diaminopimelic acid (D,L-DAP) into the third residue of the stem peptide of peptidoglycan, as opposed to L-lysine, typical of most Gram-positive bacteria. To establish the specificity of D,L-DAP incorporation into the P. patens precursors, we analyzed the recombinant protein UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase (MurE) from both P. patens and the cyanobacterium Anabaena sp. (Nostoc sp. strain PCC 7120). Both ligases incorporated D,L-DAP in almost complete preference to L-Lys, consistent with the mass spectrophotometric data, with catalytic efficiencies similar to previously documented Gram-negative bacterial MurE ligases. We discuss how these data accord with the conservation of active site residues common to DL-DAP-incorporating bacterial MurE ligases and of the probability of a horizontal gene transfer event within the plant peptidoglycan pathway.
Collapse
Affiliation(s)
- Amanda J Dowson
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Adrian J Lloyd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew C Cuming
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David I Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Lorenzo Frigerio
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
3
|
Sumiya N. Coordination mechanism of cell and cyanelle division in the glaucophyte alga Cyanophora sudae. PROTOPLASMA 2022; 259:855-867. [PMID: 34553240 DOI: 10.1007/s00709-021-01704-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
In unicellular algae with a single chloroplast, two mechanisms coordinate cell and chloroplast division: the S phase-specific expression of chloroplast division genes and the permission of cell cycle progression from prophase to metaphase by the onset of chloroplast division. This study investigated whether a similar mechanism exists in a unicellular alga with multiple chloroplasts using the glaucophyte alga Cyanophora sudae, which contains four chloroplasts (cyanelles). Cells with eight cyanelles appeared after the S phase arrest with a topoisomerase inhibitor camptothecin, suggesting that the mechanism of S phase-specific expression of cyanelle division genes was conserved in this alga. Inhibition of peptidoglycan synthesis by β-lactam antibiotic ampicillin arrested cells in the S-G2 phase, and inhibition of septum invagination with cephalexin resulted in cells with two nuclei and one cyanelle, despite inhibition of cyanelle division. This indicates that even in the unicellular alga with four chloroplasts, the cell cycle progresses to the M phase following the progression of chloroplast division to a certain division stage. These results suggested that C. sudae has two mechanisms for coordinating cell and cyanelle division, similar to the unicellular algae with a single chloroplast.
Collapse
Affiliation(s)
- Nobuko Sumiya
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8521, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
4
|
Radin I, Haswell ES. Looking at mechanobiology through an evolutionary lens. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102112. [PMID: 34628340 DOI: 10.1016/j.pbi.2021.102112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Mechanical forces were arguably among the first stimuli to be perceived by cells, and they continue to shape the evolution of all organisms. Great strides have been made in recent years in the field of plant cell and molecular mechanobiology, in part owing to focused efforts on key model systems. Here, we propose to enrich such work through evolutionary mechanobiology, or 'evo-mechano', and describe three major themes that could drive research in this area. We use plastid evo-mechano as a case study, describing how plastids from different lineages perceive their mechanical environments, how their mechanical properties vary across lineages, and their distinct roles in graviperception. Finally, we argue that future research into the biomechanical properties and mechanobiological signaling mechanisms that have been elaborated by green species over the past 1.5 billion years will help us understand both the universal and the unique adaptations of plants to their physical environment.
Collapse
Affiliation(s)
- Ivan Radin
- Department of Biology, MSC 1137-154-314, Washington University, 1 Brookings Drive, St. Louis, MO, 63130-489, United States; NSF Center for Engineering Mechanobiology, United States
| | - Elizabeth S Haswell
- Department of Biology, MSC 1137-154-314, Washington University, 1 Brookings Drive, St. Louis, MO, 63130-489, United States; NSF Center for Engineering Mechanobiology, United States.
| |
Collapse
|
5
|
Lee TCH, Chan PL, Tam NFY, Xu SJL, Lee FWF. Establish axenic cultures of armored and unarmored marine dinoflagellate species using density separation, antibacterial treatments and stepwise dilution selection. Sci Rep 2021; 11:202. [PMID: 33420310 PMCID: PMC7794416 DOI: 10.1038/s41598-020-80638-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
Academic research on dinoflagellate, the primary causative agent of harmful algal blooms (HABs), is often hindered by the coexistence with bacteria in laboratory cultures. The development of axenic dinoflagellate cultures is challenging and no universally accepted method suit for different algal species. In this study, we demonstrated a promising approach combined density gradient centrifugation, antibiotic treatment, and serial dilution to generate axenic cultures of Karenia mikimotoi (KMHK). Density gradient centrifugation and antibiotic treatments reduced the bacterial population from 5.79 ± 0.22 log10 CFU/mL to 1.13 ± 0.07 log10 CFU/mL. The treated KMHK cells were rendered axenic through serial dilution, and algal cells in different dilutions with the absence of unculturable bacteria were isolated. Axenicity was verified through bacterial (16S) and fungal internal transcribed spacer (ITS) sequencing and DAPI epifluorescence microscopy. Axenic KMHK culture regrew from 1000 to 9408 cells/mL in 7 days, comparable with a normal culture. The established methodology was validated with other dinoflagellate, Alexandrium tamarense (AT6) and successfully obtained the axenic culture. The axenic status of both cultures was maintained more than 30 generations without antibiotics. This efficient, straightforward and inexpensive approach suits for both armored and unarmored dinoflagellate species.
Collapse
Affiliation(s)
- Thomas Chun-Hung Lee
- Department of Science, School of Science and Technology, The Open University of Hong Kong, Ho Man Tin, Hong Kong
| | - Ping-Lung Chan
- Department of Science, School of Science and Technology, The Open University of Hong Kong, Ho Man Tin, Hong Kong
| | - Nora Fung-Yee Tam
- Department of Chemistry, City University of Hong Kong, Kowloon Bay, Hong Kong
| | - Steven Jing-Liang Xu
- Department of Science, School of Science and Technology, The Open University of Hong Kong, Ho Man Tin, Hong Kong
| | - Fred Wang-Fat Lee
- Department of Science, School of Science and Technology, The Open University of Hong Kong, Ho Man Tin, Hong Kong.
| |
Collapse
|
6
|
Jung KH, Kim YG, Kim CM, Ha HJ, Lee CS, Lee JH, Park HH. Wide-open conformation of UDP-MurNc-tripeptide ligase revealed by the substrate-free structure of MurE from Acinetobacter baumannii. FEBS Lett 2020; 595:275-283. [PMID: 33230844 DOI: 10.1002/1873-3468.14007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
MurE ligase catalyzes the attachment of meso-diaminopimelic acid to the UDP-MurNAc-l -Ala-d -Glu using ATP and producing UDP-MurNAc-l -Ala-d -Glu-meso-A2 pm during bacterial cell wall biosynthesis. Owing to the critical role of this enzyme, MurE is considered an attractive target for antibacterial drugs. Despite extensive studies on MurE ligase, the structural dynamics of its conformational changes are still elusive. In this study, we present the substrate-free structure of MurE from Acinetobacter baumannii, which is an antibiotic-resistant superbacterium that has threatened global public health. The structure revealed that MurE has a wide-open conformation and undergoes wide-open, intermediately closed, and fully closed dynamic conformational transition. Unveiling structural dynamics of MurE will help to understand the working mechanism of this ligase and to design next-generation antibiotics targeting MurE.
Collapse
Affiliation(s)
- Kyoung Ho Jung
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Yeon-Gil Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Korea
| | - Chang Min Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hyun Ji Ha
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Korea
| | - Jun Hyuck Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon, Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, Korea
| | - Hyun Ho Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
7
|
García-Del Portillo F. Building peptidoglycan inside eukaryotic cells: A view from symbiotic and pathogenic bacteria. Mol Microbiol 2020; 113:613-626. [PMID: 32185832 PMCID: PMC7154730 DOI: 10.1111/mmi.14452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/08/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
The peptidoglycan (PG), as the exoskeleton of most prokaryotes, maintains a defined shape and ensures cell integrity against the high internal turgor pressure. These important roles have attracted researchers to target PG metabolism in order to control bacterial infections. Most studies, however, have been performed in bacteria grown under laboratory conditions, leading to only a partial view on how the PG is synthetized in natural environments. As a case in point, PG metabolism and its regulation remain poorly understood in symbiotic and pathogenic bacteria living inside eukaryotic cells. This review focuses on the PG metabolism of intracellular bacteria, emphasizing the necessity of more in vivo studies involving the analysis of enzymes produced in the intracellular niche and the isolation of PG from bacteria residing within eukaryotic cells. The review also points to persistent infections caused by some intracellular bacterial pathogens and the extent at which the PG could contribute to establish such physiological state. Based on recent evidences, I speculate on the idea that certain structural features of the PG may facilitate attenuation of intracellular growth. Lastly, I discuss recent findings in endosymbionts supporting a cooperation between host and bacterial enzymes to assemble a mature PG.
Collapse
|
8
|
Takano H, Tsunefuka T, Takio S, Ishikawa H, Takechi K. Visualization of Plastid Peptidoglycan in the Charophyte Alga Klebsormidium nitens Using a Metabolic Labeling Method. CYTOLOGIA 2018. [DOI: 10.1508/cytologia.83.375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hiroyoshi Takano
- Faculty of Advanced Science and Technology, Kumamoto University
- Institute of Pulsed Power Science, Kumamoto University
| | | | - Susumu Takio
- Faculty of Advanced Science and Technology, Kumamoto University
- Center for Water Cycle, Marine Environment and Disaster Management, Kumamoto University
| | - Hayato Ishikawa
- Faculty of Advanced Science and Technology, Kumamoto University
| | | |
Collapse
|
9
|
de Vries J, Gould SB. The monoplastidic bottleneck in algae and plant evolution. J Cell Sci 2018; 131:jcs.203414. [PMID: 28893840 DOI: 10.1242/jcs.203414] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plastids in plants and algae evolved from the endosymbiotic integration of a cyanobacterium by a heterotrophic eukaryote. New plastids can only emerge through fission; thus, the synchronization of bacterial division with the cell cycle of the eukaryotic host was vital to the origin of phototrophic eukaryotes. Most of the sampled algae house a single plastid per cell and basal-branching relatives of polyplastidic lineages are all monoplastidic, as are some non-vascular plants during certain stages of their life cycle. In this Review, we discuss recent advances in our understanding of the molecular components necessary for plastid division, including those of the peptidoglycan wall (of which remnants were recently identified in moss), in a wide range of phototrophic eukaryotes. Our comparison of the phenotype of 131 species harbouring plastids of either primary or secondary origin uncovers that one prerequisite for an algae or plant to house multiple plastids per nucleus appears to be the loss of the bacterial genes minD and minE from the plastid genome. The presence of a single plastid whose division is coupled to host cytokinesis was a prerequisite of plastid emergence. An escape from such a monoplastidic bottleneck succeeded rarely and appears to be coupled to the evolution of additional layers of control over plastid division and a complex morphology. The existence of a quality control checkpoint of plastid transmission remains to be demonstrated and is tied to understanding the monoplastidic bottleneck.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada, B3H 4R2
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Välitalo P, Kruglova A, Mikola A, Vahala R. Toxicological impacts of antibiotics on aquatic micro-organisms: A mini-review. Int J Hyg Environ Health 2017; 220:558-569. [DOI: 10.1016/j.ijheh.2017.02.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
|
11
|
Lin X, Li N, Kudo H, Zhang Z, Li J, Wang L, Zhang W, Takechi K, Takano H. Genes Sufficient for Synthesizing Peptidoglycan are Retained in Gymnosperm Genomes, and MurE from Larix gmelinii can Rescue the Albino Phenotype of Arabidopsis MurE Mutation. PLANT & CELL PHYSIOLOGY 2017; 58:587-597. [PMID: 28158764 DOI: 10.1093/pcp/pcx005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/10/2017] [Indexed: 05/08/2023]
Abstract
The endosymbiotic theory states that plastids are derived from a single cyanobacterial ancestor that possessed a cell wall. Peptidoglycan (PG), the main component of the bacteria cell wall, gradually degraded during plastid evolution. PG-synthesizing Mur genes have been found to be retained in the genomes of basal streptophyte plants, although many of them have been lost from the genomes of angiosperms. The enzyme encoded by bacterial MurE genes catalyzes the formation of the UDP-N-acetylmuramic acid (UDP-MurNAc) tripeptide in bacterial PG biosynthesis. Knockout of the MurE gene in the moss Physcomitrella patens resulted in defects of chloroplast division, whereas T-DNA-tagged mutants of Arabidopsis thaliana for MurE revealed inhibition of chloroplast development but not of plastid division, suggesting that AtMurE is functionally divergent from the bacterial and moss MurE proteins. Here, we could identify 10 homologs of bacterial Mur genes, including MurE, in the recently sequenced genomes of Picea abies and Pinus taeda, suggesting the retention of the plastid PG system in gymnosperms. To investigate the function of gymnosperm MurE, we isolated an ortholog of MurE from the larch, Larix gmelinii (LgMurE) and confirmed its presence as a single copy per genome, as well as its abundant expression in the leaves of larch seedlings. Analysis with a fusion protein combining green fluorescent protein and LgMurE suggested that it localizes in chloroplasts. Cross-species complementation assay with MurE mutants of A. thaliana and P. patens showed that the expression of LgMurE cDNA completely rescued the albefaction defects in A. thaliana but did not rescue the macrochloroplast phenotype in P. patens. The evolution of plastid PG and the mechanism behind the functional divergence of MurE genes are discussed in the context of information about plant genomes at different evolutionary stages.
Collapse
Affiliation(s)
- Xiaofei Lin
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Ningning Li
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Hiromi Kudo
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555 Japan
| | - Zhe Zhang
- College of Biological Science, China Agriculture University, Beijing, 100083, China
| | - Jinyu Li
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Li Wang
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Wenbo Zhang
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Katsuaki Takechi
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 860-8555 Japan
| | - Hiroyoshi Takano
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 860-8555 Japan
- Institute of Pulsed Power Science, Kumamoto University, Kumamoto, 860-8555 Japan
| |
Collapse
|
12
|
Hirano T, Tanidokoro K, Shimizu Y, Kawarabayasi Y, Ohshima T, Sato M, Tadano S, Ishikawa H, Takio S, Takechi K, Takano H. Moss Chloroplasts Are Surrounded by a Peptidoglycan Wall Containing D-Amino Acids. THE PLANT CELL 2016; 28:1521-32. [PMID: 27325639 PMCID: PMC4981129 DOI: 10.1105/tpc.16.00104] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/11/2016] [Indexed: 05/08/2023]
Abstract
It is believed that the plastids in green plants lost peptidoglycan (i.e., a bacterial cell wall-containing d-amino acids) during their evolution from an endosymbiotic cyanobacterium. Although wall-like structures could not be detected in the plastids of green plants, the moss Physcomitrella patens has the genes required to generate peptidoglycan (Mur genes), and knocking out these genes causes defects in chloroplast division. Here, we generated P patens knockout lines (∆Pp-ddl) for a homolog of the bacterial peptidoglycan-synthetic gene encoding d-Ala:d-Ala ligase. ∆Pp-ddl had a macrochloroplast phenotype, similar to other Mur knockout lines. The addition of d-Ala-d-Ala (DA-DA) to the medium suppressed the appearance of giant chloroplasts in ∆Pp-ddl, but the addition of l-Ala-l-Ala (LA-LA), DA-LA, LA-DA, or d-Ala did not. Recently, a metabolic method for labeling bacterial peptidoglycan was established using ethynyl-DA-DA (EDA-DA) and click chemistry to attach an azide-modified fluorophore to the ethynyl group. The ∆Pp-ddl line complemented with EDA-DA showed that moss chloroplasts are completely surrounded by peptidoglycan. Our findings strongly suggest that the moss plastids have a peptidoglycan wall containing d-amino acids. By contrast, no plastid phenotypes were observed in the T-DNA tagged ddl mutant lines of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Takayuki Hirano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Koji Tanidokoro
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Yasuhiro Shimizu
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yutaka Kawarabayasi
- Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Toshihisa Ohshima
- Faculty of Engineering, Osaka Institute of Technology, Asahi-ku, Osaka 535-8585, Japan
| | - Momo Sato
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Shinji Tadano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hayato Ishikawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Susumu Takio
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan Center for Marine Environment Studies, Kumamoto University, Kumamoto 860-8555, Japan
| | - Katsuaki Takechi
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hiroyoshi Takano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
13
|
van Baren MJ, Bachy C, Reistetter EN, Purvine SO, Grimwood J, Sudek S, Yu H, Poirier C, Deerinck TJ, Kuo A, Grigoriev IV, Wong CH, Smith RD, Callister SJ, Wei CL, Schmutz J, Worden AZ. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants. BMC Genomics 2016; 17:267. [PMID: 27029936 PMCID: PMC4815162 DOI: 10.1186/s12864-016-2585-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/11/2016] [Indexed: 01/26/2023] Open
Abstract
Background Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. Results We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. Conclusions Extensive differences in gene loss and architecture between related prasinophytes underscore their divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in multiple plants and algae, implying a biological function. Our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2585-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marijke J van Baren
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Charles Bachy
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Emily Nahas Reistetter
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Samuel O Purvine
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jane Grimwood
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA.,Hudson Alpha, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Hang Yu
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA.,Now at: Ronald and Maxine Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Camille Poirier
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Thomas J Deerinck
- Center for Research in Biological Systems and the National Center for Microscopy and Imaging Research, University of California, La Jolla, San Diego, California, 92093, USA
| | - Alan Kuo
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Chee-Hong Wong
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Stephen J Callister
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Chia-Lin Wei
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Jeremy Schmutz
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA.,Hudson Alpha, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA. .,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada.
| |
Collapse
|
14
|
Wang X, Ryu D, Houtkooper RH, Auwerx J. Antibiotic use and abuse: a threat to mitochondria and chloroplasts with impact on research, health, and environment. Bioessays 2015; 37:1045-53. [PMID: 26347282 PMCID: PMC4698130 DOI: 10.1002/bies.201500071] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, several studies have demonstrated that tetracyclines, the antibiotics most intensively used in livestock and that are also widely applied in biomedical research, interrupt mitochondrial proteostasis and physiology in animals ranging from round worms, fruit flies, and mice to human cell lines. Importantly, plant chloroplasts, like their mitochondria, are also under certain conditions vulnerable to these and other antibiotics that are leached into our environment. Together these endosymbiotic organelles are not only essential for cellular and organismal homeostasis stricto sensu, but also have an important role to play in the sustainability of our ecosystem as they maintain the delicate balance between autotrophs and heterotrophs, which fix and utilize energy, respectively. Therefore, stricter policies on antibiotic usage are absolutely required as their use in research confounds experimental outcomes, and their uncontrolled applications in medicine and agriculture pose a significant threat to a balanced ecosystem and the well-being of these endosymbionts that are essential to sustain health.
Collapse
Affiliation(s)
- Xu Wang
- Laboratory of Integrative and Systems PhysiologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems PhysiologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic DiseasesAcademic Medical CenterAmsterdamThe Netherlands
| | - Johan Auwerx
- Laboratory of Integrative and Systems PhysiologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
15
|
Vasquez MI, Lambrianides A, Schneider M, Kümmerer K, Fatta-Kassinos D. Environmental side effects of pharmaceutical cocktails: what we know and what we should know. JOURNAL OF HAZARDOUS MATERIALS 2014; 279:169-89. [PMID: 25061892 DOI: 10.1016/j.jhazmat.2014.06.069] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/03/2014] [Accepted: 06/20/2014] [Indexed: 05/03/2023]
Abstract
Cocktails of pharmaceuticals are released in the environment after human consumption and due to the incomplete removal at the wastewater treatment plants. Pharmaceuticals are considered as contaminants of emerging concern and, a plethora of journal articles addressing their possible adverse effects have been published during the past 20 years. The emphasis during the early years of research within this field, was on the assessment of acute effects of pharmaceuticals applied singly, leading to results regarding their environmental risk, potentially not realistic or relevant to the actual environmental conditions. Only recently has the focus been shifted to chronic exposure and to the assessment of cocktail effects. To this end, this review provides an up-to-date compilation of 57 environmental and human toxicology studies published during 2000-2014 dealing with the adverse effects of pharmaceutical mixtures. The main challenges regarding the design of experiments and the analysis of the results regarding the effects of pharmaceutical mixtures to different biological systems are presented and discussed herein. The gaps of knowledge are critically reviewed highlighting specific future research needs and perspectives.
Collapse
Affiliation(s)
- M I Vasquez
- Department of Civil and Environmental Engineering and Nireas - International Water Research Center, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - A Lambrianides
- The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - M Schneider
- Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststraße 1/C13, 21335 Lüneburg, Germany
| | - K Kümmerer
- Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Scharnhorststraße 1/C13, 21335 Lüneburg, Germany
| | - D Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas - International Water Research Center, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus.
| |
Collapse
|
16
|
Miyagishima SY, Kabeya Y, Sugita C, Sugita M, Fujiwara T. DipM is required for peptidoglycan hydrolysis during chloroplast division. BMC PLANT BIOLOGY 2014; 14:57. [PMID: 24602296 PMCID: PMC4015805 DOI: 10.1186/1471-2229-14-57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/26/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Chloroplasts have evolved from a cyanobacterial endosymbiont and their continuity has been maintained over time by chloroplast division, a process which is performed by the constriction of a ring-like division complex at the division site. The division complex has retained certain components of the cyanobacterial division complex, which function inside the chloroplast. It also contains components developed by the host cell, which function outside of the chloroplast and are believed to generate constrictive force from the cytosolic side, at least in red algae and Viridiplantae. In contrast to the chloroplasts in these lineages, those in glaucophyte algae possess a peptidoglycan layer between the two envelope membranes, as do cyanobacteria. RESULTS In this study, we show that chloroplast division in the glaucophyte C. paradoxa does not involve any known chloroplast division proteins of the host eukaryotic origin, but rather, peptidoglycan spitting and probably the outer envelope division process rely on peptidoglycan hydrolyzing activity at the division site by the DipM protein, as in cyanobacterial cell division. In addition, we found that DipM is required for normal chloroplast division in the moss Physcomitrella patens. CONCLUSIONS These results suggest that the regulation of peptidoglycan splitting was essential for chloroplast division in the early evolution of chloroplasts and this activity is likely still involved in chloroplast division in Viridiplantae.
Collapse
Affiliation(s)
- Shin-ya Miyagishima
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yukihiro Kabeya
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Chieko Sugita
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takayuki Fujiwara
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
17
|
Ngwoke KG, Chevallier O, Wirkom VK, Stevenson P, Elliott CT, Situ C. In vitro bactericidal activity of diterpenoids isolated from Aframomum melegueta K.Schum against strains of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:1147-1154. [PMID: 24378352 DOI: 10.1016/j.jep.2013.12.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ethnobotanical use of Aframomum melegueta in the treatment of urinary tract and soft tissue infection suggested that the plant has antimicrobial activity. MATERIALS AND METHODS To substantiate the folkloric claims, an acetone, 50:50 acetone:methanol and 2:1 chloroform:methanol extracts were tested against Escherichia coli K12; acetone extract and the fractions of acetone extracts were tested against Listeria monocytogenes. Bioassay-guided fractionation was performed on the extract using L. monocytogenes as the test organism to isolate the bioactive compounds which were then tested against all the other organisms. RESULTS Four known labdane diterpenes (G3 and G5) were isolated for the first time from the rhizomes of A. melegueta and purified. These were tested against E. coli, L. monocytogenes, methicillin resistant Staphylococus aureus (MRSA) and S. aureus to determine antibacterial activity. The result showed that two compounds G3 and G5 exhibited more potent antibacterial activity compared to the current clinically used antibiotics ampicillin, gentamicin and vancomycin and can be potential antibacterial lead compounds. The structure of the labdane diterpenes were elucidated using nuclear magnetic resonance (NMR) spectroscopy and Mass spectrometry. A possible mode of action of the isolated compound G3 and its potential cytotoxicity towards mammalian cells were also discussed. CONCLUSION The results confirmed the presence of antibacterial compounds in the rhizomes of A. melegueta with a favourable toxicity profile which could be further optimized as antibacterial lead compounds.
Collapse
Affiliation(s)
- Kenneth G Ngwoke
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom.
| | - Olivier Chevallier
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Venasius K Wirkom
- Catholic Private School of Nursing, Midwifery and Laboratory Technology, Shisong, P.O. Box 8, Kumbo, Bui Division, NW Province, Cameroon
| | - Paul Stevenson
- School of chemistry and Chemical Engineering, Queen's University Belfast, Belfast, United Kingdom
| | - Christopher T Elliott
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Chen Situ
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
18
|
Miyagishima SY, Nakamura M, Uzuka A, Era A. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division. FRONTIERS IN PLANT SCIENCE 2014; 5:459. [PMID: 25309558 PMCID: PMC4164004 DOI: 10.3389/fpls.2014.00459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/26/2014] [Indexed: 05/08/2023]
Abstract
The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP) 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, non-photosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG) layer, divide without DRP5B. Certain parasitic eukaryotes possess non-photosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how non-photosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and non-photosynthetic plastid division.
Collapse
Affiliation(s)
- Shin-ya Miyagishima
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI)Mishima, Japan
- Japan Science and Technology Agency, CRESTKawaguchi, Japan
- *Correspondence: Shin-ya Miyagishima, Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan e-mail:
| | - Mami Nakamura
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI)Mishima, Japan
| | - Akihiro Uzuka
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI)Mishima, Japan
| | - Atsuko Era
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Japan Science and Technology Agency, CRESTKawaguchi, Japan
| |
Collapse
|