1
|
Dou Y, Aruni W, Muthiah A, Roy F, Wang C, Fletcher HM. Studies of the extracytoplasmic function sigma factor PG0162 in Porphyromonas gingivalis. Mol Oral Microbiol 2015. [PMID: 26216199 DOI: 10.1111/omi.12122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PG0162, annotated as an extracytoplasmic function (ECF) sigma factor in Porphyromonas gingivalis, is composed of 193 amino acids. As previously reported, the PG0162-deficient mutant, P. gingivalis FLL350 showed significant reduction in gingipain activity compared with the parental strain. Because this ECF sigma factor could be involved in the virulence regulation in P. gingivalis, its genetic properties were further characterized. A 5'-RACE analysis showed that the start of transcription of the PG0162 gene occurred from a guanine (G) residue 69 nucleotides upstream of the ATG translation initiation codon. The function of PG0162 as a sigma factor was confirmed in a run-off in vitro transcription assay using the purified rPG0162 and RNAP core enzyme from Escherichia coli with the PG0162 promoter as template. As an appropriate PG0162 inducing environmental signal is unknown, a strain overexpressing the PG0162 gene designated P. gingivalis FLL391 was created. Compared with the wild-type strain, transcriptome analysis of P. gingivalis FLL391 showed that approximately 24% of the genome displayed altered gene expression (260 upregulated genes; 286 downregulated genes). Two other ECF sigma factors (PG0985 and PG1660) were upregulated more than two-fold. The autoregulation of PG0162 was confirmed with the binding of the rPG0162 protein to the PG0162 promoter in electrophoretic mobility shift assay. In addition, the rPG0162 protein also showed the ability to bind to the promoter region of two genes (PG0521 and PG1167) that were most upregulated in P. gingivalis FLL391. Taken together, our data suggest that PG0162 is a sigma factor that may play an important role in the virulence regulatory network in P. gingivalis.
Collapse
Affiliation(s)
- Y Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - W Aruni
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - A Muthiah
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - F Roy
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - C Wang
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Li J, Qi L, Guo Y, Yue L, Li Y, Ge W, Wu J, Shi W, Dong X. Global mapping transcriptional start sites revealed both transcriptional and post-transcriptional regulation of cold adaptation in the methanogenic archaeon Methanolobus psychrophilus. Sci Rep 2015; 5:9209. [PMID: 25784521 PMCID: PMC5378194 DOI: 10.1038/srep09209] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/23/2015] [Indexed: 11/12/2022] Open
Abstract
Psychrophilic methanogenic Archaea contribute significantly to global methane emissions, but archaeal cold adaptation mechanisms remain poorly understood. Hinted by that mRNA architecture determined secondary structure respond to cold more promptly than proteins, differential RNA-seq was used in this work to examine the genome-wide transcription start sites (TSSs) of the psychrophilic methanogen Methanolobus psychrophilus R15 and its response to cold. Unlike most prokaryotic mRNAs with short 5' untranslated regions (5' UTR, median lengths of 20-40 nt), 51% mRNAs of this methanogen have large 5' UTR (>50 nt). For 24% of the mRNAs, the 5' UTR is >150 nt. This implies that post-transcriptional regulation may be significance in the psychrophile. Remarkably, 219 (14%) genes possessed multiple gene TSSs (gTSSs), and 84 genes exhibited temperature-regulated gTSS selection to express alternative 5' UTR. Primer extension studies confirmed the temperature-dependent TSS selection and a stem-loop masking of ribosome binding sites was predicted from the longer 5' UTRs, suggesting alternative 5' UTRs-mediated translation regulation in the cold adaptation as well. In addition, 195 small RNAs (sRNAs) were detected, and Northern blots confirmed that many sRNAs were induced by cold. Thus, this study revealed an integrated transcriptional and post-transcriptional regulation for cold adaptation in a psychrophilic methanogen.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing 100101, People's Republic of China
| | - Lei Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing 100101, People's Republic of China
| | - Yang Guo
- Novogene Bioinformatics Institute, 21st Floor, Jinma building B area, Xueqing Road, Beijing 100083, People's Republic of China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing 100101, People's Republic of China
| | - Yanping Li
- Novogene Bioinformatics Institute, 21st Floor, Jinma building B area, Xueqing Road, Beijing 100083, People's Republic of China
| | - Weizhen Ge
- Novogene Bioinformatics Institute, 21st Floor, Jinma building B area, Xueqing Road, Beijing 100083, People's Republic of China
| | - Jun Wu
- Novogene Bioinformatics Institute, 21st Floor, Jinma building B area, Xueqing Road, Beijing 100083, People's Republic of China
| | - Wenyuan Shi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 10833 Le Conte Avenue, Los Angeles, CA90095, USA
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Beijing 100101, People's Republic of China
| |
Collapse
|
3
|
Liu SP, Yu P, Yuan PH, Zhou ZX, Bu QT, Mao XM, Li YQ. Sigma factor WhiGch positively regulates natamycin production in Streptomyces chattanoogensis L10. Appl Microbiol Biotechnol 2015; 99:2715-26. [DOI: 10.1007/s00253-014-6307-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 12/22/2022]
|
4
|
Mao XM, Sun N, Wang F, Luo S, Zhou Z, Feng WH, Huang FL, Li YQ. Dual positive feedback regulation of protein degradation of an extra-cytoplasmic function σ factor for cell differentiation in Streptomyces coelicolor. J Biol Chem 2013; 288:31217-28. [PMID: 24014034 DOI: 10.1074/jbc.m113.491498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Here we report that in Streptomyces coelicolor, the protein stability of an ECF σ factor SigT, which is involved in the negative regulation of cell differentiation, was completely dependent on its cognate anti-σ factor RstA. The degradation of RstA caused a ClpP/SsrA-dependent degradation of SigT during cell differentiation. This was consistent with the delayed morphological development or secondary metabolism in the ΔclpP background after rstA deletion or sigT overexpression. Meanwhile, SigT negatively regulated clpP/ssrA expression by directly binding to the clpP promoter (clpPp). The SigT-clpPp interaction could be disrupted by secondary metabolites, giving rise to the stabilized SigT protein and retarded morphological development in a non-antibiotic-producing mutant. Thus a novel regulatory mechanism was revealed that the protein degradation of the ECF σ factor was initiated by the degradation of its anti-σ factor, and was accelerated in a dual positive feedback manner, through regulation by secondary metabolites, to promote rapid and irreversible development of the secondary metabolism. This ingenious cooperation of intracellular components can ensure economical and exquisite control of the ECF σ factor protein level for the proper cell differentiation in Streptomyces.
Collapse
Affiliation(s)
- Xu-Ming Mao
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058 and
| | | | | | | | | | | | | | | |
Collapse
|