1
|
Li P, Xia C, Kong X, Zhang J. Enhancing nicotinamide N-methyltransferase bisubstrate inhibitor activity through 7-deazaadenosine and linker modifications. Bioorg Chem 2024; 143:106963. [PMID: 38048700 DOI: 10.1016/j.bioorg.2023.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023]
Abstract
Nicotinamide N-methyltransferase (NNMT) catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM) to nicotinamide (NAM) and other pyridine-related compounds and is involved in various metabolic processes in the human body. In addition, abnormal expression of NNMT occurs under various pathological conditions such as cancer, diabetes, metabolic disorders, and neurodegenerative diseases, making it a promising drug target worthy of in-depth research. Small-molecule NNMT inhibitors with high potency and selectivity are necessary chemical tools to test biological hypotheses and potential therapies. In this study, we developed a series of highly active NNMT inhibitors by modifying N7 position of adenine. Among them, compound 3-12 (IC50 = 47.9 ± 0.6 nM) exhibited potent inhibitory activity and also had an excellent selectivity profile over a panel of human methyltransferases. We showed that the N7 position of adenine in the NNMT bisubstrate inhibitor was a modifiable site, thus offering insights into the development of NNMT inhibitors.
Collapse
Affiliation(s)
- Pengyu Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Cuicui Xia
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China; Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiangqian Kong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China.
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China.
| |
Collapse
|
2
|
Zhao J, Liu Y, Cui Q, He R, Zhao JR, Lu L, Wang HQ, Dai H, Wang H, Yang W. A prediction model for prognosis of gastric adenocarcinoma based on six metabolism-related genes. Biochem Biophys Rep 2023; 34:101440. [PMID: 36852096 PMCID: PMC9957706 DOI: 10.1016/j.bbrep.2023.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Background The study of tumor metabolism is of great value to elucidate the mechanism of tumorigenesis and predict the prognosis of patients. However, the prognostic role of metabolism-related genes (MRGs) in gastric adenocarcinoma (GAD) remains poorly understood. Methods We downloaded the gene chip dataset GSE79973 (n = 20) of GAD from the Gene Expression Omnibus (GEO) database to compare differentially expressed genes (DEGs) between normal and tumor tissues. We then extracted MRGs from these DEGs and systematically investigated the prognostic value of these differential MRGs for predicting patients' overall survival by univariable and multivariable Cox regression analysis. Six metabolic genes (ACOX3, APOE, DIO2, HSD17B4, NUAK1, and WHSC1L1) were identified as prognosis-associated hub genes, which were used to build a prognostic model in the training dataset GSE15459 (n = 200), and then validated in the dataset GSE62254 (n = 300). Results Patients were divided into high-risk and low-risk subgroups based on the model's risk score, and it was found that patients in the high-risk subgroup had shorter overall survival than those in the low-risk subgroup, both in the training and testing datasets. In addition, for the training and testing cohorts, the area under the ROC curve of the prognostic model for one-year survival prediction was 0.723 and 0.667, respectively, indicating that the model has good predictive performance. Furthermore, we established a nomogram based on tumor stage and risk score to effectively predict the overall survival (OS) of GAD patients. The expression of 6 MRGs at the protein level was confirmed by immunohistochemistry (IHC). Kaplan-Meier survival analysis further confirmed that their expression influenced OS in GAD patients. Conclusion Collectively, the 6 MRGs signature might be a reliable tool for assessing OS in GAD patients, with potential application value in clinical decision-making and individualized therapy.
Collapse
Affiliation(s)
- Jingyu Zhao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.,Anhui Province Key Laboratory of Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yu Liu
- Anhui Province Key Laboratory of Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch, Graduate School of USTC, Hefei, 230026, China
| | - Qianwen Cui
- Anhui Province Key Laboratory of Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch, Graduate School of USTC, Hefei, 230026, China
| | - Rongli He
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030024, China
| | - Jia-Rong Zhao
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030024, China
| | - Hong-Qiang Wang
- Science Island Branch, Graduate School of USTC, Hefei, 230026, China.,Biological Molecular Information System Laboratory, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Haiming Dai
- Anhui Province Key Laboratory of Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch, Graduate School of USTC, Hefei, 230026, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch, Graduate School of USTC, Hefei, 230026, China
| | - Wulin Yang
- Anhui Province Key Laboratory of Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch, Graduate School of USTC, Hefei, 230026, China
| |
Collapse
|
3
|
Yang C, Wang T, Zhu S, Zong Z, Luo C, Zhao Y, Liu J, Li T, Liu X, Liu C, Deng H. Nicotinamide N-Methyltransferase Remodeled Cell Metabolism and Aggravated Proinflammatory Responses by Activating STAT3/IL1β/PGE 2 Pathway. ACS OMEGA 2022; 7:37509-37519. [PMID: 36312432 PMCID: PMC9607676 DOI: 10.1021/acsomega.2c04286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Nicotinamide N-methyltransferase (NNMT) is a cytosolic methyltransferase, catalyzing N-methylation of nicotinamide (NAM) to form 1-methylnicotinamide (1-MNAM), in which S-adenosyl-l-methionine (SAM) is the methyl donor. It has been well documented that NNMT is elevated in multiple cancers and promotes tumor aggressiveness. In the present study, we investigated the effects of NNMT overexpression on cellular metabolism and proinflammatory responses. We found that NNMT overexpression reduced NAD+ and SAM levels, and activated the STAT3 signaling pathway. Consequently, STAT3 activation upregulated interleukin 1β (IL1β) and cyclooxygenase-2 (COX2), leading to prostaglandin E2 (PGE2) accumulation. On the other hand, NNMT downregulated 15-hydroxyprostaglandin dehydrogenase (15-PGDH) which catalyzes PGE2 into inactive molecules. Moreover, secretomic data indicated that NNMT promoted secretion of collagens, pro-inflammatory cytokines, and extracellular matrix proteins, confirming NNMT aggravated inflammatory responses to promote cell growth, migration, epithelial-mesenchymal transition (EMT), and chemoresistance. Taken together, we showed that NNMT played a pro-inflammatory role in cancer cells by activating the STAT3/IL1β/PGE2 axis and proposed that NNMT was a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Changmei Yang
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Tianxiang Wang
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Songbiao Zhu
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Zhaoyun Zong
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Chengting Luo
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Yujiao Zhao
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Jing Liu
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Ting Li
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Xiaohui Liu
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Chongdong Liu
- Chao
Yang Hospital of Capital Medical University, Beijing 100020, P. R. China
| | - Haiteng Deng
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| |
Collapse
|
4
|
Ribeiro HF, de Castro Sant' Anna C, de Jesus Oliveira Kato V, de Sousa Brasil RM, Bona AB, da Costa DF, Lima IK, Soares PC, Guimarães APA, de Assumpção PP, Burbano RR. CDC25B Inhibition by menadione: a potential new therapeutical approach. Anticancer Agents Med Chem 2022; 22:2927-2932. [PMID: 35440317 DOI: 10.2174/1871520622666220418131935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/28/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is the fifth most common type of tumor and the third leading cause of cancer death worldwide. The evolution of gastric carcinogenesis is still poorly understood and, for this reason, preclinical research protocols were established that included the development of gastric cancer cell lines and the establishment of models of gastric carcinogenesis in non-human primate Sapajus apella. A comprehensive literature search was performed in relevant databases such as PubMed, ResearchGate and Google Scholar to identify studies related to the topic. After an in-depth study of these reports, significant data/data were collected and compiled under appropriate headings. The main result of the studies carried out by the group on GC is the demonstration of the MYC gene overexpression as a common phenomenon in stomach carcinogenesis. Furthermore, we revealed that reducing the expression of the CDC25B gene, regulated by the MYC protein, is a therapeutic strategy against stomach tumors. This review article reveals preclinical evidence that treatment with menadione in experimental models of gastric tumorigenesis, in vivo and in vitro, inhibits the action of the phosphatase CDC25B and, consequently, prevents cell proliferation, invasion and migration.
Collapse
|
5
|
Wang W, Yang C, Wang T, Deng H. Complex roles of nicotinamide N-methyltransferase in cancer progression. Cell Death Dis 2022; 13:267. [PMID: 35338115 PMCID: PMC8956669 DOI: 10.1038/s41419-022-04713-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Nicotinamide N-methyltransferase (NNMT) is an intracellular methyltransferase, catalyzing the N-methylation of nicotinamide (NAM) to form 1-methylnicotinamide (1-MNAM), in which S-adenosyl-l-methionine (SAM) is the methyl donor. High expression of NNMT can alter cellular NAM and SAM levels, which in turn, affects nicotinamide adenine dinucleotide (NAD+)-dependent redox reactions and signaling pathways, and remodels cellular epigenetic states. Studies have revealed that NNMT plays critical roles in the occurrence and development of various cancers, and analysis of NNMT expression levels in different cancers from The Cancer Genome Atlas (TCGA) dataset indicated that NNMT might be a potential biomarker and therapeutic target for tumor diagnosis and treatment. This review provides a comprehensive understanding of recent advances on NNMT functions in different tumors and deciphers the complex roles of NNMT in cancer progression.
Collapse
Affiliation(s)
- Weixuan Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Changmei Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Tianxiang Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Zhang Y, Liu W, Feng W, Wang X, Lei T, Chen Z, Song W. Identification of 14 Differentially-Expressed Metabolism-Related Genes as Potential Targets of Gastric Cancer by Integrated Proteomics and Transcriptomics. Front Cell Dev Biol 2022; 10:816249. [PMID: 35265615 PMCID: PMC8899292 DOI: 10.3389/fcell.2022.816249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Although research on the metabolism related to gastric cancer (GC) is gradually gaining increasing interest, there are few studies regarding metabolism-related genes in GC. Understanding the characteristic changes of metabolism-related genes at the transcriptional and protein levels in GC will help us to identify new biomarkers and novel therapeutic targets. We harvested six pairs of samples from GC patients and evaluated the differentially expressed proteins using mass spectrometry-based proteomics. RNA sequencing was conducted simultaneously to detect the corresponding expression of mRNAs, and bioinformatics analysis was used to reveal the correlation of significant differentially expressed genes. A total of 57 genes were observed to be dysregulated both in proteomics and transcriptomics. Bioinformatics analysis showed that these differentially expressed genes were significantly associated with regulating metabolic activity. Further, 14 metabolic genes were identified as potential targets for GC patients and were related to immune cell infiltration. Moreover, we found that dysregulation of branched-chain amino acid transaminase 2 (BCAT2), one of the 14 differentially expressed metabolism-related genes, was associated with the overall survival time in GC patients. We believe that this study provides comprehensive information to better understand the mechanism underlying the progression of GC metastasis and explores the potential therapeutic and prognostic metabolism-related targets for GC.
Collapse
Affiliation(s)
- Yongxin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenwei Liu
- Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianxiang Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Mortalin/glucose-regulated protein 75 promotes the cisplatin-resistance of gastric cancer via regulating anti-oxidation/apoptosis and metabolic reprogramming. Cell Death Discov 2021; 7:140. [PMID: 34117210 PMCID: PMC8196146 DOI: 10.1038/s41420-021-00517-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Platinum drug treatment is one of the most predominant chemotherapeutic strategies for patients with gastric cancer (GC). However, the therapeutic effect is less than satisfactory, largely due to the acquired resistance to platinum drugs. Therefore, a better understanding of the underlying mechanisms can greatly improve the therapeutic efficacy of GC. In this study, we aimed to investigate the chemo-resistance related functions/mechanisms and clinical significance of glucose-regulated protein 75 (GRP75) in GC. Here, our data showed that compared with SGC7901 cells, the expression of GRP75 was markedly higher in cisplatin-resistance cells (SGC7901CR). Knockdown of GRP75 abolished the maintenance of mitochondrial membrane potential (MMP) and inhibited the nuclear factor erythroid-2-related factor 2 (NRF2), phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT), hypoxia-inducible factor 1α (HIF-1α), and c-myc, which resulted in blocking the activation of their downstream targets. These processes attenuated the anti-oxidation/apoptosis abilities and altered the metabolic reprogramming in SGC7901CR cells, leading to re-sensitizing these cells to cisplatin. However, overexpression of GRP75 in SGC7901 cells caused the opposite effects. A xenografts model confirmed the abovementioned results. In GC patients receiving platinum chemotherapy and a meta-analysis, a high level of GRP75 was positively associated with aggressive characteristics and poor prognosis including but not limited to gastrointestinal cancers, and was an independent predictor for overall survival. Collectively, our study indicated that GRP75 was involved in the cisplatin-resistance of GC and that GRP75 could be a potential therapeutic target for restoring the drug response in platinum-resistance cells and a useful additive prognostic tool in guiding clinical management of GC patients.
Collapse
|
8
|
Plasma proteomics-based identification of novel biomarkers in early gastric cancer. Clin Biochem 2020; 76:5-10. [PMID: 31765635 DOI: 10.1016/j.clinbiochem.2019.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/27/2019] [Accepted: 11/02/2019] [Indexed: 12/18/2022]
|
9
|
Bona AB, Calcagno DQ, Ribeiro HF, Muniz JAPC, Pinto GR, Rocha CAM, Lacreta Junior ACC, de Assumpção PP, Herranz JAR, Burbano RR. Menadione reduces CDC25B expression and promotes tumor shrinkage in gastric cancer. Therap Adv Gastroenterol 2020; 13:1756284819895435. [PMID: 35392297 PMCID: PMC8981514 DOI: 10.1177/1756284819895435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the most incident types of cancer worldwide and presents high mortality rates and poor prognosis. MYC oncogene overexpression is a key event in gastric carcinogenesis and it is known that its protein positively regulates CDC25B expression which, in turn, plays an essential role in the cell division cycle progression. Menadione is a synthetic form of vitamin K that acts as a specific inhibitor of the CDC25 family of phosphatases. METHODS To better understand the menadione mechanism of action in gastric cancer, we evaluated its molecular and cellular effects in cell lines and in Sapajus apella, nonhuman primates from the new world which had gastric carcinogenesis induced by N-Methyl-N-nitrosourea. We tested CDC25B expression by western blot and RT-qPCR. In-vitro assays include proliferation, migration, invasion and flow cytometry to analyze cell cycle arrest. In in-vivo experiments, in addition to the expression analyses, we followed the preneoplastic lesions and the tumor progression by ultrasonography, endoscopy, biopsies, histopathology and immunohistochemistry. RESULTS Our tests demonstrated menadione reducing CDC25B expression in vivo and in vitro. It was able to reduce migration, invasion and proliferation rates, and induce cell cycle arrest in gastric cancer cell lines. Moreover, our in-vivo experiments demonstrated menadione inhibiting tumor development and progression. CONCLUSIONS We suggest this compound may be an important ally of chemotherapeutics in the treatment of gastric cancer. In addition, CDC25B has proven to be an effective target for investigation and development of new therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
| | - Danielle Queiroz Calcagno
- Oncology Research Nucleus, University Hospital
João de Barros Barreto, Federal University of Pará, Belém, Brazil
| | - Helem Ferreira Ribeiro
- Center of Biological and Health Sciences,
Department of Biomedicine, University of Amazon, Belém, Brazil
| | | | | | | | | | - Paulo Pimentel de Assumpção
- Oncology Research Nucleus, University Hospital
João de Barros Barreto, Federal University of Pará, Belém, Brazil
| | | | | |
Collapse
|
10
|
Liu Y, Zhang Z, Wang J, Chen C, Tang X, Zhu J, Liu J. Metabolic reprogramming results in abnormal glycolysis in gastric cancer: a review. Onco Targets Ther 2019; 12:1195-1204. [PMID: 30863087 PMCID: PMC6389007 DOI: 10.2147/ott.s189687] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Warburg effect in tumor cells involves the uptake of high levels of glucose, enhanced glycolysis, and the metabolism of pyruvate to lactic acid rather than oxidative phos-phorylation to generate energy under aerobic conditions. This effect is closely related to the occurrence, invasion, metastasis, drug resistance, and poor prognosis of gastric cancer (GC). Current research has further demonstrated that the Warburg effect in GC cells is not only mediated by the glycolysis pathway, but also includes roles for mitochondria, noncoding RNAs, and other proteins that do not directly regulate metabolism. As a result, changes in the glycolysis pathway not only lead to abnormal glucose metabolism, but they also affect mitochondrial functions, cellular processes such as apoptosis and cell cycle regulation, and the metabolism of lipids and amino acids. In this review, we discuss metabolic reprogramming in GC based on glycolysis, a possible link between glucose metabolism, lipid metabolism, and amino acid metabolism, and we clarify the role of mitochondria. We also examine recent studies of metabolic inhibitors in GC.
Collapse
Affiliation(s)
- Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Junyang Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Chao Chen
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Xiaohuan Tang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Jiaming Zhu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Jingjing Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| |
Collapse
|
11
|
Rostami-Nejad M, Rezaei-Tavirani M, Mansouri V, Akbari Z, Abdi S. Impact of proteomics investigations on gastric cancer treatment and diagnosis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:S1-S7. [PMID: 32099594 PMCID: PMC7011056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/08/2019] [Indexed: 11/16/2022]
Abstract
Gastric cancer is one of the epidemics diseases with a high mortality rate in different countries. It causes many health problems in the world every year. It affects the digestive tract, and in advanced cases, its treatment has many difficulties. Early detection of cancer in different parts of the gastrointestinal tract can be accompanied by inexpensive treatment. As cancer cells make different biomarkers during different stages of the disease, researchers are looking for different biomarkers for gastrointestinal cancers detection. On the other hand, with the advent of advanced techniques such as proteomics and the discovery of a large number of proteins related to gastrointestinal cancer, finding the role of these proteins is essential. Indeed, the function of large amounts of these proteins has remained unknown. Data from databases such as genes and proteins associated with gastrointestinal cancers were collected and the proteomic data of these databases were analyzed to find a clear perspective of the impact of proteomics in gastric cancer management. The role of heat shock proteins, metabolic proteins, membrane binding proteins, galectins, prohibitins, S100 proteins, and many different types of proteins in gastric cancer was highlighted. This article reviewed proteomic researches in cancer-related areas of the gastric cancer in order to evaluate the findings of researchers.
Collapse
Affiliation(s)
- Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Akbari
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Abdi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
YWHAE silencing induces cell proliferation, invasion and migration through the up-regulation of CDC25B and MYC in gastric cancer cells: new insights about YWHAE role in the tumor development and metastasis process. Oncotarget 2018; 7:85393-85410. [PMID: 27863420 PMCID: PMC5356744 DOI: 10.18632/oncotarget.13381] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
We previously observed reduced YWHAE (14-3-3ε) protein expression in a small set of gastric cancer samples. YWHAE may act as a negative regulator of the cyclin CDC25B, which is a transcriptional target of MYC oncogene. The understanding of YWHAE role and its targets is important for the better knowledge of gastric carcinogenesis. Thus, we aimed to evaluate the relationship among YWHAE, CDC25B, and MYC in vitro and in vivo. For this, we analyzed the YWHAE, CDC25B, and MYC expression in YWHA-silenced, CDC25B-silenced, and MYC-silenced gastric cancer cell lines, as well as in gastric cancer and non-neoplastic gastric samples. In gastric cancer cell lines, YWHAE was able to inhibit the cell proliferation, invasion and migration through the reduction of MYC and CDC25B expression. Conversely, MYC induced the cell proliferation, invasion and migration through the induction of CDC25B and the reduction of YWHAE. Most of the tumors presented reduced YWHAE and increased CDC25B expression, which seems to be important for tumor development. Increased MYC expression was a common finding in gastric cancer and has a role in poor prognosis. In the tumor initiation, the opposite role of YWHAE and CDC25B in gastric carcinogenesis seems to be independent of MYC expression. However, the inversely correlation between YWHAE and MYC expression seems to be important for gastric cancer cells invasion and migration. The interaction between YWHAE and MYC and the activation of the pathways related to this interaction play a role in the metastasis process.
Collapse
|
13
|
Yoo MW, Park J, Han HS, Yun YM, Kang JW, Choi DY, Lee JW, Jung JH, Lee KY, Kim KP. Discovery of gastric cancer specific biomarkers by the application of serum proteomics. Proteomics 2017; 17. [PMID: 28133907 DOI: 10.1002/pmic.201600332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/22/2016] [Accepted: 01/26/2017] [Indexed: 11/07/2022]
Abstract
Current diagnostic markers for gastric cancer are not sufficiently specific or sensitive for use in clinical practice. The aims of this study are to compare the proteomes of serum samples from patients with gastric cancers and normal controls, and to develop useful tumor markers of gastric cancer by quantitative proteomic analysis. We identified a total of 388 proteins with a ≤1% FDR and with at least two unique peptides from the sera of each group. Among them, 215, 251, and 260 proteins were identified in serum samples of patients in an advanced cancer group, early cancer group, and normal control group, respectively. We selected differentially expressed proteins in cancer patients compared with those of normal controls via semiquantitative analyses comparing the spectral counts of identified proteins. These differentially expressed proteins were successfully verified using an MS-based quantitative assay, multiple reactions monitoring analysis. Four proteins (vitronectin, clusterin isoform 1, thrombospondin 1, and tyrosine-protein kinase SRMS) were shown to have significant changes between the cancer groups and the normal control group. These four serum proteins were able to discriminate gastric cancer patients from normal controls with sufficient specificity and selectivity.
Collapse
Affiliation(s)
- Moon-Won Yoo
- Department of Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jisook Park
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Hye-Seung Han
- Department of Pathology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Yeo-Min Yun
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jeong Won Kang
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Do-Young Choi
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Joon Won Lee
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Jae Hun Jung
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Kyung-Yung Lee
- Department of Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| |
Collapse
|
14
|
Mohri Y, Toiyama Y, Kusunoki M. Progress and prospects for the discovery of biomarkers for gastric cancer: a focus on proteomics. Expert Rev Proteomics 2016; 13:1131-1139. [PMID: 27744719 DOI: 10.1080/14789450.2016.1249469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Patient outcomes from gastric cancer vary due to the complexity of stomach carcinogenesis. Recent research using proteomic technologies has targeted components of all of these systems in order to develop biomarkers to aid the early diagnosis of gastric cancer and to assist in prognostic stratification. Areas covered: This review is comprised of evidence obtained from literature searches from PubMed. It covers the evidence of diagnostic, prognostic, and predictive biomarkers for gastric cancer using proteomic technologies, and provides up-to-date references. Expert commentary: The proteomic technologies have not only enabled the screening of a large number of samples, but also enabled the identification of diagnostic, prognostic and predictive biomarkers for gastric cancer. While major challenges still remain, to date, proteomic studies in gastric cancer have provided a wealth of information in revealing proteome alterations associated with the disease.
Collapse
Affiliation(s)
- Yasuhiko Mohri
- a Department of Gastrointestinal and Pediatric Surgery , Mie University Graduate School of Medicine , Mie , Japan
| | - Yuji Toiyama
- a Department of Gastrointestinal and Pediatric Surgery , Mie University Graduate School of Medicine , Mie , Japan
| | - Masato Kusunoki
- a Department of Gastrointestinal and Pediatric Surgery , Mie University Graduate School of Medicine , Mie , Japan
| |
Collapse
|
15
|
Leal MF, Wisnieski F, de Oliveira Gigek C, do Santos LC, Calcagno DQ, Burbano RR, Smith MC. What gastric cancer proteomic studies show about gastric carcinogenesis? Tumour Biol 2016; 37:9991-10010. [PMID: 27126070 DOI: 10.1007/s13277-016-5043-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/28/2016] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is a complex, heterogeneous, and multistep disease. Over the past decades, several studies have aimed to determine the molecular factors that lead to gastric cancer development and progression. After completing the human genome sequencing, proteomic technologies have presented rapid progress. Differently from the relative static state of genome, the cell proteome is dynamic and changes in pathologic conditions. Proteomic approaches have been used to determine proteome profiles and identify differentially expressed proteins between groups of samples, such as neoplastic and nonneoplastic samples or between samples of different cancer subtypes or stages. Therefore, proteomic technologies are a useful tool toward improving the knowledge of gastric cancer molecular pathogenesis and the understanding of tumor heterogeneity. This review aimed to summarize the proteins or protein families that are frequently identified by using high-throughput screening methods and which thus may have a key role in gastric carcinogenesis. The increased knowledge of gastric carcinogenesis will clearly help in the development of new anticancer treatments. Although the studies are still in their infancy, the reviewed proteins may be useful for gastric cancer diagnosis, prognosis, and patient management.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038-032, São Paulo, São Paulo, Brazil. .,Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil.
| | - Fernanda Wisnieski
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Carolina de Oliveira Gigek
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Leonardo Caires do Santos
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, 66073-000, Belém, Pará, Brazil
| | - Rommel Rodriguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Pará, Brazil
| | - Marilia Cardoso Smith
- Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha - 1° andar, CEP 04023-900, São Paulo, Brazil
| |
Collapse
|
16
|
Mello AA, Leal MF, Rey JA, Pinto GR, Lamarão LM, Montenegro RC, Alves APNN, Assumpção PP, Borges BDN, Smith MC, Burbano RR. Deregulated Expression of SRC, LYN and CKB Kinases by DNA Methylation and Its Potential Role in Gastric Cancer Invasiveness and Metastasis. PLoS One 2015; 10:e0140492. [PMID: 26460485 PMCID: PMC4604160 DOI: 10.1371/journal.pone.0140492] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/25/2015] [Indexed: 12/29/2022] Open
Abstract
Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies.
Collapse
Affiliation(s)
- Adriano Azevedo Mello
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| | - Juan Antonio Rey
- Laboratorio de Oncogenética Molecular, Hospital Universitario La Paz, Madrid, Madrid, Spain
| | | | - Leticia Martins Lamarão
- Laboratório de Testes de Ácidos Nucleicos, Fundação Centro de Hemoterapia e Hematologia do Pará, Belém, PA, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | | | | | - Paulo Pimentel Assumpção
- Núcleo de Pesquisa em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | - Barbara do Nascimento Borges
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
- Centro de Tecnologia Agropecuária, Instituto Socioambiental e dos Recursos Hídricos, Universidade Federal Rural da Amazônia, Belém, PA, Brazil
| | - Marília Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rommel Rodriguez Burbano
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
- Núcleo de Pesquisa em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| |
Collapse
|
17
|
Belangero PS, Leal MF, de Castro Pochini A, Andreoli CV, Ejnisman B, Cohen M. Profile of collagen gene expression in the glenohumeral capsule of patients with traumatic anterior instability of the shoulder. Rev Bras Ortop 2015; 49:642-6. [PMID: 26229875 PMCID: PMC4487492 DOI: 10.1016/j.rboe.2014.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/21/2013] [Indexed: 01/19/2023] Open
Abstract
Objective To evaluate the expression of the genes COL1A1, COL1A2, COL3A1 and COL5A1 in the glenohumeral capsule of patients with traumatic anterior instability of the shoulder. Methods Samples from the glenohumeral capsule of 18 patients with traumatic anterior instability of the shoulder were evaluated. Male patients with a positive grip test and a Bankart lesion seen on magnetic resonance imaging were included. All the patients had suffered more than one episode of shoulder dislocation. Samples were collected from the injured glenohumeral capsule (anteroinferior region) and from the macroscopically unaffected region (anterosuperior region) of each patient. The expression of collagen genes was evaluated using the polymerase chain reaction after reverse transcription with quantitative analysis (qRT-PCR). Results The expression of COL1A1, COL1A2 and COL3A1 did not differ between the two regions of the shoulder capsule. However, it was observed that the expression of COL5A1 was significantly lower in the anteroinferior region than in the anterosuperior region (median ± interquartile range: 0.057 ± 0.052 vs. 0.155 ± 0.398; p = 0.028) of the glenohumeral capsule. Conclusion The affected region of the glenohumeral capsule in patients with shoulder instability presented reduced expression of COL5A1.
Collapse
Affiliation(s)
- Paulo Santoro Belangero
- Department of Orthopedics and Traumatology, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Mariana Ferreira Leal
- Department of Orthopedics and Traumatology, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil ; Department of Morphology and Genetics, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Alberto de Castro Pochini
- Department of Orthopedics and Traumatology, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Carlos Vicente Andreoli
- Department of Orthopedics and Traumatology, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Benno Ejnisman
- Department of Orthopedics and Traumatology, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Moises Cohen
- Department of Orthopedics and Traumatology, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| |
Collapse
|
18
|
Fu QF, Liu Y, Fan Y, Hua SN, Qu HY, Dong SW, Li RL, Zhao MY, Zhen Y, Yu XL, Chen YY, Luo RC, Li R, Li LB, Deng XJ, Fang WY, Liu Z, Song X. Alpha-enolase promotes cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway. J Hematol Oncol 2015; 8:22. [PMID: 25887760 PMCID: PMC4359783 DOI: 10.1186/s13045-015-0117-5] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/09/2015] [Indexed: 02/04/2023] Open
Abstract
Background During tumor formation and expansion, increasing glucose metabolism is necessary for unrestricted growth of tumor cells. Expression of key glycolytic enzyme alpha-enolase (ENO1) is controversial and its modulatory mechanisms are still unclear in non-small cell lung cancer (NSCLC). Methods The expression of ENO1 was examined in NSCLC and non-cancerous lung tissues, NSCLC cell lines, and immortalized human bronchial epithelial cell (HBE) by quantitative real-time reverse transcription PCR (qRT-PCR), immunohistochemistry, and Western blot, respectively. The effects and modulatory mechanisms of ENO1 on cell glycolysis, growth, migration, invasion, and in vivo tumorigenesis and metastasis in nude mice were also analyzed. Results ENO1 expression was increased in NSCLC tissues in comparison to non-cancerous lung tissues. Similarly, NSCLC cell lines A549 and SPCA-1 also express higher ENO1 than HBE cell line in both mRNA and protein levels. Overexpressed ENO1 significantly elevated NSCLC cell glycolysis, proliferation, clone formation, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo by regulating the expression of glycolysis, cell cycle, and epithelial-mesenchymal transition (EMT)-associated genes. Conversely, ENO1 knockdown reversed these effects. More importantly, our further study revealed that stably upregulated ENO1 activated FAK/PI3K/AKT and its downstream signals to regulate the glycolysis, cell cycle, and EMT-associated genes. Conclusion This study showed that ENO1 is responsible for NSCLC proliferation and metastasis; thus, ENO1 might serve as a potential molecular therapeutic target for NSCLC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0117-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiao-Fen Fu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic China. .,Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Yan Liu
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Yue Fan
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Sheng-Ni Hua
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Hong-Ying Qu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Su-Wei Dong
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Rui-Lei Li
- Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China.
| | - Meng-Yang Zhao
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic China. .,Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Yan Zhen
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Xiao-Li Yu
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Yi-Yu Chen
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic China. .,Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Rong-Cheng Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Rong Li
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Li-Bo Li
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Xiao-Jie Deng
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic China. .,Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Wei-Yi Fang
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic China. .,Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Zhen Liu
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic China. .,Department of Pathology, Basic School of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic China.
| | - Xin Song
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic China. .,Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic China.
| |
Collapse
|
19
|
Belangero PS, Leal MF, Pochini ADC, Machado GE, Ejnisman B, Cohen M. Perfil de expressão de genes do colágeno na cápsula glenoumeral de pacientes com instabilidade traumática anterior do ombro. Rev Bras Ortop 2014. [DOI: 10.1016/j.rbo.2013.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
20
|
Comparative evaluation of 5-15-kDa salivary proteins from patients with different oral diseases by MALDI-TOF/TOF mass spectrometry. Clin Oral Investig 2014; 19:729-37. [PMID: 25078551 DOI: 10.1007/s00784-014-1293-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/22/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The present study aimed to determine the potential use of matrix-assisted laser desorption/ionization with time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS) for analyzing specific patterns of mass signals of low-molecular-weight proteins in saliva from patients with different oral diseases. MATERIALS AND METHODS Unstimulated whole saliva samples were collected from healthy subjects (n = 30) and patients with oral diseases including oral cancer (n = 30), oral lichen planus (n = 30), and chronic periodontitis (n = 30). Proteomic profiles of 5,000-15,000-Da salivary proteins were evaluated by MALDI-TOF/TOF MS. Quantification of mass signals was performed by FlexAnalysis and ClinProTool software. RESULTS In oral cancer, the percentages of mass signals at 5,592.26 and 8,301.46 Da were significantly increased as compared with other groups (p = 0.002 and p = 0.030, respectively). In oral lichen planus, the percentages of mass signals at 12,964.55 and 13,279.08 Da were significantly increased as compared with other groups (p < 0.001, and p < 0.001, respectively). In chronic periodontitis, the percentages of mass signals at 5,835.73 and 9,801.83 Da were significantly decreased as compared with other groups (p = 0.003 and p = 0.005, respectively). CONCLUSIONS The present study demonstrated a potential use of MALDI-TOF/TOF as a rapid screening method to differentiate one oral disease from others by identifying specific patterns of mass signals in saliva from patients. However, MALDI-TOF/TOF has several limitations regarding the identification of the candidate mass signals. CLINICAL RELEVANCE MALDI-TOF/TOF MS can be used as a rapid screening method to differentiate one oral disease from others with a caution concerning peptide identity.
Collapse
|
21
|
Leal MF, Calcagno DQ, Chung J, de Freitas VM, Demachki S, Assumpção PP, Chammas R, Burbano RR, Smith MC. Deregulated expression of annexin-A2 and galectin-3 is associated with metastasis in gastric cancer patients. Clin Exp Med 2014; 15:415-20. [PMID: 25034653 DOI: 10.1007/s10238-014-0299-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/17/2014] [Indexed: 12/26/2022]
Abstract
Gastric cancer (GC) is the second highest cause of cancer mortality worldwide. However, nowadays, most of the studies aiming to understand the gastric carcinogenesis analyzed tumors of individuals from Asian population and, thus, may not reflect the distinct biological and clinical behaviors among GC processes. Since several membrane proteins have been implicated in carcinogenesis, we aimed to evaluate ANXA2 and GAL3 role in gastric tumors and GC cell lines of individuals from northern Brazil. The cellular localization of ANXA2 and GAL3 in the GC cell lines was evaluated by immunofluorescence. Gene expression was evaluated by real-time reverse-transcription PCR and protein expression by Western blot in gastric adenocarcinomas and non-neoplastic gastric samples, as well as in GC cell lines. ANXA2 and GAL3 were presented as dots in the plasma membrane and cytoplasm in ACP02 and ACP03 cell lines. ANXA2 mRNA expression was up-regulated in 32.14 % of gastric tumors compared to non-neoplastic tissues. ANXA2 up-regulation was associated with the metastasis process in vivo and with cell line invasive behavior. GAL3 protein expression was at least 1.5-fold reduced in 50 % of gastric tumors. The reduced GAL3 expression was associated with the presence of distant metastasis and with a higher invasive phenotype in vitro. Our study shows that ANXA2 and GAL3 deregulated expression was associated with an invasive phenotype in GC cell lines and may contribute to metastasis in GC patients. Therefore, these proteins may have potential prognostic relevance for GC of individuals from northern Brazil.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, R. Botucatu, 740, São Paulo, SP, CEP 04023-900, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Leal MF, Cirilo PDR, Mazzotti TKF, Calcagno DQ, Wisnieski F, Demachki S, Martinez MC, Assumpção PP, Chammas R, Burbano RR, Smith MC. Prohibitin expression deregulation in gastric cancer is associated with the 3' untranslated region 1630 C>T polymorphism and copy number variation. PLoS One 2014; 9:e98583. [PMID: 24879411 PMCID: PMC4039508 DOI: 10.1371/journal.pone.0098583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/05/2014] [Indexed: 01/03/2023] Open
Abstract
PHB is a reported oncogene and tumor suppressor in gastric cancer. Here, we evaluated whether the PHB copy number and the rs6917 polymorphism affect its expression in gastric cancer. Down-regulation and up-regulation of PHB were observed in the evaluated tumors. Reduced expression was associated with tumor dedifferentiation and cancer initiation. The T allele of the rs6917 polymorphism was associated with reduced PHB mRNA levels. Moreover, the up-regulation of PHB appeared to be regulated by the gain of additional gene copies. Thus, PHB copy number variation and differential expression of the rs6917 polymorphism may play a role in PHB transcriptional regulation.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| | - Priscila Daniele Ramos Cirilo
- Laboratório de Oncologia Experimental, Departamento de Radiologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil
| | - Tatiane Katsue Furuya Mazzotti
- Laboratório de Oncologia Experimental, Departamento de Radiologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil
| | - Danielle Queiroz Calcagno
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Núcleo de Pesquisa em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | - Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Samia Demachki
- Núcleo de Pesquisa em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | - Margarita Cortes Martinez
- Laboratório de Oncologia Experimental, Departamento de Radiologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil
| | - Paulo Pimentel Assumpção
- Núcleo de Pesquisa em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | - Roger Chammas
- Laboratório de Oncologia Experimental, Departamento de Radiologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil
| | - Rommel Rodríguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Marília Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Li M, Wang J, Yang L, Gao P, Tian QB, Liu DW. eRF3b, a biomarker for hepatocellular carcinoma, influences cell cycle and phosphoralation status of 4E-BP1. PLoS One 2014; 9:e86371. [PMID: 24466059 PMCID: PMC3900531 DOI: 10.1371/journal.pone.0086371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/08/2013] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis B virus (HBV) infection and its sequelae are now recognized as serious problems globally. Our aime is to screen hepatocellular carcinoma (HCC) from chronic hepatitis B (CHB) and identify the characteristics of proteins involved. Methodology/Principal Findings We affinity-purified sample serum with weak cation-exchange (WCX) magnetic beads and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis to search for potential markers. The 4210 Da protein, which differed substantially between HCC and CHB isolates, was later identified to be eukaryotic peptide chain release factor GTP-binding subunit eRF3b. Further research showed that eRF3b/GSPT2 was positively expressed in liver tissues. GSPT2 mRNA was, however differentially expressed in blood. Compared with normal controls, the relative expression of GSPT2/18s rRNA was higher in CHB patients than in patients with either LC or HCC (P = 0.035 for CHB vs. LC; P = 0.020 for CHB vs. HCC). The data of further research showed that eRF3b/GSPT2 promoted the entrance of the HepG2 cells into the S-phase and that one of the substrates of the mTOR kinase, 4E-BP1, was hyperphosphorylated in eRF3b-overexpressing HepG2 cells. Conclusions Overall, the differentially expressed protein eRF3b, which was discovered as a biomarker for HCC, could change the cell cycle and influence the phosphorylation status of 4E-BP1 on Ser65 in HepG2.
Collapse
Affiliation(s)
- Man Li
- Department of Epidemiology and Statistic, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jian Wang
- Department of Epidemiology and Statistic, Hebei Medical University, Shijiazhuang, Hebei Province, China
- Department of Epidemiology, Hebei North University, Zhangjiakou, Hebei Province, China
| | - Lei Yang
- Department of Epidemiology and Statistic, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ping Gao
- Department of Epidemiology and Statistic, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Qing-bao Tian
- Department of Epidemiology and Statistic, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Dian-wu Liu
- Department of Epidemiology and Statistic, Hebei Medical University, Shijiazhuang, Hebei Province, China
- * E-mail:
| |
Collapse
|
24
|
Leal MF, Mazzotti TKF, Calcagno DQ, Cirilo PDR, Martinez MC, Demachki S, Assumpção PP, Chammas R, Burbano RR, Smith MC. Deregulated expression of Nucleophosmin 1 in gastric cancer and its clinicopathological implications. BMC Gastroenterol 2014; 14:9. [PMID: 24410879 PMCID: PMC3893589 DOI: 10.1186/1471-230x-14-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
Background The process of gastric carcinogenesis still remains to be elucidated. The identification of genes related to this process may help to reduce mortality rates through early diagnosis and the development of new anticancer therapies. Nucleophosmin 1 (NPM1) acts in ribosome biogenesis, centrosome duplication, maintenance of genomic stability, and embryonic development. Recently, NPM1 has been implicated in the tumorigenesis processes. Here, we evaluated NPM1 gene and protein expression in gastric tumors and in corresponding non-neoplastic gastric samples. Methods NPM1 protein expression was determined by Western blot in 17 pairs of gastric tumors and corresponding non-neoplastic gastric tissue. The protein immunoreactivity was observed in 12 tumor samples. mRNA expression was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in 22 pairs of gastric tumors and in matched non-neoplastic gastric tissue. Results NPM1 protein expression was significantly reduced in gastric cancer samples compared to matched non-neoplastic gastric samples (P = 0.019). The protein level of NPM1 was reduced at least 1.5-fold in 35% of tumors compared to paired non-neoplastic gastric tissue. However, NPM1 immunoreactivity was detected in neoplastic and non-neoplastic cells, including in intestinal metaplastic, gastritis and inflammatory cells. NPM1 was mainly expressed in nucleus and nucleolus subcellular compartments. The staining intensity and the percentage of immunoreactive cells varied among the studied cases. The NPM1 mRNA level was reduced at least 1.5-fold in 45.5% of samples and increased in 27.3% of samples. An inverse correlation between protein and mRNA expression was detected (r = -0.509, P = 0.037). Intestinal-type gastric cancer presented higher mRNA levels than diffuse-type (P = 0.026). However, reduced NPM1 protein expression was associated with intestinal-type gastric cancer compared to matched non-neoplastic gastric samples (P = 0.018). In addition, tumors from patients with known distant metastasis presented reduced NPM1 protein levels compared to tumors from patients without distant metastasis (P < 0.001). Conclusion Although the expression of NPM1 is heterogeneous in gastric tumors, our results suggest that NPM1 down-regulation may have a role in gastric carcinogenesis and may help in the selection of anticancer treatment strategies.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Genetics Division, Department of Morphology and Genetic, Federal University of São Paulo, R, Botucatu, 740, São Paulo, SP CEP 04023-900, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kočevar N, Grazio SF, Komel R. Two-dimensional gel electrophoresis of gastric tissue in an alkaline pH range. Proteomics 2014; 14:311-21. [PMID: 24293252 DOI: 10.1002/pmic.201200574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 10/09/2013] [Accepted: 11/13/2013] [Indexed: 12/17/2022]
Abstract
2DE in combination with MS has facilitated the discovery of several proteins with altered abundance in gastric cancer. While acidic and wide pH ranges have been widely investigated, analysis in the alkaline pH range has not been specifically performed in gastric cancer to date. In the present study, we initially optimized the 2DE in alkaline pH range (pH 7-11) for gastric tissue samples. Using a modified lysis buffer, we analyzed pooled nontumor and tumor samples for proteins with altered abundance in gastric adenocarcinoma. We successfully identified 38 silver-stained spots as 24 different proteins. Four of these were chosen for investigation with immunoblotting on individual paired samples to determine whether the changes seen in 2DE represent the overall abundance of the protein or possibly only a single form. While mitochondrial trifunctional protein (MTP) subunits were decreased in 2DE gels, immunoblotting identified their overall abundance as being differently dysregulated: in the gastric tumor samples, the MTP-α subunit was decreased, and the MTP-β subunit was increased. On the other hand, heterogenous nuclear ribonucleoprotein M and galectin-4 were increased in the gastric tumor samples in both 2DE and immunoblotting.
Collapse
Affiliation(s)
- Nina Kočevar
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|