1
|
da Silva EMG, Fischer JSG, Souza IDLS, Andrade ACC, Souza LDCE, Andrade MKD, Carvalho PC, Souza RLR, Vital MABF, Passetti F. Proteomic Analysis of a Rat Streptozotocin Model Shows Dysregulated Biological Pathways Implicated in Alzheimer's Disease. Int J Mol Sci 2024; 25:2772. [PMID: 38474019 DOI: 10.3390/ijms25052772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's Disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory loss and cognitive impairment, affecting 35 million individuals worldwide. Intracerebroventricular (ICV) injection of low to moderate doses of streptozotocin (STZ) in adult male Wistar rats can reproduce classical physiopathological hallmarks of AD. This biological model is known as ICV-STZ. Most studies are focused on the description of behavioral and morphological aspects of the ICV-STZ model. However, knowledge regarding the molecular aspects of the ICV-STZ model is still incipient. Therefore, this work is a first attempt to provide a wide proteome description of the ICV-STZ model based on mass spectrometry (MS). To achieve that, samples from the pre-frontal cortex (PFC) and hippocampus (HPC) of the ICV-STZ model and control (wild-type) were used. Differential protein abundance, pathway, and network analysis were performed based on the protein identification and quantification of the samples. Our analysis revealed dysregulated biological pathways implicated in the early stages of late-onset Alzheimer's disease (LOAD), based on differentially abundant proteins (DAPs). Some of these DAPs had their mRNA expression further investigated through qRT-PCR. Our results shed light on the AD onset and demonstrate the ICV-STZ as a valid model for LOAD proteome description.
Collapse
Affiliation(s)
- Esdras Matheus Gomes da Silva
- Instituto Carlos Chagas, FIOCRUZ, Curitiba 81310-020, PR, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-361, RJ, Brazil
| | | | | | | | | | | | - Paulo C Carvalho
- Instituto Carlos Chagas, FIOCRUZ, Curitiba 81310-020, PR, Brazil
| | | | | | - Fabio Passetti
- Instituto Carlos Chagas, FIOCRUZ, Curitiba 81310-020, PR, Brazil
| |
Collapse
|
2
|
Zhang R, Gao Y. Identification of NUTF2 as a Candidate Diagnostic and Prognostic Biomarker Associated with Immune Infiltration in Head and Neck Squamous Cell Carcinoma. Onco Targets Ther 2021; 14:5455-5467. [PMID: 35221694 PMCID: PMC8866992 DOI: 10.2147/ott.s337469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSC) is one of the most common tumors worldwide. Nuclear transport factor 2 (NUTF2) plays a key role in cell death and immune processes. However, few reports have studied correlations between NUTF2 gene expression and the occurrence and development of HNSC. Methods The expression of NUTF2 was analyzed using publicly available databases, including the Cancer Genome Atlas and Human Protein Atlas and Gene Expression Omnibus (GEO) database, which was validated by RT-PCR. We evaluated the functions of NUTF2 with Kaplan–Meier curve, logistic regression were used to study the relationship between clinicopathological features and the expression of NUTF2. Cox regression analyses were used to identify the effects of NUTF2 expression on survival. Gene Ontology and Gene Set Enrichment Analysis were used to explore relevant biological pathways. The relationship between NUTF2 and tumor-infiltrating immune cells was investigated with on-line bioinformatic tools. Results NUTF2 was significantly upregulated in HNSC lesions and is associated with tumor size (P < 0.01). Increased expression of NUTF2 was linked to shorter overall and progress-free survival in HNSC. Cox regression analyses revealed that NUTF2 is an independent prognostic factor in HNSC. GSEA analysis demonstrated that NUTF2 negatively regulates several immune pathways. NUTF2 was correlated with the infiltrating levels of B cells and CD8+ T cells and was negatively correlated with diverse immune marker sets in HNSC. Conclusion NUTF2 is highly expressed in HNSC and correlates with poor prognosis. Correlation with immune functions suggests that NUTF2 may serve as a biomarker and therapeutic target for HNSC.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Orthodontics, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People’s Republic of China
- Correspondence: Rui Zhang Tel +8615035687198 Email
| | - Ying Gao
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People’s Republic of China
| |
Collapse
|
3
|
Zhong Y, Cao L, Ma H, Wang Q, Wei P, Yang J, Mo Y, Cao L, Shuai C, Peng S. Lin28A Regulates Stem-like Properties of Ovarian Cancer Cells by Enriching RAN and HSBP1 mRNA and Up-regulating its Protein Expression. Int J Biol Sci 2020; 16:1941-1953. [PMID: 32398961 PMCID: PMC7211169 DOI: 10.7150/ijbs.43504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/15/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OC) is one of the malignant tumors that seriously threaten women's health, with the highest mortality rate in gynecological malignancies. The prognosis of patients with advanced OC is still poor, and the 5-year survival rate is only 20-30%. Therefore, how to improve the early diagnosis rate and therapeutic effect are urgent for patients with OC. In this research, we found that Lin28A can promote the expression of stem cell marker molecules CD133, CD44, OCT4 and Nanog. We later confirmed that Lin28A can enrich the mRNA of ras-related nuclear protein (RAN) and heat shock factor binding protein 1 (HSBP1) through RIP assay, and that Lin28A can regulate their protein expression. We also identified that RAN and HSBP1 are highly expressed in OC tissues, and that they are significantly positively correlated with the expression of Lin28A and negatively correlated with the survival prognosis of OC patients. After stable knockdown of RAN or HSBP1 in OC cells with high expression of Lin28A, the expression of the stem cell marker molecules such as OCT4, CD44 and Nanog are reduced. And after knocking down of RAN or HSBP1 in Lin28A highly expressed OC cells, the survival and invasion of OC cells and tumor size of OC xenograft in nude mice were markedly inhibited and apoptosis was increased. Our data also showed that knock down of RAN or HSBP1 can inhibit the invasion ability of OC cells by decreasing the expression of N-cadherin, Vimentin and promoting the expression of E-cadherin. Meanwhile, knockdown of RAN or HSBP1 induced cell apoptosis by inhibiting the expression of PARP. Our results indicated that Lin28A could regulate the biological behaviors in OC cells through RAN/HSBP1. These findings suggest that Lin28A/RAN/HSBP1 can be used as a marker for diagnosis and prognosis of OC patients, and RAN/HSBP1 may be a potential new target for gene therapy of OC.
Collapse
Affiliation(s)
- Yancheng Zhong
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Lanqin Cao
- The department of gynecology of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haotian Ma
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Qian Wang
- The department of gynecology of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pingpin Wei
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Juan Yang
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Yuqing Mo
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Lihua Cao
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Cijun Shuai
- Jiangxi University of Science and Technology, Ganzhou, 341000, China; State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, 410083, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| |
Collapse
|
4
|
Sheng C, Qiu J, Wang Y, He Z, Wang H, Wang Q, Huang Y, Zhu L, Shi F, Chen Y, Xiong S, Xu Z, Ni Q. Knockdown of Ran GTPase expression inhibits the proliferation and migration of breast cancer cells. Mol Med Rep 2018; 18:157-168. [PMID: 29750309 PMCID: PMC6059664 DOI: 10.3892/mmr.2018.8952] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/16/2018] [Indexed: 01/04/2023] Open
Abstract
Breast cancer is the second leading cause of cancer-associated mortality in women worldwide. Strong evidence has suggested that Ran, which is a small GTP binding protein involved in the transport of RNA and protein across the nucleus, may be a key cellular protein involved in the metastatic progression of cancer. The present study investigated Ran gene expression in breast cancer tissue samples obtained from 140 patients who had undergone surgical resection for breast cancer. Western blot analysis of Ran in breast cancer tissues and paired adjacent normal tissues showed that expression of Ran was significantly increased in breast cancer tissues. Immunohistochemistry analyses conducted on formalin-fixed paraffin-embedded breast cancer tissue sections revealed that Ran expression was associated with tumor histological grade, nerve invasion and metastasis, vascular metastasis and Ki-67 expression (a marker of cell proliferation). Kaplan-Meier survival analysis showed that increased Ran expression in patients with breast cancer was positively associated with a poor survival prognosis. Furthermore, in vitro experiments demonstrated that highly migratory MDA-MB-231 cancer cells treated with Ran-si-RNA (si-Ran), which knocked down expression of Ran, exhibited decreased motility in trans-well migration and wound healing assays. Cell cycle analysis of Ran knocked down MDA-MB-231 cells implicated Ran in cell cycle arrest and the inhibition of proliferation. Furthermore, a starvation and re-feeding (CCK-8) assay was performed, which indicated that Ran regulated breast cancer cell proliferation. Taken together, the results provide strong in vitro evidence of the involvement of Ran in the progression of breast cancer and suggest that it could have high potential as a therapeutic target and/or marker of disease.
Collapse
Affiliation(s)
- Chenyi Sheng
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian Qiu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yingying Wang
- Surgical Comprehensive Laboratory, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yeqing Huang
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Lianxin Zhu
- Department of Surgical Oncology, Lu'an People's Hospital Tumor Center, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui 237000, P.R. China
| | - Feng Shi
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yingying Chen
- Surgical Comprehensive Laboratory, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shiyao Xiong
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhen Xu
- Surgical Comprehensive Laboratory, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qichao Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
5
|
Imaizumi Y, Goda T, Matsumoto A, Miyahara Y. Identification of types of membrane injuries and cell death using whole cell-based proton-sensitive field-effect transistor systems. Analyst 2017; 142:3451-3458. [DOI: 10.1039/c7an00502d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membrane injury and apoptosis of mammalian cells by chemical stimuli were distinguished using ammonia-perfused continuous pH-sensing systems.
Collapse
Affiliation(s)
- Yuki Imaizumi
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 101-0062 Tokyo
- Japan
| | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 101-0062 Tokyo
- Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 101-0062 Tokyo
- Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 101-0062 Tokyo
- Japan
| |
Collapse
|
6
|
Yoshihisa T. Nucleocytoplasmic shuttling of tRNAs and implication of the cytosolic Hsp70 system in tRNA import. Nucleus 2015; 6:339-43. [PMID: 26280499 PMCID: PMC4915482 DOI: 10.1080/19491034.2015.1082696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
tRNAs, a class of non-coding RNAs essential for translation, are unique among cytosolic RNA species in that they shuttle between the nucleus and cytoplasm during their life. Although their export from the nucleus has been studied in detail, limited information on import machinery was available. Our group recently reported that Ssa2p, one of major cytosolic Hsp70s in Saccharomyces cerevisiae, acts as a crucial factor for tRNA import upon nutrient starvation. Ssa2p can bind tRNAs and a nucleoporin directly in an ATP-sensitive manner, suggesting that it acts as a nuclear import carrier for tRNAs, like importin-β proteins. In vitro assays revealed that Ssa2p binds tRNA specifically but has preference for loosely folded tRNAs. In this Extra View, these features of Ssa2p as a new import factor is discussed with other recent findings related to nucleocytoplasmic transport of tRNAs reported from other groups.
Collapse
Affiliation(s)
- Tohru Yoshihisa
- a Graduate School of Life Science; University of Hyogo ; Ako-gun , Hyogo , Japan
| |
Collapse
|
7
|
Ran GTPase in nuclear envelope formation and cancer metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:323-51. [PMID: 24563355 DOI: 10.1007/978-1-4899-8032-8_15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107-Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities.
Collapse
|