1
|
Herz DM, Frank MJ, Tan H, Groppa S. Subthalamic control of impulsive actions: insights from deep brain stimulation in Parkinson's disease. Brain 2024; 147:3651-3664. [PMID: 38869168 PMCID: PMC11531846 DOI: 10.1093/brain/awae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Control of actions allows adaptive, goal-directed behaviour. The basal ganglia, including the subthalamic nucleus, are thought to play a central role in dynamically controlling actions through recurrent negative feedback loops with the cerebral cortex. Here, we summarize recent translational studies that used deep brain stimulation to record neural activity from and apply electrical stimulation to the subthalamic nucleus in people with Parkinson's disease. These studies have elucidated spatial, spectral and temporal features of the neural mechanisms underlying the controlled delay of actions in cortico-subthalamic networks and demonstrated their causal effects on behaviour in distinct processing windows. While these mechanisms have been conceptualized as control signals for suppressing impulsive response tendencies in conflict tasks and as decision threshold adjustments in value-based and perceptual decisions, we propose a common framework linking decision-making, cognition and movement. Within this framework, subthalamic deep brain stimulation can lead to suboptimal choices by reducing the time that patients take for deliberation before committing to an action. However, clinical studies have consistently shown that the occurrence of impulse control disorders is reduced, not increased, after subthalamic deep brain stimulation surgery. This apparent contradiction can be reconciled when recognizing the multifaceted nature of impulsivity, its underlying mechanisms and modulation by treatment. While subthalamic deep brain stimulation renders patients susceptible to making decisions without proper forethought, this can be disentangled from effects related to dopamine comprising sensitivity to benefits versus costs, reward delay aversion and learning from outcomes. Alterations in these dopamine-mediated mechanisms are thought to underlie the development of impulse control disorders and can be relatively spared with reduced dopaminergic medication after subthalamic deep brain stimulation. Together, results from studies using deep brain stimulation as an experimental tool have improved our understanding of action control in the human brain and have important implications for treatment of patients with neurological disorders.
Collapse
Affiliation(s)
- Damian M Herz
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI 02903, USA
| | - Huiling Tan
- MRC Brain Network Dynamics Unit at the University of Oxford, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3TH Oxford, UK
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
2
|
Campbell JA, Egede LE. Relationship between delay discounting, delay aversion and psychosocial domains of diabetes care. J Affect Disord 2024; 347:601-607. [PMID: 38070750 PMCID: PMC10872328 DOI: 10.1016/j.jad.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/03/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE Delay discounting and aversion are important areas for diabetes management; however, little has been done to understand the relationship with psychosocial outcomes among adults with type 2 diabetes. METHODS This study used data from 365 adults with type 2 diabetes to evaluate relationships between delay discounting and aversion and psychosocial outcomes. Delay discounting and aversion were measured with the validated Quick Delay Questionnaire. Psychosocial outcomes included depression, measured by the PHQ, anxiety by the GAD scale, perceived stress by the PSS, and social support by the Duke Social Support and Stress Scale. Multiple linear regression was used to assess the relationship between delay discounting and aversion on psychological health and social support controlling for relevant covariates. RESULTS Mean age of the sample was 61.8 years, 54.5 % were NHB, 41.8 % NHW, and 3.7 % Hispanic/Other. After adjusting for covariates, delay aversion was significantly associated with depression (beta = 0.35; p < 0.001), anxiety (beta = 0.52; p < 0.001), perceived stress (beta = 0.22; p < 0.001), and lower family support (beta = -0.62; p < 0.05). Delay discounting was significantly associated with depression (beta = 0.32; p < 0.001), anxiety (beta = 0.46; p < 0.001), and perceived stress (beta = 0.26; p < 0.001). LIMITATIONS This data is cross-sectional, future work should examine the longitudinal relationship while also including additional psychosocial outcomes. CONCLUSIONS Delay discounting and aversion are significantly associated with poor psychosocial outcomes, including lower social support. As the body of evidence grows, additional research is needed to better understand the construct, mechanisms, and the impact of choice settings to better inform intervention development.
Collapse
Affiliation(s)
- Jennifer A Campbell
- Division of General Internal Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Leonard E Egede
- Division of General Internal Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, WI, United States of America.
| |
Collapse
|
3
|
Delay discounting in Parkinson’s disease: A systematic review and meta-analysis. Behav Brain Res 2023; 436:114101. [DOI: 10.1016/j.bbr.2022.114101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022]
|
4
|
Upadhyayula PS, Rennert RC, Martin JR, Yue JK, Yang J, Gillis-Buck EM, Sidhu N, Cheung CK, Lee AT, Hoshide RR, Ciacci JD. Basal impulses: findings from the last twenty years on impulsivity and reward pathways using deep brain stimulation. J Neurosurg Sci 2020; 64:544-551. [PMID: 32972108 DOI: 10.23736/s0390-5616.20.04906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an important treatment modality for movement disorders. Its role in tasks and processes of higher cortical function continues to increase in importance and relevance. This systematic review investigates the impact of DBS on measures of impulsivity. EVIDENCE ACQUISITION A total of 45 studies were collated from PubMed (30 prospective, 8 animal, 4 questionnaire-based, and 3 computational models), excluding case reports and review articles. Two areas extensively studied are the subthalamic nucleus (STN) and nucleus accumbens (NAc). EVIDENCE SYNTHESIS While both are part of the basal ganglia, the STN and NAc have extensive connections to the prefrontal cortex, cingulate cortex, and limbic system. Therefore, understanding cause and treatment of impulsivity requires understanding motor pathways, learning, memory, and emotional processing. DBS of the STN and NAc shell can increase objective measures of impulsivity, as measured by reaction times or reward-based learning, independent from patient insight. The ability for DBS to treat impulse control disorders, and also cause and/or worsen impulsivity in Parkinson's disease, may be explained by the affected closely-related neuroanatomical areas with discrete and sometimes opposing functions. CONCLUSIONS As newer, more refined DBS technology emerges, large-scale prospective studies specifically aimed at treatment of impulsivity disorders are needed.
Collapse
Affiliation(s)
- Pavan S Upadhyayula
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Robert C Rennert
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Joel R Martin
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - John K Yue
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jason Yang
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Eva M Gillis-Buck
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nikki Sidhu
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Christopher K Cheung
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Anthony T Lee
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Reid R Hoshide
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA
| | - Joseph D Ciacci
- Department of Neurological Surgery, University of California San Diego, San Diego, CA, USA -
| |
Collapse
|
5
|
Drummond NM, Chen R. Deep brain stimulation and recordings: Insights into the contributions of subthalamic nucleus in cognition. Neuroimage 2020; 222:117300. [PMID: 32828919 DOI: 10.1016/j.neuroimage.2020.117300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/28/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Recent progress in targeted interrogation of basal ganglia structures and networks with deep brain stimulation in humans has provided insights into the complex functions the subthalamic nucleus (STN). Beyond the traditional role of the STN in modulating motor function, recognition of its role in cognition was initially fueled by side effects seen with STN DBS and later revealed with behavioral and electrophysiological studies. Anatomical, clinical, and electrophysiological data converge on the view that the STN is a pivotal node linking cognitive and motor processes. The goal of this review is to synthesize the literature to date that used DBS to examine the contributions of the STN to motor and non-motor cognitive functions and control. Multiple modalities of research have provided us with an enhanced understanding of the STN and reveal that it is critically involved in motor and non-motor inhibition, decision-making, motivation and emotion. Understanding the role of the STN in cognition can enhance the therapeutic efficacy and selectivity not only for existing applications of DBS, but also in the development of therapeutic strategies to stimulate aberrant circuits to treat non-motor symptoms of Parkinson's disease and other disorders.
Collapse
Affiliation(s)
- Neil M Drummond
- Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada.
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
6
|
Scherrer S, Smith AH, Gowatsky J, Palmese CA, Jimenez-Shahed J, Kopell BH, Mayberg HS, Figee M. Impulsivity and Compulsivity After Subthalamic Deep Brain Stimulation for Parkinson's Disease. Front Behav Neurosci 2020; 14:47. [PMID: 32390809 PMCID: PMC7191054 DOI: 10.3389/fnbeh.2020.00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/17/2020] [Indexed: 01/04/2023] Open
Abstract
Impulsivity and compulsivity are prominent non-motor problems in Parkinson’s disease (PD). Despite 20 years of research, there is still an ongoing debate as to whether subthalamic deep brain stimulation (STN DBS) for PD exacerbates or improves these symptoms. Here, we review how STN DBS affects clinical symptoms and neurocognitive aspects of impulsivity and compulsivity. When comparing patients post- to pre-surgery, in the majority of studies STN DBS for PD is associated with a decrease in clinically diagnosed impulse-control disorders and disorders of compulsivity. To avoid confounds, such as post-surgical decreases in dopaminergic medication doses, comparisons can also be made between DBS “On” versus “Off” conditions. These experimentally assayed effects of STN DBS with respect to neurocognitive aspects of impulsivity and compulsivity are more mixed. STN DBS improves behavioral flexibility without impairing negative feedback learning, delay discounting, or inhibitory control, as long as stimulation is restricted to the dorsal STN. However, STN DBS may drive impulsive actions when a subject is faced with competing choices. We discuss how motivated responses may be either enhanced or impaired by STN DBS depending on engagement of dorsal or ventral STN-mediated circuits. Future studies should combine structural and functional circuit measures with behavioral testing in PD patients on and off medication and stimulation. A more sophisticated understanding of how to modulate cortico-striatal-thalamo-cortical loops will increase the likelihood that these circuit manipulation techniques can successfully be applied to a wider range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sara Scherrer
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew H Smith
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jaimie Gowatsky
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christina A Palmese
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joohi Jimenez-Shahed
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Leimbach F, Georgiev D, Litvak V, Antoniades C, Limousin P, Jahanshahi M, Bogacz R. Deep Brain Stimulation of the Subthalamic Nucleus Does Not Affect the Decrease of Decision Threshold during the Choice Process When There Is No Conflict, Time Pressure, or Reward. J Cogn Neurosci 2018; 30:876-884. [PMID: 29488846 PMCID: PMC6037388 DOI: 10.1162/jocn_a_01252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During a decision process, the evidence supporting alternative options is integrated over time, and the choice is made when the accumulated evidence for one of the options reaches a decision threshold. Humans and animals have an ability to control the decision threshold, that is, the amount of evidence that needs to be gathered to commit to a choice, and it has been proposed that the subthalamic nucleus (STN) is important for this control. Recent behavioral and neurophysiological data suggest that, in some circumstances, the decision threshold decreases with time during choice trials, allowing overcoming of indecision during difficult choices. Here we asked whether this within-trial decrease of the decision threshold is mediated by the STN and if it is affected by disrupting information processing in the STN through deep brain stimulation (DBS). We assessed 13 patients with Parkinson disease receiving bilateral STN DBS six or more months after the surgery, 11 age-matched controls, and 12 young healthy controls. All participants completed a series of decision trials, in which the evidence was presented in discrete time points, which allowed more direct estimation of the decision threshold. The participants differed widely in the slope of their decision threshold, ranging from constant threshold within a trial to steeply decreasing. However, the slope of the decision threshold did not depend on whether STN DBS was switched on or off and did not differ between the patients and controls. Furthermore, there was no difference in accuracy and RT between the patients in the on and off stimulation conditions and healthy controls. Previous studies that have reported modulation of the decision threshold by STN DBS or unilateral subthalamotomy in Parkinson disease have involved either fast decision-making under conflict or time pressure or in anticipation of high reward. Our findings suggest that, in the absence of reward, decision conflict, or time pressure for decision-making, the STN does not play a critical role in modulating the within-trial decrease of decision thresholds during the choice process.
Collapse
Affiliation(s)
| | | | | | | | | | - Marjan Jahanshahi
- University College London Institute of Neurology.,University of Electronic Science and Technology of China
| | | |
Collapse
|
8
|
Peisker CB, Schüller T, Peters J, Wagner BJ, Schilbach L, Müller UJ, Visser-Vandewalle V, Kuhn J. Nucleus Accumbens Deep Brain Stimulation in Patients with Substance Use Disorders and Delay Discounting. Brain Sci 2018; 8:brainsci8020021. [PMID: 29382059 PMCID: PMC5836040 DOI: 10.3390/brainsci8020021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/27/2022] Open
Abstract
Deep brain stimulation (DBS) of the nucleus accumbens (NAc) shows first promising results in patients with severe substance use disorder (SUD), a patient group known to have deficits in self-control. One facet of self-control is the ability to forego smaller sooner rewards in favor of larger later rewards (delay discounting, DD). The NAc has been suggested to integrate motivational information to guide behavior while the consequences of NAc-DBS on DD are unknown. To this end, nine patients with SUD performed a DD task with DBS on and after a 24 h DBS off period. Furthermore, 18 healthy controls were measured to assess possible alterations in DD in patients with SUD. Our findings implicate that DD was not significantly modulated by NAc-DBS and also that patients with SUD did not differ from healthy controls. While null results must be interpreted with caution, the commonly observed association of impaired DD in SUD might suggest a long-term effect of NAc-DBS that was not sufficiently modulated by a 24 h DBS off period.
Collapse
Affiliation(s)
- Canan B Peisker
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| | - Thomas Schüller
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| | - Jan Peters
- Department of Psychology, Biological Psychology, University of Cologne, Bernhard-Feilchenfeld-Straße 11, 50969 Cologne, Germany.
| | - Ben J Wagner
- Department of Psychology, Biological Psychology, University of Cologne, Bernhard-Feilchenfeld-Straße 11, 50969 Cologne, Germany.
| | - Leonhard Schilbach
- Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804 Munich, Germany.
| | - Ulf J Müller
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Pychosomatic Hospital Buching, Rauhenbichl, 87642 Halblech, Germany.
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatic, Johanniter Hospital Oberhausen, Steinbrinkstraße 96a, 46145 Oberhausen, Germany.
| |
Collapse
|
9
|
Seymour B, Barbe M, Dayan P, Shiner T, Dolan R, Fink GR. Deep brain stimulation of the subthalamic nucleus modulates sensitivity to decision outcome value in Parkinson's disease. Sci Rep 2016; 6:32509. [PMID: 27624437 PMCID: PMC5021944 DOI: 10.1038/srep32509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 08/03/2016] [Indexed: 01/13/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought.
Collapse
Affiliation(s)
- Ben Seymour
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, UK.,Wellcome Trust Centre for Neuroimaging, UCL, London, UK.,Center for Information and Neural Networks, National Institute for Information and Communications Technology, Japan
| | - Michael Barbe
- Department of Neurology, University Hospital, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre, Jülich, Germany
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, UCL, London, UK
| | - Tamara Shiner
- Wellcome Trust Centre for Neuroimaging, UCL, London, UK
| | - Ray Dolan
- Wellcome Trust Centre for Neuroimaging, UCL, London, UK
| | - Gereon R Fink
- Department of Neurology, University Hospital, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre, Jülich, Germany
| |
Collapse
|
10
|
Seinstra M, Wojtecki L, Storzer L, Schnitzler A, Kalenscher T. No Effect of Subthalamic Deep Brain Stimulation on Intertemporal Decision-Making in Parkinson Patients. eNeuro 2016; 3:ENEURO.0019-16.2016. [PMID: 27257622 PMCID: PMC4876489 DOI: 10.1523/eneuro.0019-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 01/20/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for the motor symptoms of Parkinson's disease (PD). DBS or pharmacological treatment is believed to modulate the tendency to, or reverse, impulse control disorders. Several brain areas involved in impulsivity and reward valuation, such as the prefrontal cortex and striatum, are linked to the STN, and activity in these areas might be affected by STN-DBS. To investigate the effect of STN-DBS on one type of impulsive decision-making--delay discounting (i.e., the devaluation of reward with increasing delay until its receipt)--we tested 40 human PD patients receiving STN-DBS treatment and medication for at least 3 months. Patients were pseudo-randomly assigned to one of four groups to test the effects of DBS on/off states as well as medication on/off states on delay discounting. The delay-discounting task consisted of a series of choices among a smaller. sooner or a larger, later monetary reward. Despite considerable effects of DBS on motor performance, patients receiving STN-DBS did not choose more or less impulsively compared with those in the off-DBS group, as well as when controlling for risk attitude. Although null results have to be interpreted with caution, our findings are of significance to other researchers studying the effects of PD treatment on impulsive decision-making, and they are of clinical relevance for determining the therapeutic benefits of using STN-DBS.
Collapse
Affiliation(s)
- Maayke Seinstra
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lars Wojtecki
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lena Storzer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Subthalamic nucleus deep brain stimulation induces impulsive action when patients with Parkinson's disease act under speed pressure. Exp Brain Res 2016; 234:1837-1848. [PMID: 26892884 PMCID: PMC4893074 DOI: 10.1007/s00221-016-4577-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/28/2016] [Indexed: 12/19/2022]
Abstract
The subthalamic nucleus (STN) is proposed to modulate response thresholds and speed–accuracy trade-offs. In situations of conflict, the STN is considered to raise response thresholds, allowing time for the accumulation of information to occur before a response is selected. Conversely, speed pressure is thought to reduce the activity of the STN and lower response thresholds, resulting in fast, errorful responses. In Parkinson’s disease (PD), subthalamic nucleus deep brain stimulation (STN-DBS) reduces the activity of the nucleus and improves motor symptoms. We predicted that the combined effects of STN stimulation and speed pressure would lower STN activity and lead to fast, errorful responses, hence resulting in impulsive action. We used the motion discrimination ‘moving-dots’ task to assess speed–accuracy trade-offs, under both speed and accuracy instructions. We assessed 12 patients with PD and bilateral STN-DBS and 12 age-matched healthy controls. Participants completed the task twice, and the patients completed it once with STN-DBS on and once with STN-DBS off, with order counterbalanced. We found that STN stimulation was associated with significantly faster reaction times but more errors under speed instructions. Application of the drift diffusion model showed that stimulation resulted in lower response thresholds when acting under speed pressure. These findings support the involvement of the STN in the modulation of speed–accuracy trade-offs and establish for the first time that speed pressure alone, even in the absence of conflict, can result in STN stimulation inducing impulsive action in PD.
Collapse
|
12
|
Jahanshahi M, Obeso I, Baunez C, Alegre M, Krack P. Parkinson's Disease, the Subthalamic Nucleus, Inhibition, and Impulsivity. Mov Disord 2014; 30:128-40. [DOI: 10.1002/mds.26049] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/21/2014] [Accepted: 09/07/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Marjan Jahanshahi
- Cognitive Motor Neuroscience Group and Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology; London United Kingdom
| | - Ignacio Obeso
- CINAC, HM-Puerta del Sur, Hospitales de Madrid; CEU-San Pablo University, Móstoles; Madrid Spain
| | - Christelle Baunez
- Basal Ganglia, Motivation and Reward' (BAGAMORE), Institut de Neurosciences de la Timone, UMR7289 CNRS and AMU (Aix Marseille Universite); Marseille France
| | - Manuel Alegre
- Neurophysiology Laboratory, Neuroscience Area, CIMA, University of Navarra; Pamplona Spain
| | - Paul Krack
- INSERM U836, F-38000 Grenoble, France; University Grenoble Alpes, GIN, Grenoble, France, and CHU de Grenoble, Movement Disorder Unit; Grenoble France
| |
Collapse
|
13
|
Jahanshahi M. Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson's disease. Front Syst Neurosci 2013; 7:118. [PMID: 24399941 PMCID: PMC3872293 DOI: 10.3389/fnsys.2013.00118] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/06/2013] [Indexed: 12/19/2022] Open
Abstract
Inhibition of inappropriate, habitual or prepotent responses is an essential component of executive control and a cornerstone of self-control. Via the hyperdirect pathway, the subthalamic nucleus (STN) receives inputs from frontal areas involved in inhibition and executive control. Evidence is reviewed from our own work and the literature suggesting that in Parkinson's disease (PD), deep brain stimulation (DBS) of the STN has an impact on executive control during attention-demanding tasks or in situations of conflict when habitual or prepotent responses have to be inhibited. These results support a role for the STN in an inter-related set of processes: switching from automatic to controlled processing, inhibitory and executive control, adjusting response thresholds and influencing speed-accuracy trade-offs. Such STN DBS-induced deficits in inhibitory and executive control may contribute to some of the psychiatric problems experienced by a proportion of operated cases after STN DBS surgery in PD. However, as no direct evidence for such a link is currently available, there is a need to provide direct evidence for such a link between STN DBS-induced deficits in inhibitory and executive control and post-surgical psychiatric complications experienced by operated patients.
Collapse
Affiliation(s)
- Marjan Jahanshahi
- Cognitive Motor Neuroscience Group and Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, The National Hospital for Neurology and Neurosurgery London, UK
| |
Collapse
|