1
|
Gutiérrez Rico E, Joseph P, Noutsos C, Poon K. Hypothalamic and hippocampal transcriptome changes in App NL-G-F mice as a function of metabolic and inflammatory dysfunction. Neuroscience 2024; 554:107-117. [PMID: 39002757 DOI: 10.1016/j.neuroscience.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/20/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The progression of Alzheimer's disease (AD) has a silent phase that predates characteristic cognitive decline and eventually leads to active cognitive deficits. Metabolism, diet, and obesity have been correlated to the development of AD but is poorly understood. The hypothalamus is a brain region that exerts homeostatic control on food intake and metabolism and has been noted to be impacted during the active phase of Alzheimer's disease. This study, in using an amyloid overexpression AppNL-G-F mouse model under normal metabolic conditions, examines blood markers in young and old male AppNL-G-F mice (n = 5) that corresponds to the silent and active phases of AD, and bulk gene expression changes in the hypothalamus and the hippocampus. The results show a large panel of inflammatory mediators, leptin, and other proteins that may be involved in weakening the blood brain barrier, to be increased in the young AppNL-G-F mice but not in the old AppNL-G-F mice. There were also several differentially expressed genes in both the hypothalamus and the hippocampus in the young AppNL-G-F mice prior to amyloid plaque formation and cognitive decline that persisted in the old AppNL-G-F mice, including GABRa2 receptor, Wdfy1, and several pseudogenes with unknown function. These results suggests that a larger panel of inflammatory mediators may be used as blood markers to detect silent AD, and that a change in leptin and gene expression in the hypothalamus exist prior to cognitive effects, suggesting a coupling of metabolism with amyloid plaque induced cognitive decline.
Collapse
Affiliation(s)
- Evelyn Gutiérrez Rico
- Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Patricia Joseph
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA
| | - Christos Noutsos
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA
| | - Kinning Poon
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA.
| |
Collapse
|
2
|
Mohr I, Mirzaiebadizi A, Sanyal SK, Chuenban P, Ahmadian MR, Ivanov R, Bauer P. Characterization of the small Arabidopsis thaliana GTPase and ADP-ribosylation factor-like 2 protein TITAN 5. J Cell Sci 2024; 137:jcs262315. [PMID: 39056156 PMCID: PMC11361645 DOI: 10.1242/jcs.262315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Small GTPases switch between GDP- and GTP-bound states during cell signaling. The ADP-ribosylation factor (ARF) family of small GTPases is involved in vesicle trafficking. Although evolutionarily well conserved, little is known about ARF and ARF-like GTPases in plants. We characterized biochemical properties and cellular localization of the essential small ARF-like GTPase TITAN 5 (TTN5; also known as HALLIMASCH, ARL2 and ARLC1) from Arabidopsis thaliana, and two TTN5 proteins with point mutants in conserved residues, TTN5T30N and TTN5Q70L, that were expected to be unable to perform nucleotide exchange and GTP hydrolysis, respectively. TTN5 exhibited very rapid intrinsic nucleotide exchange and remarkably low GTP hydrolysis activity, functioning as a non-classical small GTPase being likely present in a GTP-loaded active form. We analyzed signals from YFP-TTN5 and HA3-TTN5 by in situ immunolocalization in Arabidopsis seedlings and through use of a transient expression system. Colocalization with endomembrane markers and pharmacological treatments suggests that TTN5 can be present at the plasma membrane and that it dynamically associates with membranes of vesicles, Golgi stacks and multivesicular bodies. Although TTN5Q70L mirrored wild-type TTN5 behavior, the TTN5T30N mutant differed in some aspects. Hence, the unusual rapid nucleotide exchange activity of TTN5 is linked with its membrane dynamics, and TTN5 likely has a role in vesicle transport within the endomembrane system.
Collapse
Affiliation(s)
- Inga Mohr
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sibaji K. Sanyal
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Pichaporn Chuenban
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
- Center for Plant Genome Engineering, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Mohr I, Mirzaiebadizi A, Sanyal SK, Chuenban P, Ahmadian MR, Ivanov R, Bauer P. Characterization of the small Arabidopsis thaliana GTPase and ADP-ribosylation factor-like 2 protein TITAN 5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.27.538563. [PMID: 37162876 PMCID: PMC10168340 DOI: 10.1101/2023.04.27.538563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Small GTPases function by conformational switching ability between GDP- and GTP-bound states in rapid cell signaling events. The ADP-ribosylation factor (ARF) family is involved in vesicle trafficking. Though evolutionarily well conserved, little is known about ARF and ARF-like GTPases in plants. Here, we characterized biochemical properties and cellular localization of the essential small ARF-like GTPase TITAN 5/HALLIMASCH/ARL2/ARLC1 (hereafter termed TTN5) from Arabidopsis thaliana. Two TTN5 variants were included in the study with point mutations at conserved residues, suspected to be functional for nucleotide exchange and GTP hydrolysis, TTN5T30N and TTN5Q70L. We found that TTN5 had a very rapid intrinsic nucleotide exchange capacity with a conserved nucleotide switching mechanism. TTN5 acted as a non-classical small GTPase with a remarkably low GTP hydrolysis activity, suggesting it is likely present in GTP-loaded active form in the cell. We analyzed signals from yellow fluorescent protein (YFP)-tagged TTN5 and from in situ immunolocalization of hemagglutine-tagged HA3-TTN5 in Arabidopsis seedlings and in a transient expression system. Together with colocalization using endomembrane markers and pharmacological treatments the microscopic analysis suggests that TTN5 can be present at the plasma membrane and dynamically associated with membranes of vesicles, Golgi stacks and multivesicular bodies. While the TTN5Q70L variant showed similar GTPase activities and localization behavior as wild-type TTN5, the TTN5T30N mutant differed in some aspects. Hence, the unusual capacity of rapid nucleotide exchange activity of TTN5 is linked with cell membrane dynamics, likely associated with vesicle transport pathways in the endomembrane system.
Collapse
Affiliation(s)
- Inga Mohr
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sibaji K Sanyal
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Pichaporn Chuenban
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Usenko T, Bezrukova A, Rudenok MM, Basharova K, Shadrina MI, Slominsky PA, Zakharova E, Pchelina S. Whole Transcriptome Analysis of Substantia Nigra in Mice with MPTP-Induced Parkinsonism Bearing Defective Glucocerebrosidase Activity. Int J Mol Sci 2023; 24:12164. [PMID: 37569538 PMCID: PMC10418497 DOI: 10.3390/ijms241512164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Mutations in the GBA1 gene represent the major genetic risk factor for Parkinson's disease (PD). The lysosomal enzyme beta-glucocerebrosidase (GCase) encoded by the GBA1 gene participates in both the endolysosomal pathway and the immune response. Disruption of these mechanisms is involved in PD pathogenesis. However, molecular mechanisms of PD associated with GBA1 mutations (GBA-PD) are unknown today in particular due to the partial penetrance of GBA1 variants in PD. The modifiers of GBA1 penetrance have not been elucidated. We characterized the transcriptomic profiles of cells from the substantia nigra (SN) of mice with co-injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and selective inhibitor of GCase activity (conduritol-β-epoxide, (CBE)) to mimic PD bearing GCase dysfunction (MPTP+CBE), mice treated with MPTP, mice treated with CBE and control mice treated with injection of sodium chloride (NaCl) (vehicle). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Functional clustering of differentially represented transcripts revealed more processes associated with the functioning of neurogenesis, inflammation, apoptosis and autophagy in MPTP+CBE and MPTP mice than in vehicle mice, with a more pronounced alteration of autophagy processes in MPTP+CBE mice than in MPTP mice. The PI3K-Akt-mTOR signaling pathway may be considered a potential target for therapy in PD with GCase dysfunction.
Collapse
Affiliation(s)
- Tatiana Usenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Anastasia Bezrukova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Margarita M. Rudenok
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
| | - Maria I. Shadrina
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Petr A. Slominsky
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Ekaterina Zakharova
- Research Center for Medical Genetics, Laboratory of Hereditary Metabolic Diseases, 115522 Moscow, Russia
| | - Sofya Pchelina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| |
Collapse
|
5
|
Li FL, Guan KL. The Arf family GTPases: Regulation of vesicle biogenesis and beyond. Bioessays 2023; 45:e2200214. [PMID: 36998106 PMCID: PMC10282109 DOI: 10.1002/bies.202200214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
The Arf family proteins are best known for their roles in the vesicle biogenesis. However, they also play fundamental roles in a wide range of cellular regulation besides vesicular trafficking, such as modulation of lipid metabolic enzymes, cytoskeleton remodeling, ciliogenesis, lysosomal, and mitochondrial morphology and functions. Growing studies continue to expand the downstream effector landscape of Arf proteins, especially for the less-studied members, revealing new biological functions, such as amino acid sensing. Experiments with cutting-edge technologies and in vivo functional studies in the last decade help to provide a more comprehensive view of Arf family functions. In this review, we summarize the cellular functions that are regulated by at least two different Arf members with an emphasis on those beyond vesicle biogenesis.
Collapse
Affiliation(s)
- Fu-Long Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Lin SJ, Huang CF, Wu TS, Li CC, Lee FJS. Arl4D-EB1 interaction promotes centrosomal recruitment of EB1 and microtubule growth. Mol Biol Cell 2020; 31:2348-2362. [PMID: 32755434 PMCID: PMC7851962 DOI: 10.1091/mbc.e18-10-0611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
ADP-ribosylation factor (Arf)-like 4D (Arl4D), one of the Arf-like small GTPases, functions in the regulation of cell morphology, cell migration, and actin cytoskeleton remodeling. End-binding 1 (EB1) is a microtubule (MT) plus-end tracking protein that preferentially localizes at the tips of the plus ends of growing MTs and at the centrosome. EB1 depletion results in many centrosome-related defects. Here, we report that Arl4D promotes the recruitment of EB1 to the centrosome and regulates MT nucleation. We first showed that Arl4D interacts with EB1 in a GTP-dependent manner. This interaction is dependent on the C-terminal EB homology region of EB1 and partially dependent on an SxLP motif of Arl4D. We found that Arl4D colocalized with γ-tubulin in centrosomes and the depletion of Arl4D resulted in a centrosomal MT nucleation defect. We further demonstrated that abolishing Arl4D-EB1 interaction decreased MT nucleation rate and diminished the centrosomal recruitment of EB1 without affecting MT growth rate. In addition, Arl4D binding to EB1 increased the association between the p150 subunit of dynactin and the EB1, which is important for MT stabilization. Together, our results indicate that Arl4D modulates MT nucleation through regulation of the EB1–p150 association at the centrosome.
Collapse
Affiliation(s)
- Shin-Jin Lin
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, National Taiwan University, 100225 Taipei, Taiwan
| | - Chun-Fang Huang
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan
| | - Tsung-Sheng Wu
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan
| | - Chun-Chun Li
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, National Taiwan University, 100225 Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, 100225 Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, National Taiwan University, 100225 Taipei, Taiwan
| |
Collapse
|
7
|
Chen KJ, Chiang TC, Yu CJ, Lee FJS. Cooperative recruitment of Arl4A and Pak1 to the plasma membrane contributes to sustained Pak1 activation for cell migration. J Cell Sci 2020; 133:jcs233361. [PMID: 31932503 DOI: 10.1242/jcs.233361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/17/2019] [Indexed: 01/27/2023] Open
Abstract
Cell migration requires the coordination of multiple signaling pathways involved in membrane dynamics and cytoskeletal rearrangement. The Arf-like small GTPase Arl4A has been shown to modulate actin cytoskeleton remodeling. However, evidence of the function of Arl4A in cell migration is insufficient. Here, we report that Arl4A acts with the serine/threonine protein kinase Pak1 to modulate cell migration through their cooperative recruitment to the plasma membrane. We first observed that Arl4A and its isoform Arl4D interact with Pak1 and Pak2 and showed that Arl4A recruits Pak1 and Pak2 to the plasma membrane. The fibronectin-induced Pak1 localization at the plasma membrane is reduced in Arl4A-depleted cells. Unexpectedly, we found that Pak1, but not Arl4A-binding-defective Pak1, can recruit a cytoplasmic myristoylation-deficient Arl4A-G2A mutant to the plasma membrane. Furthermore, we found that the Arl4A-Pak1 interaction, which is independent of Rac1 binding to Pak1, is required for Arl4A-induced cell migration. Thus, we infer that there is feedback regulation between Arl4A and Pak1, in which they mutually recruit each other to the plasma membrane for Pak1 activation, thereby modulating cell migration through direct interaction.
Collapse
Affiliation(s)
- Kuan-Jung Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Tsai-Chen Chiang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
8
|
Kumar R, Derbigny WA. TLR3 Deficiency Leads to a Dysregulation in the Global Gene-Expression Profile in Murine Oviduct Epithelial Cells Infected with Chlamydia muridarum. ACTA ACUST UNITED AC 2020; 1:1-13. [PMID: 31891165 PMCID: PMC6937138 DOI: 10.18689/ijmr-1000101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chlamydia trachomatis replicates primarily in the epithelial cells lining the genital tract and induces the innate immune response by triggering cellular pathogen recognition receptors (PRRs). Our previous studies showed that Toll-like receptor 3 (TLR3) is expressed in murine oviduct epithelial (OE) cells, is the primary PRR triggered by C. muridarum (Cm) early during infection to induce IFN-β synthesis, and that TLR3 signaling regulates the chlamydial induced synthesis of a plethora of other innate inflammatory modulators including IL-6, CXCL10, CXCL16 and CCL5. We also showed that the expression of these cytokines induced by Chlamydia was severely diminished during TLR3 deficiency; however, the replication of Chlamydiain TLR3 deficient OE cells was more robust than in WT cells. These data suggested that TLR3 had a biological impact on the inflammatory response to Chlamydia infection; however, the global effects of TLR3 signaling in the cellular response to Chlamydia infection in murine OE cells has not yet been investigated. To determine the impact of TLR3 signaling on Chlamydia infection in OE cell at the transcriptome level, we infected wild-type (OE-WT) and TLR3-deficient (OE-TLR3KO) cells with Cm, and performed transcriptome analyses using microarray. Genome-wide expression and ingenuity pathway analysis (IPA) identified enhanced expression of host genes encoding for components found in multiple cellular processes encompassing: (1) pro-inflammatory, (2) cell adhesion, (3) chemoattraction, (4) cellular matrix and small molecule transport, (5) apoptosis, and (6) antigen-processing and presentation. These results support a role for TLR3 in modulating the host cellular responses to Cm infection that extend beyond inflammation and fibrosis, and shows that TLR3 could serve a potential therapeutic target for drug and/or vaccine development.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana-46202, USA
| | - Wilbert A Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana-46202, USA
| |
Collapse
|
9
|
Ahluwalia A, Jones MK, Hoa N, Tarnawski AS. Mitochondria in gastric epithelial cells are the key targets for NSAIDs-induced injury and NGF cytoprotection. J Cell Biochem 2019; 120:11651-11659. [PMID: 30790334 DOI: 10.1002/jcb.28445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 02/05/2023]
Abstract
Gastric epithelial cells are important components of mucosal protection and targets of nonsteroidal anti-inflammatory drugs (NSAIDs)-induced injury. Diclofenac (DFN) is one of the most widely used NSAIDs; however, even its short-term use can induce gastric erosions and ulcers. Nerve growth factor (NGF) has been reported to act not only on neuronal cells but also on endothelial cells; however, its action on gastric epithelial cells is unknown. This study was aimed to determine, whether NGF can protect gastric epithelial cells against DFN-induced injury, and to determine the underlying molecular mechanisms with a focus on mitochondria, survivin, and insulin-like growth factor 1 (IGF-1). Cultured normal rat gastric mucosal epithelial cells 1 (RGM1) were treated with phosphate-buffered saline (PBS; control), NGF (100 ng/mL) and/or DFN (0.25-1.00 mM) for 4 hours. We examined: (1) cell injury by confocal microscopy; (2) cell death/survival using Calcein AM live cell tracking dye; (3) mitochondrial structure and membrane potential function using MitoTracker in live cells; and (4) expression of NGF, its receptor - tropomyosin receptor kinase A (TrkA), survivin and IGF-1 by immunostaining. DFN treatment of RGM1 cells for 4 hours caused extensive cell injury, mitochondrial disintegration, reduced cell viability (from 94 ± 3% in controls to 14 ± 4% in 0.5 mM DFN-treated cells; P < 0.001), and expression of survivin and IGF-1. NGF treatment significantly increased survivin and IGF-1 expression by 41% and 75%, respectively versus PBS controls. Pretreatment with NGF before DFN treatment reduced mitochondrial damage and cell death by 73% and 82%, respectively versus treatment with DFN alone (all P < 0.001). This study also showed the presence of high-affinity TrkA receptors in the plasma membrane and mitochondria of RGM1 cells indicating novel actions of NGF.
Collapse
Affiliation(s)
- Amrita Ahluwalia
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System, Long Beach, California
| | - Michael K Jones
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System, Long Beach, California
- Department of Medicine, University of California, Irvine, California
| | - Neil Hoa
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System, Long Beach, California
| | - Andrzej S Tarnawski
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System, Long Beach, California
- Department of Medicine, University of California, Irvine, California
| |
Collapse
|
10
|
The PDL1-inducible GTPase Arl4d controls T effector function by limiting IL-2 production. Sci Rep 2018; 8:16123. [PMID: 30382149 PMCID: PMC6208435 DOI: 10.1038/s41598-018-34522-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/08/2018] [Indexed: 11/20/2022] Open
Abstract
Interleukin-2 (IL-2) is a key regulator of adaptive immune responses but its regulation is incompletely understood. We previously found that PDL1-dependent signals were pivotal for liver sinusoidal endothelial cell-mediated priming of CD8 T cells, which have a strongly reduced capacity to produce IL-2. Here, we show that the expression of the ARF-like GTPase Arl4d is PD-L1-dependently induced in such LSEC-primed T cells, and is associated with reduced IL-2 secretion and Akt phosphorylation. Conversely, Arl4d-deficient T cells overproduced IL-2 upon stimulation. Arl4d-deficiency in CD8 T cells also enhanced their expansion and effector function during viral infection in vivo. Consistent with their increased IL-2 production, Arl4d-deficient T cells showed enhanced development into KLRG1+CD127− short-lived effector cells (SLEC), which is dependent on IL-2 availability. Thus, our data reveal a PD-L1-dependent regulatory circuitry that involves the induction of Arl4d for limiting IL-2 production in T cells.
Collapse
|
11
|
Jin S, Hao Y, Zhu Z, Muhammad N, Zhang Z, Wang K, Guo Y, Guo Z, Wang X. Impact of Mitochondrion-Targeting Group on the Reactivity and Cytostatic Pathway of Platinum(IV) Complexes. Inorg Chem 2018; 57:11135-11145. [DOI: 10.1021/acs.inorgchem.8b01707] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Chiang TS, Wu HF, Lee FJS. ADP-ribosylation factor-like 4C binding to filamin-A modulates filopodium formation and cell migration. Mol Biol Cell 2017; 28:3013-3028. [PMID: 28855378 PMCID: PMC5662259 DOI: 10.1091/mbc.e17-01-0059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/17/2017] [Accepted: 08/25/2017] [Indexed: 11/30/2022] Open
Abstract
Filamin-A plays a key role in tumorigenesis as well as the metastatic progression of prostate cancer, ovarian cancer, and gastric carcinoma. In this study, we identified filamin-A as a novel effector of Arl4C and showed that binding between Arl4C and FLNa modulates the formation of filopodia and cell migration by promoting activation of Cdc42. Changes in cell morphology and the physical forces that occur during migration are generated by a dynamic filamentous actin cytoskeleton. The ADP-ribosylation factor–like 4C (Arl4C) small GTPase acts as a molecular switch to regulate morphological changes and cell migration, although the mechanism by which this occurs remains unclear. Here we report that Arl4C functions with the actin regulator filamin-A (FLNa) to modulate filopodium formation and cell migration. We found that Arl4C interacted with FLNa in a GTP-dependent manner and that FLNa IgG repeat 22 is both required and sufficient for this interaction. We also show that interaction between FLNa and Arl4C is essential for Arl4C-induced filopodium formation and increases the association of FLNa with Cdc42-GEF FGD6, promoting cell division cycle 42 (Cdc42) GTPase activation. Thus our study revealed a novel mechanism, whereby filopodium formation and cell migration are regulated through the Arl4C-FLNa–mediated activation of Cdc42.
Collapse
Affiliation(s)
- Tsai-Shin Chiang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 100 Taipei, Taiwan
| | - Hsu-Feng Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 100 Taipei, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 100 Taipei, Taiwan .,Department of Medical Research, National Taiwan University Hospital, 100 Taipei, Taiwan
| |
Collapse
|
13
|
Newman LE, Schiavon CR, Turn RE, Kahn RA. The ARL2 GTPase regulates mitochondrial fusion from the intermembrane space. CELLULAR LOGISTICS 2017; 7:e1340104. [PMID: 28944094 PMCID: PMC5602422 DOI: 10.1080/21592799.2017.1340104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/05/2017] [Indexed: 01/11/2023]
Abstract
Mitochondria are essential, dynamic organelles that regularly undergo both fusion and fission in response to cellular conditions, though mechanisms of the regulation of their dynamics are incompletely understood. We provide evidence that increased activity of the small GTPase ARL2 is strongly correlated with an increase in fusion, while loss of ARL2 activity results in a decreased rate of mitochondrial fusion. Strikingly, expression of activated ARL2 can partially restore the loss of fusion resulting from deletion of either mitofusin 1 (MFN1) or mitofusin 2 (MFN2), but not deletion of both. We only observe the full effects of ARL2 on mitochondrial fusion when it is present in the intermembrane space (IMS), as constructs driven to the matrix or prevented from entering mitochondria are essentially inactive in promoting fusion. Thus, ARL2 is the first regulatory (small) GTPase shown to act inside mitochondria or in the fusion pathway. Finally, using high-resolution, structured illumination microscopy (SIM), we find that ARL2 and mitofusin immunoreactivities present as punctate staining along mitochondria that share a spatial convergence in fluorescence signals. Thus, we propose that ARL2 plays a regulatory role in mitochondrial fusion, acting from the IMS and requiring at least one of the mitofusins in their canonical role in fusion of the outer membranes.
Collapse
Affiliation(s)
- Laura E. Newman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Cara R. Schiavon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Rachel E. Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
14
|
Francis JW, Turn RE, Newman LE, Schiavon C, Kahn RA. Higher order signaling: ARL2 as regulator of both mitochondrial fusion and microtubule dynamics allows integration of 2 essential cell functions. Small GTPases 2016; 7:188-196. [PMID: 27400436 PMCID: PMC5129891 DOI: 10.1080/21541248.2016.1211069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022] Open
Abstract
ARL2 is among the most highly conserved proteins, predicted to be present in the last eukaryotic common ancestor, and ubiquitously expressed. Genetic screens in multiple model organisms identified ARL2, and its cytosolic binding partner cofactor D (TBCD), as important in tubulin folding and microtubule dynamics. Both ARL2 and TBCD also localize to centrosomes, making it difficult to dissect these effects. A growing body of evidence also has found roles for ARL2 inside mitochondria, as a regulator of mitochondrial fusion. Other studies have revealed roles for ARL2, in concert with its closest paralog ARL3, in the traffic of farnesylated cargos between membranes and specifically to cilia and photoreceptor cells. Details of each of these signaling processes continue to emerge. We summarize those data here and speculate about the potential for cross-talk or coordination of cell regulation, termed higher order signaling, based upon the use of a common GTPase in disparate cell functions.
Collapse
Affiliation(s)
- Joshua W. Francis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Rachel E. Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Laura E. Newman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Cara Schiavon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
15
|
Mitochondria, calcium, and tumor suppressor Fus1: At the crossroad of cancer, inflammation, and autoimmunity. Oncotarget 2016; 6:20754-72. [PMID: 26246474 PMCID: PMC4673227 DOI: 10.18632/oncotarget.4537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/27/2015] [Indexed: 12/12/2022] Open
Abstract
Mitochondria present a unique set of key intracellular functions such as ATP synthesis, production of reactive oxygen species (ROS) and Ca2+ buffering. Mitochondria both encode and decode Ca2+ signals and these interrelated functions have a direct impact on cell signaling and metabolism. High proliferative potential is a key energy-demanding feature shared by cancer cells and activated T lymphocytes. Switch of a metabolic state mediated by alterations in mitochondrial homeostasis plays a fundamental role in maintenance of the proliferative state. Recent studies show that tumor suppressors have the ability to affect mitochondrial homeostasis controlling both cancer and autoimmunity. Herein, we discuss established and putative mechanisms of calcium–dependent regulation of both T cell and tumor cell activities. We use the mitochondrial protein Fus1 as a case of tumor suppressor that controls immune response and tumor growth via maintenance of mitochondrial homeostasis. We focus on the regulation of mitochondrial Ca2+ handling as a key function of Fus1 and highlight the mechanisms of a crosstalk between Ca2+ accumulation and mitochondrial homeostasis. Given the important role of Ca2+ signaling, mitochondrial Ca2+ transport and ROS production in the activation of NFAT and NF-κB transcription factors, we outline the importance of Fus1 activities in this context.
Collapse
|
16
|
Pacheco-Marín R, Melendez-Zajgla J, Castillo-Rojas G, Mandujano-Tinoco E, Garcia-Venzor A, Uribe-Carvajal S, Cabrera-Orefice A, Gonzalez-Torres C, Gaytan-Cervantes J, Mitre-Aguilar IB, Maldonado V. Transcriptome profile of the early stages of breast cancer tumoral spheroids. Sci Rep 2016; 6:23373. [PMID: 27021602 PMCID: PMC4810430 DOI: 10.1038/srep23373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/02/2016] [Indexed: 12/15/2022] Open
Abstract
Oxygen or nutrient deprivation of early stage tumoral spheroids can be used to reliably mimic the initial growth of primary and metastatic cancer cells. However, cancer cell growth during the initial stages has not been fully explored using a genome-wide approach. Thus, in the present study, we investigated the transcriptome of breast cancer cells during the initial stages of tumoral growth using RNAseq in a model of Multicellular Tumor Spheroids (MTS). Network analyses showed that a metastatic signature was enriched as several adhesion molecules were deregulated, including EPCAM, E-cadherin, integrins and syndecans, which were further supported by an increase in cell migration. Interestingly, we also found that the cancer cells at this stage of growth exhibited a paradoxical hyperactivation of oxidative mitochondrial metabolism. In addition, we found a large number of regulated (long non coding RNA) lncRNAs, several of which were co-regulated with neighboring genes. The regulatory role of some of these lncRNAs on mRNA expression was demonstrated with gain of function assays. This is the first report of an early-stage MTS transcriptome, which not only reveals a complex expression landscape, but points toward an important contribution of long non-coding RNAs in the final phenotype of three-dimensional cellular models.
Collapse
Affiliation(s)
- Rosario Pacheco-Marín
- Epigenetics, National Institute of Genomic Medicine, Periférico Sur No. 4809, Col Arenal Tepepan, Delegación Tlalpan, México, D.F., C.P 14610.,Posgraduate Program in Biological Sciences, Faculty of Medicine (UNAM), University City Avenue 3000 C.P. 04510, Coyoacan, Mexico City
| | - Jorge Melendez-Zajgla
- Functional Genomics laboratories, National Institute of Genomic Medicine, Periférico Sur No. 4809, Col Arenal Tepepan, Delegación Tlalpan, México, D.F., C.P 14610
| | - Gonzalo Castillo-Rojas
- Microbial Molecular Immunology Program, Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), University City Avenue 3000 C.P. 04510, Coyoacan, Mexico City
| | - Edna Mandujano-Tinoco
- Functional Genomics laboratories, National Institute of Genomic Medicine, Periférico Sur No. 4809, Col Arenal Tepepan, Delegación Tlalpan, México, D.F., C.P 14610
| | - Alfredo Garcia-Venzor
- Functional Genomics laboratories, National Institute of Genomic Medicine, Periférico Sur No. 4809, Col Arenal Tepepan, Delegación Tlalpan, México, D.F., C.P 14610
| | - Salvador Uribe-Carvajal
- Department of Molecular Genetics, Institute of Cellular Physiology (UNAM), University City Avenue 3000 C.P. 04510, Coyoacan, Mexico City
| | - Alfredo Cabrera-Orefice
- Department of Molecular Genetics, Institute of Cellular Physiology (UNAM), University City Avenue 3000 C.P. 04510, Coyoacan, Mexico City
| | - Carolina Gonzalez-Torres
- Functional Genomics laboratories, National Institute of Genomic Medicine, Periférico Sur No. 4809, Col Arenal Tepepan, Delegación Tlalpan, México, D.F., C.P 14610
| | - Javier Gaytan-Cervantes
- Functional Genomics laboratories, National Institute of Genomic Medicine, Periférico Sur No. 4809, Col Arenal Tepepan, Delegación Tlalpan, México, D.F., C.P 14610
| | - Irma B Mitre-Aguilar
- Unit of Biochemistry, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Av. Vasco de Quiroga N° 15, Colonia Belisario Domínguez Sección XVI, Delegación Tlalpan. CP.14080, México D. F., México
| | - Vilma Maldonado
- Epigenetics, National Institute of Genomic Medicine, Periférico Sur No. 4809, Col Arenal Tepepan, Delegación Tlalpan, México, D.F., C.P 14610
| |
Collapse
|
17
|
Abstract
The ARF-like (ARL) proteins, within the ARF family, are a collection of functionally diverse GTPases that share extensive (>40 %) identity with the ARFs and each other and are assumed to share basic mechanisms of regulation and a very incompletely documented degree of overlapping regulators. At least four ARLs were already present in the last eukaryotic common ancestor, along with one ARF, and these have been expanded to >20 members in mammals. We know little about the majority of these proteins so our review will focus on those about which the most is known, including ARL1, ARL2, ARL3, ARL4s, ARL6, ARL13s, and ARFRP1. From this fragmentary information we extract some generalizations and conclusions regarding the sources and extent of specificity and functions of the ARLs.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|