1
|
Cristalli C, Scotlandi K. Targeting DNA Methylation Machinery in Pediatric Solid Tumors. Cells 2024; 13:1209. [PMID: 39056791 PMCID: PMC11275080 DOI: 10.3390/cells13141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
DNA methylation is a key epigenetic regulatory mechanism that plays a critical role in a variety of cellular processes, including the regulation of cell fate during development, maintenance of cell identity, and genome stability. DNA methylation is tightly regulated by enzymatic reactions and its deregulation plays an important role in the development of cancer. Specific DNA methylation alterations have been found in pediatric solid tumors, providing new insights into the development of these tumors. In addition, DNA methylation profiles have greatly contributed to tune the diagnosis of pediatric solid tumors and to define subgroups of patients with different risks of progression, leading to the reduction in unwanted toxicity and the improvement of treatment efficacy. This review highlights the dysregulated DNA methylome in pediatric solid tumors and how this information provides promising targets for epigenetic therapies, particularly inhibitors of DNMT enzymes (DNMTis). Opportunities and limitations are considered, including the ability of DNMTis to induce viral mimicry and immune signaling by tumors. Besides intrinsic action against cancer cells, DNMTis have the potential to sensitize immune-cold tumors to immunotherapies and may represent a remarkable option to improve the treatment of challenging pediatric solid tumors.
Collapse
Affiliation(s)
- Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
2
|
Szczepanek J, Tretyn A. MicroRNA-Mediated Regulation of Histone-Modifying Enzymes in Cancer: Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:1590. [PMID: 38002272 PMCID: PMC10669115 DOI: 10.3390/biom13111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In the past decade, significant advances in molecular research have provided a deeper understanding of the intricate regulatory mechanisms involved in carcinogenesis. MicroRNAs, short non-coding RNA sequences, exert substantial influence on gene expression by repressing translation or inducing mRNA degradation. In the context of cancer, miRNA dysregulation is prevalent and closely associated with various stages of carcinogenesis, including initiation, progression, and metastasis. One crucial aspect of the cancer phenotype is the activity of histone-modifying enzymes that govern chromatin accessibility for transcription factors, thus impacting gene expression. Recent studies have revealed that miRNAs play a significant role in modulating these histone-modifying enzymes, leading to significant implications for genes related to proliferation, differentiation, and apoptosis in cancer cells. This article provides an overview of current research on the mechanisms by which miRNAs regulate the activity of histone-modifying enzymes in the context of cancer. Both direct and indirect mechanisms through which miRNAs influence enzyme expression are discussed. Additionally, potential therapeutic implications arising from miRNA manipulation to selectively impact histone-modifying enzyme activity are presented. The insights from this analysis hold significant therapeutic promise, suggesting the utility of miRNAs as tools for the precise regulation of chromatin-related processes and gene expression. A contemporary focus on molecular regulatory mechanisms opens therapeutic pathways that can effectively influence the control of tumor cell growth and dissemination.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
3
|
Delgado-Tiburcio EE, Cadena-Iñiguez J, Santiago-Osorio E, Ruiz-Posadas LDM, Castillo-Juárez I, Aguiñiga-Sánchez I, Soto-Hernández M. Pharmacokinetics and Biological Activity of Cucurbitacins. Pharmaceuticals (Basel) 2022; 15:1325. [PMID: 36355498 PMCID: PMC9696414 DOI: 10.3390/ph15111325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2023] Open
Abstract
Cucurbitacins are a class of secondary metabolites initially isolated from the Cucurbitaceae family. They are important for their analgesic, anti-inflammatory, antimicrobial, antiviral, and anticancer biological actions. This review addresses pharmacokinetic parameters recently reported, including absorption, metabolism, distribution, and elimination phases of cucurbitacins. It includes recent studies of the molecular mechanisms of the biological activity of the most studied cucurbitacins and some derivatives, especially their anticancer capacity, to propose the integration of the pharmacokinetic profiles of cucurbitacins and the possibilities of their use. The main botanical genera and species of American origin that have been studied, and others whose chemo taxonomy makes them essential sources for the extraction of these metabolites, are summarized.
Collapse
Affiliation(s)
| | - Jorge Cadena-Iñiguez
- Innovation in Natural Resource Management, Postgraduate College, Campus San Luis Potosí, Salinas de Hidalgo, San Luis Potosí 78622, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Lucero Del Mar Ruiz-Posadas
- Botany Department, Postgraduate College, Campus Montecillo, km 36.5 Carretera México-Texcoco, Texcoco 56230, Mexico
| | - Israel Castillo-Juárez
- Botany Department, Postgraduate College, Campus Montecillo, km 36.5 Carretera México-Texcoco, Texcoco 56230, Mexico
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
- Department of Biomedical Sciences, School of Medicine, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Marcos Soto-Hernández
- Botany Department, Postgraduate College, Campus Montecillo, km 36.5 Carretera México-Texcoco, Texcoco 56230, Mexico
| |
Collapse
|
4
|
Abbate JM, Giannetto A, Arfuso F, Brunetti B, Lanteri G. RT-qPCR Expression Profiles of Selected Oncogenic and Oncosuppressor miRNAs in Formalin-Fixed, Paraffin-Embedded Canine Mammary Tumors. Animals (Basel) 2022; 12:ani12212898. [PMID: 36359024 PMCID: PMC9654908 DOI: 10.3390/ani12212898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) can act as oncogenes or oncosuppressor genes, and their involvement in nearly all cancer-associated processes makes these small molecules promising diagnostic and prognostic biomarkers in cancer, as well as specific targets for cancer therapy. This study aimed to investigate the expression of 7 miRNAs (miR-18a, miR-18b, miR-22, miR-124, miR-145, miR-21, miR-146b) in formalin-fixed, paraffin-embedded canine mammary tumors (CMTs) by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Twenty-six mammary samples were selected, including 22 CMTs (7 benign; 15 malignant) and 4 control samples (3 normal mammary gland and 1 case of lobular hyperplasia). Oncogenic miR-18a, miR-18b and miR-21 were significantly upregulated in malignant tumors compared with control tissues (p < 0.05). Conversely, oncosuppressor miR-146b was significantly downregulated in benign and malignant mammary tumors compared with control samples (p < 0.05) while, no group-related differences in the expression levels of miR-22, miR-124 and miR-145 were found (p > 0.05). Upregulated miRNAs found here, may regulate genes involved in receptor-mediated carcinogenesis and proteoglycan remodeling in cancer; while miRNA with reduced expression can regulate genes involved in Toll-like receptor and MAPK signaling pathways. According to the results obtained in the current study, the oncogenic and oncosuppressor miRNAs analyzed here are dysregulated in CMTs and the dysregulation of miRNA targets may lead to specific altered cellular processes and key pathways involved in carcinogenesis. Of note, since oncogenic miRNAs predicted to regulate neoplastic cell proliferation and hormonal activities, they may play an active role in neoplastic transformation and/or progression, having mechanistic and prognostic relevance in CMTs.
Collapse
Affiliation(s)
- Jessica Maria Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Universitario Papardo, 98166 Messina, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Barbara Brunetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, via Tolara di Sopra, Ozzano Emilia, 40064 Bologna, Italy
- Correspondence:
| | - Giovanni Lanteri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Universitario Papardo, 98166 Messina, Italy
| |
Collapse
|
5
|
Mills LJ, Scott MC, Shah P, Cunanan AR, Deshpande A, Auch B, Curtin B, Beckman KB, Spector LG, Sarver AL, Subramanian S, Richmond TA, Modiano JF. Comparative analysis of genome-wide DNA methylation identifies patterns that associate with conserved transcriptional programs in osteosarcoma. Bone 2022; 158:115716. [PMID: 33127576 PMCID: PMC8076342 DOI: 10.1016/j.bone.2020.115716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma is an aggressive tumor of the bone that primarily affects young adults and adolescents. Osteosarcoma is characterized by genomic chaos and heterogeneity. While inactivation of tumor protein p53 (TP53) is nearly universal other high frequency mutations or structural variations have not been identified. Despite this genomic heterogeneity, key conserved transcriptional programs associated with survival have been identified across human, canine and induced murine osteosarcoma. The epigenomic landscape, including DNA methylation, plays a key role in establishing transcriptional programs in all cell types. The role of epigenetic dysregulation has been studied in a variety of cancers but has yet to be explored at scale in osteosarcoma. Here we examined genome-wide DNA methylation patterns in 24 human and 44 canine osteosarcoma samples identifying groups of highly correlated DNA methylation marks in human and canine osteosarcoma samples. We also link specific DNA methylation patterns to key transcriptional programs in both human and canine osteosarcoma. Building on previous work, we built a DNA methylation-based measure for the presence and abundance of various immune cell types in osteosarcoma. Finally, we determined that the underlying state of the tumor, and not changes in cell composition, were the main driver of differences in DNA methylation across the human and canine samples. SIGNIFICANCE: Genome wide comparison of DNA methylation patterns in osteosarcoma across two species lays the ground work for the exploration of DNA methylation programs that help establish conserved transcriptional programs in the context of varied mutational landscapes.
Collapse
Affiliation(s)
- Lauren J Mills
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Childhood Cancer Genomics Group, Department of Pediatric, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Milcah C Scott
- Department of Microbiology and Immunology, Center for Immunology, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pankti Shah
- Roche Sequencing Solution, Pleasanton, CA, USA
| | | | | | - Benjamin Auch
- University of Minnesota Genomics Center, Minneapolis, MN 55455, USA
| | - Bridget Curtin
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Logan G Spector
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Childhood Cancer Genomics Group, Department of Pediatric, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul 55108, USA; Institute of Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jaime F Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul 55108, USA; Institute of Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, UDS Institute for Engineering in Medicine, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Leonardi L, Scotlandi K, Pettinari I, Benassi MS, Porcellato I, Pazzaglia L. MiRNAs in Canine and Human Osteosarcoma: A Highlight Review on Comparative Biomolecular Aspects. Cells 2021; 10:cells10020428. [PMID: 33670554 PMCID: PMC7922516 DOI: 10.3390/cells10020428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary malignant tumor of bone in humans and animals. Comparative oncology is a field of study that examines the cancer risk and tumor progression across the species. The canine model is ideally suited for translational cancer research. The biological and clinical characteristics of human and canine OS are common to hypothesize as that several living and environmental common conditions shared between the two species can influence some etiopathogenetic mechanisms, for which the canine species represents an important model of comparison with the human species. In the canine and human species, osteosarcoma is the tumor of bone with the highest frequency, with a value of about 80–85% (in respect to all other bone tumors), a high degree of invasiveness, and a high rate of metastasis and malignancy. Humans and dogs have many genetic and biomolecular similarities such as alterations in the expression of p53 and in some types of microRNAs that our working group has already described previously in several separate works. In this paper, we report and collect new comparative biomolecular features of osteosarcoma in dogs and humans, which may represent an innovative update on the biomolecular profile of this tumor.
Collapse
Affiliation(s)
- Leonardo Leonardi
- Reparto di Patologia Generale e Anatomia Patologica Veterinaria, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy; (I.P.); (I.P.)
- Correspondence: ; Tel.: +39-075-585-7663
| | - Katia Scotlandi
- Laboratory of experimental Oncology, IRCCS—Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (K.S.); (M.S.B.); (L.P.)
| | - Ilaria Pettinari
- Reparto di Patologia Generale e Anatomia Patologica Veterinaria, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy; (I.P.); (I.P.)
| | - Maria Serena Benassi
- Laboratory of experimental Oncology, IRCCS—Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (K.S.); (M.S.B.); (L.P.)
| | - Ilaria Porcellato
- Reparto di Patologia Generale e Anatomia Patologica Veterinaria, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy; (I.P.); (I.P.)
| | - Laura Pazzaglia
- Laboratory of experimental Oncology, IRCCS—Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (K.S.); (M.S.B.); (L.P.)
| |
Collapse
|
7
|
Xavier PLP, Müller S, Fukumasu H. Epigenetic Mechanisms in Canine Cancer. Front Oncol 2020; 10:591843. [PMID: 33194754 PMCID: PMC7646326 DOI: 10.3389/fonc.2020.591843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
A plethora of data has highlighted the role of epigenetics in the development of cancer. Initiation and progression of different cancer types are associated with a variety of changes of epigenetic mechanisms, including aberrant DNA methylation, histone modifications, and miRNA expression. At the same time, advances in the available epigenetic tools allow to investigate and reverse these epigenetic changes and form the basis for the development of anticancer drugs in human oncology. Although human and canine cancer shares several common features, only recently that studies emerged investigating the epigenetic landscape in canine cancer and applying epigenetic modulators to canine cancer. This review focuses on the existing studies involving epigenetic changes in different types of canine cancer and the use of small-molecule inhibitors in canine cancer cells.
Collapse
Affiliation(s)
- Pedro Luiz Porfirio Xavier
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| | - Susanne Müller
- Structural Genomics Consortium and Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| |
Collapse
|
8
|
Anderson KL, Snyder KM, Ito D, Lins DC, Mills LJ, Weiskopf K, Ring NG, Ring AM, Shimizu Y, Mescher MF, Weissman IL, Modiano JF. Evolutionarily conserved resistance to phagocytosis observed in melanoma cells is insensitive to upregulation of pro-phagocytic signals and to CD47 blockade. Melanoma Res 2020; 30:147-158. [PMID: 31205227 PMCID: PMC6906263 DOI: 10.1097/cmr.0000000000000629] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/21/2019] [Indexed: 12/29/2022]
Abstract
Therapeutic activation of macrophage phagocytosis has the ability to restrain tumour growth through phagocytic clearance of tumour cells and activation of the adaptive immune response. Our objective for this study was to evaluate the effects of modulating pro- and anti-phagocytic pathways in malignant melanoma. In order to identify evolutionarily conserved mechanisms of resistance that may be important for melanoma cell survival, we utilized a multi-species approach and examined the phagocytosis of human, mouse, and dog melanoma cells. We observed that melanoma cells from all three species displayed unexpected resistance to phagocytosis that could not be fully mitigated by blockade of the 'don't eat me' signal CD47 or by chemotherapeutic enhancement of known 'eat me' signals. Additionally, CD47 blockade failed to promote anti-melanoma immune responses or tumour regression in vivo. This melanoma resistance to phagocytosis was not mediated by soluble factors, and it was unaffected by siRNA-mediated knockdown of 47 prospective 'don't eat me' signals or by CRISPR-Cas-mediated CD47 knockout. Unexpectedly, CD47 knockout also did not enhance phagocytosis of lymphoma cells, but it eliminated the pro-phagocytic effect of CD47 blockade, suggesting that the pro-phagocytic effects of CD47 blockade are due in part to Fc receptor engagement. From this study, we conclude that melanoma cells possess an evolutionarily conserved resistance to macrophage phagocytosis. Further investigation will be needed to overcome the mechanisms that mediate melanoma cell resistance to innate immunity.
Collapse
Affiliation(s)
- Katie L. Anderson
- DVM/PhD dual degree program of the Comparative Molecular Biosciences Graduate Group
- Animal Cancer Care and Research Program
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, St. Paul
- Masonic Cancer Center
- Center for Immunology
| | - Kristin M. Snyder
- Animal Cancer Care and Research Program
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, St. Paul
| | - Daisuke Ito
- Animal Cancer Care and Research Program
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, St. Paul
- Masonic Cancer Center
- Center for Immunology
| | | | - Lauren J. Mills
- Animal Cancer Care and Research Program
- Pediatrics, School of Medicine
- Minnesota Supercomputing Institute
| | - Kipp Weiskopf
- Institute for Stem Cell Biology and Regenerative Medicine
- Ludwig Center for Cancer Stem Cell Research and Medicine
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Nan G. Ring
- Institute for Stem Cell Biology and Regenerative Medicine
- Ludwig Center for Cancer Stem Cell Research and Medicine
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Aaron M. Ring
- Institute for Stem Cell Biology and Regenerative Medicine
- Ludwig Center for Cancer Stem Cell Research and Medicine
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Yoji Shimizu
- Masonic Cancer Center
- Center for Immunology
- Departments of Laboratory Medicine and Pathology
| | - Matthew F. Mescher
- Masonic Cancer Center
- Center for Immunology
- Departments of Laboratory Medicine and Pathology
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine
- Ludwig Center for Cancer Stem Cell Research and Medicine
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Jaime F. Modiano
- Animal Cancer Care and Research Program
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, St. Paul
- Masonic Cancer Center
- Center for Immunology
- Departments of Laboratory Medicine and Pathology
- Pediatrics, School of Medicine
| |
Collapse
|
9
|
Wang R, Zhang H, Ding W, Fan Z, Ji B, Ding C, Ji F, Tang H. miR-143 promotes angiogenesis and osteoblast differentiation by targeting HDAC7. Cell Death Dis 2020; 11:179. [PMID: 32152265 PMCID: PMC7062786 DOI: 10.1038/s41419-020-2377-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/09/2022]
Abstract
The regulation of bone formation and detailed mechanisms are still largely elusive, and the roles of microRNAs in this process have attracted much attention. Recently, a specific subtype of CD31hiendomucinhi (CD31hiEMCNhi) endothelium has been identified to promote bone formation, together with osteoblast development. However, the role of microRNA143 in the generation of CD31hi EMCNhi endothelium and bone formation remains unknown. In this study, we found that miR-143 was expressed both in osteoblast cells and CD31hiEMCNhi endothelial cells. Serum miR-143 level was negatively correlated with age in humans. Overexpression of miR-143 promoted osteoblast formation and angiogenic effects. Furthermore, CD31hiEmcnhi vessels and osteoblast formation were significantly inhibited in miR-143 knockout mice. Mechanistically, inhibitor HDAC7 was directly targeted by miR-143 and knockdown of HDAC7 was found to rescue the function of miR-143 deficiency. Thus, miR-143 promotes angiogenesis coupling with osteoblast differentiation by targeting HDAC7, which may serve as a potential target in angiogenic and osteogenic diseases.
Collapse
Affiliation(s)
- Renkai Wang
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China.,Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong, 510010, China
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenbin Ding
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhenyu Fan
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Boyao Ji
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chen Ding
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Fang Ji
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Hao Tang
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
10
|
Kiany S, Harrison D, Gordon N. The Histone Deacetylase Inhibitor Entinostat/Syndax 275 in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1257:75-83. [PMID: 32483732 DOI: 10.1007/978-3-030-43032-0_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The prognosis for metastatic osteosarcoma (OS) is poor and has not changed in several decades. Therapeutic paradigms that target and exploit novel molecular pathways are desperately needed. Recent preclinical data suggests that modulation of the Fas/FasL pathway may offer benefit in the treatment of refractory osteosarcoma. Fas and FasL are complimentary receptor-ligand proteins. Fas is expressed in multiple tissues, whereas FasL is restricted to privilege organs, such as the lung. Fas expression has been shown to inversely correlate with the metastatic potential of OS cells; tumor cells which express high levels of Fas have decreased metastatic potential and the ones that reach the lung undergo cell death upon interaction with constitutive FasL in the lung. Agents such as gemcitabine and the HDAC inhibitor, entinostat/Syndax 275, have been shown to upregulate Fas expression on OS cells, potentially leading to decreased OS pulmonary metastasis and improved outcome. Clinical trials are in development to evaluate this combination as a potential treatment option for patients with refractory OS.
Collapse
Affiliation(s)
- Simin Kiany
- Department of Pediatrics Research, MD Anderson Cancer Center, Houston, TX, USA
| | - Douglas Harrison
- Department of Pediatrics - Patient Care, MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy Gordon
- Department of Pediatrics Research, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Targeting the Cancer Epigenome with Histone Deacetylase Inhibitors in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:55-75. [PMID: 32767234 DOI: 10.1007/978-3-030-43085-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epigenetic deregulation is an emerging hallmark of cancer that enables tumor cells to escape surveillance by tumor suppressors and ultimately progress. The structure of the epigenome consists of covalent modifications of chromatin components, including acetylation by histone acetyltransferases (HATs) and deacetylation by histone deacetylases (HDACs). Targeting these enzymes with inhibitors to restore epigenetic homeostasis has been explored for many cancers. Osteosarcoma, an aggressive bone malignancy that primarily affects children and young adults, is notable for widespread genetic and epigenetic instability. This may explain why therapy directed at unique molecular pathways has failed to substantially improve outcomes in osteosarcoma over the past four decades. In this review, we discuss the potential of targeting the cancer epigenome, with a focus on histone deacetylase inhibitors (HDACi) for osteosarcoma. We additionally highlight the safety and tolerance of HDACi, combination chemotherapy with HDACi, and the ongoing challenges in the development of these agents.
Collapse
|
12
|
Zhou L, Ma X, Yue J, Chen T, Wang XY, Wang ZW, Pan J, Lin Y. The diagnostic effect of serum miR-139-5p as an indicator in osteosarcoma. Cancer Biomark 2018; 23:561-567. [PMID: 30347602 DOI: 10.3233/cbm-181744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lei Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiao Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Jian Yue
- Department of VIP Medical Services, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Tong Chen
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin-yang Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhi-wei Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiang Pan
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuan Lin
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
13
|
Nucleosidic DNA demethylating epigenetic drugs – A comprehensive review from discovery to clinic. Pharmacol Ther 2018; 188:45-79. [DOI: 10.1016/j.pharmthera.2018.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Manara MC, Valente S, Cristalli C, Nicoletti G, Landuzzi L, Zwergel C, Mazzone R, Stazi G, Arimondo PB, Pasello M, Guerzoni C, Picci P, Nanni P, Lollini PL, Mai A, Scotlandi K. A Quinoline-Based DNA Methyltransferase Inhibitor as a Possible Adjuvant in Osteosarcoma Therapy. Mol Cancer Ther 2018; 17:1881-1892. [DOI: 10.1158/1535-7163.mct-17-0818] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/04/2017] [Accepted: 06/21/2018] [Indexed: 11/16/2022]
|
15
|
Sakthikumar S, Elvers I, Kim J, Arendt ML, Thomas R, Turner-Maier J, Swofford R, Johnson J, Schumacher SE, Alföldi J, Axelsson E, Couto CG, Kisseberth WC, Pettersson ME, Getz G, Meadows JRS, Modiano JF, Breen M, Kierczak M, Forsberg-Nilsson K, Marinescu VD, Lindblad-Toh K. SETD2 Is Recurrently Mutated in Whole-Exome Sequenced Canine Osteosarcoma. Cancer Res 2018; 78:3421-3431. [PMID: 29724721 DOI: 10.1158/0008-5472.can-17-3558] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is a debilitating bone cancer that affects humans, especially children and adolescents. A homologous form of osteosarcoma spontaneously occurs in dogs, and its differential incidence observed across breeds allows for the investigation of tumor mutations in the context of multiple genetic backgrounds. Using whole-exome sequencing and dogs from three susceptible breeds (22 golden retrievers, 21 Rottweilers, and 23 greyhounds), we found that osteosarcoma tumors show a high frequency of somatic copy-number alterations (SCNA), affecting key oncogenes and tumor-suppressor genes. The across-breed results are similar to what has been observed for human osteosarcoma, but the disease frequency and somatic mutation counts vary in the three breeds. For all breeds, three mutational signatures (one of which has not been previously reported) and 11 significantly mutated genes were identified. TP53 was the most frequently altered gene (83% of dogs have either mutations or SCNA in TP53), recapitulating observations in human osteosarcoma. The second most frequently mutated gene, histone methyltransferase SETD2, has known roles in multiple cancers, but has not previously been strongly implicated in osteosarcoma. This study points to the likely importance of histone modifications in osteosarcoma and highlights the strong genetic similarities between human and dog osteosarcoma, suggesting that canine osteosarcoma may serve as an excellent model for developing treatment strategies in both species.Significance: Canine osteosarcoma genomics identify SETD2 as a possible oncogenic driver of osteosarcoma, and findings establish the canine model as a useful comparative model for the corresponding human disease. Cancer Res; 78(13); 3421-31. ©2018 AACR.
Collapse
Affiliation(s)
- Sharadha Sakthikumar
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Broad Institute, Cambridge, Massachusetts
| | - Ingegerd Elvers
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute, Cambridge, Massachusetts
| | - Jaegil Kim
- Broad Institute, Cambridge, Massachusetts
| | - Maja L Arendt
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg D, Denmark
| | - Rachael Thomas
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | | | | | | | | | | | - Erik Axelsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - C Guillermo Couto
- Department of Veterinary Clinical Sciences and Veterinary Medical Center, the Ohio State University, Columbus, Ohio
- Couto Veterinary Consultants, Hilliard, Ohio
| | - William C Kisseberth
- Department of Veterinary Clinical Sciences and Veterinary Medical Center, the Ohio State University, Columbus, Ohio
| | - Mats E Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gad Getz
- Broad Institute, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Boston, Massachusetts
| | - Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jaime F Modiano
- Animal Cancer Care and Research Program, College of Veterinary Medicine, St. Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Institute for Engineering and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Matthew Breen
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Marcin Kierczak
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Voichita D Marinescu
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
16
|
Classification of heterogeneous genetic variations of microRNA regulome in cancer. Cancer Lett 2018; 419:128-138. [DOI: 10.1016/j.canlet.2018.01.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/30/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
|
17
|
Sahabi K, Selvarajah GT, Abdullah R, Cheah YK, Tan GC. Comparative aspects of microRNA expression in canine and human cancers. J Vet Sci 2018; 19:162-171. [PMID: 28927253 PMCID: PMC5879064 DOI: 10.4142/jvs.2018.19.2.162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/19/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in all biological pathways in multicellular organisms. Over 1,400 human miRNAs have been identified, and many are conserved among vertebrates and invertebrates. Regulation of miRNA is the most common mode of post-transcriptional gene regulation. The miRNAs that are involved in the initiation and progression of cancers are termed oncomiRs and several of them have been identified in canine and human cancers. Similarly, several miRNAs have been reported to be down-regulated in cancers of the two species. In this review, current information on the expression and roles of miRNAs in oncogenesis and progression of human and canine cancers, as well the roles miRNAs have in cancer stem cell biology, are highlighted. The potential for the use of miRNAs as therapeutic targets in personalized cancer therapy in domestic dogs and their possible application in human cancer counterparts are also discussed.
Collapse
Affiliation(s)
- Kabiru Sahabi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Gayathri T Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Rasedee Abdullah
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Histone deacetylase inhibitor ITF2357 leads to apoptosis and enhances doxorubicin cytotoxicity in preclinical models of human sarcoma. Oncogenesis 2018; 7:20. [PMID: 29472530 PMCID: PMC5833676 DOI: 10.1038/s41389-018-0026-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/26/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are rare tumors with generally poor prognosis, for which current therapies have shown limited efficacy. Histone deacetylase inhibitors (HDACi) are emerging anti-tumor agents; however, little is known about their effect in sarcomas. By using established and patient-derived sarcoma cells with different subtypes, we showed that the pan-HDACi, ITF2357, potently inhibited in vitro survival in a p53-independent manner. ITF2357-mediated cell death implied the activation of mitochondrial apoptosis, as attested by induction of pro-apoptotic BH3-only proteins and a caspases-dependent mechanism. ITF2357 also induced autophagy, which protected sarcoma cells from apoptotic cell death. ITF2357 activated forkhead box (FOXO) 1 and 3a transcription factors and their downstream target genes, however, silencing of both FOXO1 and 3a did not protect sarcoma cells against ITF2357-induced apoptosis and upregulated FOXO4 and 6. Notably, ITF2357 synergized with Doxorubicin to induce cell death of established and patient-derived sarcoma cells. Furthermore, combination treatment strongly impaired xenograft tumor growth in vivo, when compared to single treatments, suggesting that combination of ITF2357 with Doxorubicin has the potential to enhance sensitization in different preclinical models of sarcoma. Overall, our study highlights the therapeutic potential of ITF2357, alone or in rational combination therapies, for bone and soft tissue sarcomas management.
Collapse
|
19
|
Expression patterns of class I histone deacetylases in osteosarcoma: a novel prognostic marker with potential therapeutic implications. Mod Pathol 2018; 31:264-274. [PMID: 28984297 PMCID: PMC5811636 DOI: 10.1038/modpathol.2017.125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 12/28/2022]
Abstract
Epigenetic aberrations are recognized as having pivotal roles in cancer etiology and progression. Histone deacetylases are among the most studied epigenetic modulators in various cancer types. The expression levels of class I histone deacetylase isoforms 1, 2, and 3 in patient-derived primary osteosarcoma cells (6 cases) was investigated, comparing them to normal bone graft-derived osteoblasts (6 cases) using the immunoblotting technique. Expression profiles of histone deacetylases in high-grade osteosarcoma tissue of 89 patients were examined and their association with clinicopathologic parameters and the patient survival was evaluated. Histone deacetylases were immunohistochemically stained on formalin-fixed paraffin-embedded biopsied tissue. Primary osteosarcoma cells expressed higher levels of histone deacetylase 1 and histone deacetylase 2, but lower levels of histone deacetylase 3 compared to benign osteoblasts. Overall, 82, 99, and 93% of 89 osteosarcomas showed nuclear expression of the histone deacetylase isoforms 1, 2, and 3, respectively. Low levels of histone deacetylase 1 were significantly associated with a high Enneking stage (P=0.014) and the presence of initial metastasis (P=0.040), while low levels of histone deacetylase 3 were significantly correlated with age >15 years (P=0.026). Univariate survival analysis found significantly shorter survival in the patients with a high Enneking stage (P<0.001), axial location (P=0.009), presence of initial metastasis (P<0.001), low-histone deacetylase 1 expression (P=0.038), and low-all-histone deacetylases expression (P=0.016). Multivariate survival analysis showed that only axial location (P=0.011) and low-all-histone deacetylases expression (P=0.039) were independent prognostic factors. In subgroup analysis of stage IIB patients (n=45), only axial location and low-all-histone deacetylases expression were associated with shorter survival in both univariate and multivariate analysis (axial location, P=0.008 and 0.010; low-all-HDACs, P=0.013 and 0.038, respectively). Low levels of all-histone deacetylases expression were significantly associated with advanced disease status and short survival. These findings may be a guide to future use of histone deacetylase inhibitors in osteosarcoma patients.
Collapse
|
20
|
Tang F, Choy E, Tu C, Hornicek F, Duan Z. Therapeutic applications of histone deacetylase inhibitors in sarcoma. Cancer Treat Rev 2017; 59:33-45. [PMID: 28732326 DOI: 10.1016/j.ctrv.2017.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 02/05/2023]
Abstract
Sarcomas are a rare group of malignant tumors originating from mesenchymal stem cells. Surgery, radiation and chemotherapy are currently the only standard treatments for sarcoma. However, their response rates to chemotherapy are quite low. Toxic side effects and multi-drug chemoresistance make treatment even more challenging. Therefore, better drugs to treat sarcomas are needed. Histone deacetylase inhibitors (HDAC inhibitors, HDACi, HDIs) are epigenetic modifying agents that can inhibit sarcoma growth in vitro and in vivo through a variety of pathways, including inducing tumor cell apoptosis, causing cell cycle arrest, impairing tumor invasion and preventing metastasis. Importantly, preclinical studies have revealed that HDIs can not only sensitize sarcomas to chemotherapy and radiotherapy, but also increase treatment responses when combined with other chemotherapeutic drugs. Several phase I and II clinical trials have been conducted to assess the efficacy of HDIs either as monotherapy or in combination with standard chemotherapeutic agents or targeted therapeutic drugs for sarcomas. Combination regimen for sarcomas appear to be more promising than monotherapy when using HDIs. This review summarizes our current understanding and therapeutic applications of HDIs in sarcomas.
Collapse
Affiliation(s)
- Fan Tang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA; Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| |
Collapse
|
21
|
Zhu J, Liu Y, Zhu Y, Zeng M, Xie J, Lei P, Li K, Hu Y. Role of RANK and Akt1 activation in human osteosarcoma progression: A clinicopathological study. Exp Ther Med 2017; 13:2862-2866. [PMID: 28587351 PMCID: PMC5450667 DOI: 10.3892/etm.2017.4360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 01/20/2017] [Indexed: 01/15/2023] Open
Abstract
The receptor activator of nuclear factor κB (RANK) axis is the fundamental signaling pathway in bone formation as well as bone tumor pathophysiology. The aim of the present study was to evaluate the impact of the expression of RANK and its downstream signaling molecule Akt1 on tumor progression in patients with osteosarcoma. Expression of RANK and Akt1 was examined in 78 human osteosarcoma samples by immunohistochemistry using formalin-fixed samples. Following this, each graded immunohistochemistry result was correlated with clinicopathological parameters and patient survival. In total, 60 osteosarcomas (76.9%) expressed RANK and 58 cases (74.4%) showed expression of Akt1. In addition, expression of RANK was negatively correlated with disease-free survival by Kaplan-Meier analysis. A resistance was observed to chemotherapy in RANK-expressing cases, which was statistically significant (P<0.05). In addition, chemotherapy and staging of the tumor were found to independent factors that have an effect on patient survival (P<0.05). Thus, RANK was identified as a negative prognostic factor of osteosarcoma survival.
Collapse
Affiliation(s)
- Jianxi Zhu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuwei Liu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yong Zhu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Min Zeng
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Kanghua Li
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
22
|
Zhang ZR, Gao MX, Yang K. Cucurbitacin B inhibits cell proliferation and induces apoptosis in human osteosarcoma cells via modulation of the JAK2/STAT3 and MAPK pathways. Exp Ther Med 2017; 14:805-812. [PMID: 28673003 DOI: 10.3892/etm.2017.4547] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/27/2017] [Indexed: 12/27/2022] Open
Abstract
Osteosarcoma (OS) is the most commonly diagnosed tumor of the bones in children and young adults. Even with conventional therapies the 5-year survival rate is ~65% in patients with OS. Considering the side effects and aggressiveness of malignant bone tumors, research is focussing on multi-targeted strategies in treatment. Cucurbitacin B, a triterpenoid compound has been demonstrated to induce apoptosis in various cancer cell types. The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signalling cascades and mitogen activated protein kinases (MAPK) signalling cascades are critical regulators of tumorigenesis. The present study assessed the influence of cucurbitacin B on the viability and expression of MAPKs and proteins of the JAK2/STAT3 cascades in human OS cells (U-2 OS). Cucurbitacin B (20-100 µM) significantly reduced cell viability (P<0.05) and induced apoptosis, as assessed by MTT and Annexin V/propidium iodide staining, along with inhibiting cell migration. Gelatin zymography revealed supressed activities of matrix metalloproteinase (MMP-)2 and 9. Furthermore, cucurbitacin B effectively upregulated the apoptotic pathway and caused the effective inhibition of MAPK signalling and JAK2/STAT3 cascades. Multifold suppression of vascular endothelial growth factor by cucurbitacin B was also observed, indicating inhibition of angiogenesis. Thus, by downregulating major pathways-MAPK and JAK2/STAT3 and MMPs, cucurbitacin B has potent anti-proliferative and anti-metastatic effects that require further investigation with regards to cancer treatment.
Collapse
Affiliation(s)
- Zhi-Ren Zhang
- Department of Orthopedics, Zhumadian Central Hospital, Zhumadian, Henan 463600, P.R. China
| | - Ming-Xia Gao
- Department of Health Management, Dongying People's Hospital, Dongying, Shandong 257000, P.R. China
| | - Kai Yang
- Department of Joint Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
23
|
Murahari S, Jalkanen AL, Kulp SK, Chen CS, Modiano JF, London CA, Kisseberth WC. Sensitivity of osteosarcoma cells to HDAC inhibitor AR-42 mediated apoptosis. BMC Cancer 2017; 17:67. [PMID: 28109246 PMCID: PMC5251323 DOI: 10.1186/s12885-017-3046-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/02/2017] [Indexed: 11/10/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common primary bone tumor in both humans and dogs and is the second leading cause of cancer related deaths in children and young adults. Limb sparing surgery along with chemotherapy has been the mainstay of treatment for OS. Many patients are not cured with current therapies, presenting a real need for developing new treatments. Histone deacetylase (HDAC) inhibitors are a promising new class of anticancer agents. In this study, we investigated the activity of the novel HDAC inhibitor AR-42 in a panel of human and canine OS cell lines. Methods The effect of AR-42 and suberoylanilide hydroxamic acid (SAHA) alone or in combination with doxorubicin on OS cell viability was assessed. Induction of histone acetylation after HDAC inhibitor treatment was confirmed by Western blotting. Drug-induced apoptosis was analyzed by FACS. Apoptosis was assessed further by measuring caspase 3/7 enzymatic activity, nucleosome fragmentation, and caspase cleavage. Effects on Akt signaling were demonstrated by assessing phosphorylation of Akt and downstream signaling molecules. Results AR-42 was a potent inhibitor of cell viability and induced a greater apoptotic response compared to SAHA when used at the same concentrations. Normal osteoblasts were much less sensitive. The combination of AR-42 with doxorubicin resulted in a potent inhibition of cell viability and apparent synergistic effect. Furthermore, we showed that AR-42 and SAHA induced cell death via the activation of the intrinsic mitochondrial pathway through activation of caspase 3/7. This potent apoptotic activity was associated with the greater ability of AR-42 to downregulate survival signaling through Akt. Conclusions These results confirm that AR-42 is a potent inhibitor of HDAC activity and demonstrates its ability to significantly inhibit cell survival through its pleiotropic effects in both canine and human OS cells and suggests that spontaneous OS in pet dogs may be a useful large animal model for preclinical evaluation of HDAC inhibitors. HDAC inhibition in combination with standard doxorubicin treatment offers promising potential for chemotherapeutic intervention in both canine and human OS.
Collapse
Affiliation(s)
- Sridhar Murahari
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Aimee L Jalkanen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Current address: Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Samuel K Kulp
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Ching-Shih Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Jaime F Modiano
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cheryl A London
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - William C Kisseberth
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Issa ME, Cuendet M. Withaferin A induces cell death and differentiation in multiple myeloma cancer stem cells. MEDCHEMCOMM 2016; 8:112-121. [PMID: 30108696 DOI: 10.1039/c6md00410e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/17/2016] [Indexed: 01/08/2023]
Abstract
Multiple myeloma (MM) remains an incurable malignancy despite the development of novel therapeutics. This is believed to be due to a subset of rare chemotherapy-resistant cancer stem cells (CSCs). Differentiation therapy represents one strategy aimed at reducing the stemness of CSCs. The anticancer effect of withaferin A (WFA) was studied in MM-CSCs and RPMI 8226 MM tumoral plasma cells (RPMIs). WFA exhibited growth inhibitory effects in both MM-CSCs and RPMIs, with IC50 values of 649 and 224 nM, respectively. WFA also induced a G2 cell cycle arrest, as well as cell death and apoptosis. Although, WFA did not exhibit a direct anti-migratory effect, a remarkable morphological change was observed in MM-CSCs in response to WFA treatment. Using qPCR gene expression analyses, WFA caused a reduction in stemness markers, and a promotion of differentiation markers in MM-CSCs. These results warrant further investigation of WFA in relevant MM animal models.
Collapse
Affiliation(s)
- Mark E Issa
- School of Pharmaceutical Sciences , University of Geneva , University of Lausanne , Rue Michel Servet 1 , CH-1211 Geneva 4 , Switzerland . ; ; Tel: +41 22 379 3386
| | - Muriel Cuendet
- School of Pharmaceutical Sciences , University of Geneva , University of Lausanne , Rue Michel Servet 1 , CH-1211 Geneva 4 , Switzerland . ; ; Tel: +41 22 379 3386
| |
Collapse
|
25
|
Weiskopf K, Anderson KL, Ito D, Schnorr PJ, Tomiyasu H, Ring AM, Bloink K, Efe J, Rue S, Lowery D, Barkal A, Prohaska S, McKenna KM, Cornax I, O'Brien TD, O'Sullivan MG, Weissman IL, Modiano JF. Eradication of Canine Diffuse Large B-Cell Lymphoma in a Murine Xenograft Model with CD47 Blockade and Anti-CD20. Cancer Immunol Res 2016; 4:1072-1087. [PMID: 27856424 DOI: 10.1158/2326-6066.cir-16-0105] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/22/2023]
Abstract
Cancer immunotherapies hold much promise, but their potential in veterinary settings has not yet been fully appreciated. Canine lymphomas are among the most common tumors of dogs and bear remarkable similarity to human disease. In this study, we examined the combination of CD47 blockade with anti-CD20 passive immunotherapy for canine lymphoma. The CD47/SIRPα axis is an immune checkpoint that regulates macrophage activation. In humans, CD47 is expressed on cancer cells and enables evasion from phagocytosis. CD47-blocking therapies are now under investigation in clinical trials for a variety of human cancers. We found the canine CD47/SIRPα axis to be conserved biochemically and functionally. We identified high-affinity SIRPα variants that antagonize canine CD47 and stimulate phagocytosis of canine cancer cells in vitro When tested as Fc fusion proteins, these therapeutic agents exhibited single-agent efficacy in a mouse xenograft model of canine lymphoma. As robust synergy between CD47 blockade and tumor-specific antibodies has been demonstrated for human cancer, we evaluated the combination of CD47 blockade with 1E4-cIgGB, a canine-specific antibody to CD20. 1E4-cIgGB could elicit a therapeutic response against canine lymphoma in vivo as a single agent. However, augmented responses were observed when combined with CD47-blocking therapies, resulting in synergy in vitro and in vivo and eliciting cures in 100% of mice bearing canine lymphoma. Our findings support further testing of CD47-blocking therapies alone and in combination with CD20 antibodies in the veterinary setting. Cancer Immunol Res; 4(12); 1072-87. ©2016 AACR.
Collapse
Affiliation(s)
- Kipp Weiskopf
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California. .,Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Katie L Anderson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Daisuke Ito
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Peter J Schnorr
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California.,Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Hirotaka Tomiyasu
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Aaron M Ring
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California.,Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.,Department of Molecular and Cellular Physiology, and Department of Structural Biology, Stanford University School of Medicine, Stanford, California
| | | | - Jem Efe
- Genomics Institute of the Novartis Research Foundation, San Diego, California
| | - Sarah Rue
- Genomics Institute of the Novartis Research Foundation, San Diego, California
| | - David Lowery
- Elanco Animal Health US, Inc., Greensboro, North Carolina
| | - Amira Barkal
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California.,Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Susan Prohaska
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California.,Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Kelly M McKenna
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California.,Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Ingrid Cornax
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota
| | - Timothy D O'Brien
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - M Gerard O'Sullivan
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California.,Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Jaime F Modiano
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota. .,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Center for Immunology, University of Minnesota, Minneapolis, Minnesota.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
26
|
Suberanilohydroxamic acid (vorinostat) synergistically enhances the cytotoxicity of doxorubicin and cisplatin in osteosarcoma cell lines. Anticancer Drugs 2016; 27:1001-10. [DOI: 10.1097/cad.0000000000000418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Issa ME, Berndt S, Carpentier G, Pezzuto JM, Cuendet M. Bruceantin inhibits multiple myeloma cancer stem cell proliferation. Cancer Biol Ther 2016; 17:966-75. [PMID: 27434731 DOI: 10.1080/15384047.2016.1210737] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Multiple myeloma (MM) continues to claim the lives of a majority of patients. MM cancer stem cells (CSCs) have been demonstrated to sustain tumor growth. Due to their ability to self-renew and to express detoxifying enzymes and efflux transporters, MM-CSCs are rendered highly resistant to conventional therapies. Therefore, managing MM-CSCs characteristics could have profound clinical implications. Bruceantin (BCT) is a natural product previously demonstrated to inhibit the growth of MM in RPMI 8226 cells-inoculated mouse xenograft models, and to cause regression in already established tumors. The objectives of the present study were to test the inhibitory effects of BCT on MM-CSCs growth derived from a human primary tumor, and to explore a mechanism of action underlying these effects. BCT exhibited potent antiproliferative activity in MM-CSCs starting at 25 nM. BCT induced cell cycle arrest, cell death and apoptosis in MM-CSCs as well as inhibited cell migration and angiogenesis in vitro. Using a qPCR screen, it was found that the gene expression of a number of Notch pathway members was altered. Pretreatment of MM-CSCs with the γ-secretase inhibitor RO4929097, a Notch pathway inhibitor, reversed BCT-induced effects on MM-CSCs proliferation. In this study, BCT was shown to be an effective agent in controlling the proliferation, viability and migration of MM-CSCs as well as angiogenesis in vitro. The effect on MM-CSCs proliferation may be mediated by the Notch pathway. These results warrant further investigation of BCT in a broader set of human-derived MM-CSCs and with in vivo models representative of MM.
Collapse
Affiliation(s)
- Mark E Issa
- a School of Pharmaceutical Sciences , University of Geneva, University of Lausanne, Rue Michel Servet , Geneva , Switzerland
| | - Sarah Berndt
- a School of Pharmaceutical Sciences , University of Geneva, University of Lausanne, Rue Michel Servet , Geneva , Switzerland
| | - Gilles Carpentier
- b Laboratoire CRRET, Faculté des Sciences et Technologie , Université Paris Est Créteil , Créteil Cedex , France
| | - John M Pezzuto
- c Arnold & Marie Schwartz College of Pharmacy and Health Sciences , Long Island University , Brooklyn , NY , USA
| | - Muriel Cuendet
- a School of Pharmaceutical Sciences , University of Geneva, University of Lausanne, Rue Michel Servet , Geneva , Switzerland
| |
Collapse
|
28
|
Sarver AE, Subramanian S. Imprinting defects in osteosarcoma: DNA- and chromatin-modifying drugs hold promise for osteosarcoma therapy. Epigenomics 2016; 8:885-8. [DOI: 10.2217/epi-2016-0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Anne E Sarver
- Department of Surgery, University of Minnesota, 11–212 Moos Tower (Mail code: MMC 195) 420 Delaware St, S.E Minneapolis, MN 55455, USA
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota, 11–212 Moos Tower (Mail code: MMC 195) 420 Delaware St, S.E Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
29
|
Geng S, Gu L, Ju F, Zhang H, Wang Y, Tang H, Bi Z, Yang C. MicroRNA-224 promotes the sensitivity of osteosarcoma cells to cisplatin by targeting Rac1. J Cell Mol Med 2016; 20:1611-9. [PMID: 27222381 PMCID: PMC4884199 DOI: 10.1111/jcmm.12852] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumour in children and adolescents. Accumulating evidence has shown that microRNAs (miRNAs) participate in the development of almost all types of cancer. Here, we investigated the role of miR‐224 in the development and progression of osteosarcoma. We demonstrated that miR‐224 was down‐regulated in osteosarcoma cell lines and tissues. Lower miR‐224 levels were correlated with shorter survivalin osteosarcoma patients. Furthermore, overexpression of miR‐224 suppressed osteosarcoma cell proliferation, migration and invasion and contributed to the increased sensitivity of MG‐63 cells to cisplatin. We identified Rac1 as a direct target gene of miR‐224 in osteosarcoma. Rac1 expression was up‐regulated in the osteosarcoma cell lines and tissues, and there was an inverse correlation between Rac1 and miR‐224 expression in osteosarcoma tissues. Furthermore, rescuing Rac1 expression decreased the sensitivity of miR‐224‐overexpressing MG‐63 cells to cisplatin. We also demonstrated that ectopic expression of Rac1 promoted the proliferation, migration and invasion of miR‐224‐overexpressing MG‐63 cells. These data suggest that miR‐224 plays a tumour suppressor role in the development of osteosarcoma and is related to the sensitivity of osteosarcoma to cisplatin.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Lina Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Fang Ju
- Northern Institute for Cancer Research, Newcastle University, Sir James Spence Institute, RVI Hospital, UK
| | - Hepeng Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Yiwen Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Han Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - ZhengGang Bi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| | - Chenglin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Prov., China
| |
Collapse
|
30
|
Varshney J, Scott MC, Largaespada DA, Subramanian S. Understanding the Osteosarcoma Pathobiology: A Comparative Oncology Approach. Vet Sci 2016; 3:vetsci3010003. [PMID: 29056713 PMCID: PMC5644613 DOI: 10.3390/vetsci3010003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/23/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is an aggressive primary bone tumor in humans and is among the most common cancer afflicting dogs. Despite surgical advancements and intensification of chemo- and targeted therapies, the survival outcome for osteosarcoma patients is, as of yet, suboptimal. The presence of metastatic disease at diagnosis or its recurrence after initial therapy is a major factor for the poor outcomes. It is thought that most human and canine patients have at least microscopic metastatic lesions at diagnosis. Osteosarcoma in dogs occurs naturally with greater frequency and shares many biological and clinical similarities with osteosarcoma in humans. From a genetic perspective, osteosarcoma in both humans and dogs is characterized by complex karyotypes with highly variable structural and numerical chromosomal aberrations. Similar molecular abnormalities have been observed in human and canine osteosarcoma. For instance, loss of TP53 and RB regulated pathways are common. While there are several oncogenes that are commonly amplified in both humans and dogs, such as MYC and RAS, no commonly activated proto-oncogene has been identified that could form the basis for targeted therapies. It remains possible that recurrent aberrant gene expression changes due to gene amplification or epigenetic alterations could be uncovered and these could be used for developing new, targeted therapies. However, the remarkably high genomic complexity of osteosarcoma has precluded their definitive identification. Several advantageous murine models of osteosarcoma have been generated. These include spontaneous and genetically engineered mouse models, including a model based on forward genetics and transposon mutagenesis allowing new genes and genetic pathways to be implicated in osteosarcoma development. The proposition of this review is that careful comparative genomic studies between human, canine and mouse models of osteosarcoma may help identify commonly affected and targetable pathways for alternative therapies for osteosarcoma patients. Translational research may be found through a path that begins in mouse models, and then moves through canine patients, and then human patients.
Collapse
Affiliation(s)
- Jyotika Varshney
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Surgery, University of Minnesota Medical School, Moos Tower, 11-212420 Delaware Street, S.E.; MMC 195, Minneapolis, MN 55455, USA.
| | - Milcah C Scott
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55455, USA.
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Surgery, University of Minnesota Medical School, Moos Tower, 11-212420 Delaware Street, S.E.; MMC 195, Minneapolis, MN 55455, USA.
| |
Collapse
|
31
|
Evaluation of gene expression level of CDC5L and MACC1 in poor prognosis and progression of osteosarcoma. Tumour Biol 2015; 37:8153-7. [PMID: 26715275 DOI: 10.1007/s13277-015-4726-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/21/2015] [Indexed: 12/30/2022] Open
Abstract
Current evidences have indicated that osteosarcoma is strongly associated with abnormal genetic and epigenetic changes that lead to the abnormal expression of oncogenes or methylation of tumor suppressor genes. In the present study, MACC1 and CDC5L mRNA levels in the patients with osteosarcoma were evaluated using quantitative real-time PCR. Our results demonstrated that CDC5L mRNA levels were higher in tumor tissues than in adjacent normal tissues (2.713 ± 0.738 vs. 1.071 ± 0.629; P < 0.05). Moreover, MACC1 was upregulated in tumor bone tissues than in adjacent normal tissues (3.221 ± 0. 624 vs. 1.427 ± 0.456; P < 0.05). Our result demonstrated that high expression of CDC5L was significantly related to advanced TNM stage (P = 0.032). No significant difference was determined between CDC5L mRNA expression and other clinicopathological parameters including age, gender, tumor diameter, location, tumor grade, and histological type. In addition, overexpression of MACC1 was strongly correlated with advanced TNM stage (P = 0.027) and high tumor grade (P = 0.035). Our findings indicated that mRNA level of CDC5L is correlated with advanced TNM stage, and MACC1 may be involved in progression of osteosarcoma.
Collapse
|
32
|
Identification of Synergistic, Clinically Achievable, Combination Therapies for Osteosarcoma. Sci Rep 2015; 5:16991. [PMID: 26601688 PMCID: PMC4658502 DOI: 10.1038/srep16991] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023] Open
Abstract
Systemic therapy has improved osteosarcoma event-free and overall survival, but 30–50% of patients originally diagnosed will have progressive or recurrent disease, which is difficult to cure. Osteosarcoma has a complex karyotype, with loss of p53 in the vast majority of cases and an absence of recurrent, targetable pathways. In this study, we explored 54 agents that are clinically approved for other oncologic indications, agents in active clinical development, and others with promising preclinical data in osteosarcoma at clinically achievable concentrations in 5 osteosarcoma cell lines. We found significant single-agent activity of multiple agents and tested 10 drugs in all permutations of two-drug combinations to define synergistic combinations by Chou and Talalay analysis. We then evaluated order of addition to choose the combinations that may be best to translate to the clinic. We conclude that the repurposing of chemotherapeutics in osteosarcoma by using an in vitro system may define novel drug combinations with significant in vivo activity. In particular, combinations of proteasome inhibitors with histone deacetylase inhibitors and ixabepilone and MK1775 demonstrated excellent activity in our assays.
Collapse
|
33
|
Taheriazam A, Talaei AJ, Jamshidi M, Shakeri M, Khoshbakht S, Yahaghi E, Shokrani M. Up-regulation of miR-130b expression level and down-regulation of miR-218 serve as potential biomarker in the early detection of human osteosarcoma. Diagn Pathol 2015; 10:184. [PMID: 26446495 PMCID: PMC4596511 DOI: 10.1186/s13000-015-0422-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/01/2015] [Indexed: 01/02/2023] Open
Abstract
Background Osteosarcoma (OS) is a primary malignant bone tumor with high morbidity that principally emerges in children and adolescents. MiRNAs regulate a variety of normal physiologic processes and are involved in tumorigenesis and development of multiple malignancies, including OS. This study was aimed to evaluate the clinical significance of miR-130b and miR-218 in osteosarcoma patient. Methods We utilized quantitative real-time PCR to evaluate the level of miR-130b and miR-218 expressions in OS patients and normal tissues and their relationship with clinicopathological features and survival in OS patients. Results QRT-PCR indicated that miR-130b expression in tumor tissues was strongly elevated than adjacent non-tumor tissues (P < 0.001), while the level of miR-218 expression in osteosarcoma tissues was down-regulated than adjacent non-tumor tissues (P < 0.001). We evaluated the clinical significance of miR-130b and miR-218 in osteosarcoma. Clinical correlation analysis showed that increased expression of miR-130b and decreased expression of miR-218 were significantly associated with advanced tumor stage (x2 = 6.285, P < 0.009; x2 = 7.172, P < 0.007), distant metastasis (x2
= 5.528; P < 0.001; x2 = 4.617, P < 0.001) and size of tumor (x2 = 5.01, P = 0.013; x2 = 4.271, P = 0.019). Conclusions Taken together, our data indicated that high miR-130b level and low level of miR-218 are associated with poor clinicopathological characteristics. Furthermore, miR-130b may play a key role in the progression of osteosarcoma.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics Surgery, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Amir Jouya Talaei
- Department of Genetics, Faculty of Life Sciences, Azad University of Tehran Medical Sciences Branch, Tehran, Iran
| | - Mohammad Jamshidi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammadreza Shakeri
- Department of Orthopaedic and Trauma Surgery, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Khoshbakht
- Department of Statistics, Faculty of Sciences, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Emad Yahaghi
- Department of Molecular Biology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marjan Shokrani
- Graduate, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Bradley EW, Carpio LR, van Wijnen AJ, McGee-Lawrence ME, Westendorf JJ. Histone Deacetylases in Bone Development and Skeletal Disorders. Physiol Rev 2015; 95:1359-81. [PMID: 26378079 PMCID: PMC4600951 DOI: 10.1152/physrev.00004.2015] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Histone deacetylases (Hdacs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins. Eleven of the 18 Hdacs encoded by the human and mouse genomes depend on Zn(2+) for enzymatic activity, while the other 7, the sirtuins (Sirts), require NAD2(+). Collectively, Hdacs and Sirts regulate numerous cellular and mitochondrial processes including gene transcription, DNA repair, protein stability, cytoskeletal dynamics, and signaling pathways to affect both development and aging. Of clinical relevance, Hdacs inhibitors are United States Food and Drug Administration-approved cancer therapeutics and are candidate therapies for other common diseases including arthritis, diabetes, epilepsy, heart disease, HIV infection, neurodegeneration, and numerous aging-related disorders. Hdacs and Sirts influence skeletal development, maintenance of mineral density and bone strength by affecting intramembranous and endochondral ossification, as well as bone resorption. With few exceptions, inhibition of Hdac or Sirt activity though either loss-of-function mutations or prolonged chemical inhibition has negative and/or toxic effects on skeletal development and bone mineral density. Specifically, Hdac/Sirt suppression causes abnormalities in physiological development such as craniofacial dimorphisms, short stature, and bone fragility that are associated with several human syndromes or diseases. In contrast, activation of Sirts may protect the skeleton from aging and immobilization-related bone loss. This knowledge may prolong healthspan and prevent adverse events caused by epigenetic therapies that are entering the clinical realm at an unprecedented rate. In this review, we summarize the general properties of Hdacs/Sirts and the research that has revealed their essential functions in bone forming cells (e.g., osteoblasts and chondrocytes) and bone resorbing osteoclasts. Finally, we offer predictions on future research in this area and the utility of this knowledge for orthopedic applications and bone tissue engineering.
Collapse
Affiliation(s)
- Elizabeth W Bradley
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| | - Lomeli R Carpio
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| | - Andre J van Wijnen
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| | - Meghan E McGee-Lawrence
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| | - Jennifer J Westendorf
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| |
Collapse
|
35
|
miR-203 Acts as a Tumor Suppressor Gene in Osteosarcoma by Regulating RAB22A. PLoS One 2015; 10:e0132225. [PMID: 26382657 PMCID: PMC4575138 DOI: 10.1371/journal.pone.0132225] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/11/2015] [Indexed: 12/25/2022] Open
Abstract
microRNAs (miRNAs), small noncoding RNAs of 19–25 nt, play an important roles in the pathological processes of tumorigenesis. The object of this study was to study the expression and function of miR-203 and to found its target gene in osteosarcoma. In our study, we found the expression level of miR-203 was significantly downregulated in osteosarcoma cell lines and tissues. In addition, overexpression of miR-203 inhibited the osteosarcoma cell proliferation and migration and inhibited Mesenchymal-to-Epithelial reversion Transition (MErT). Moreover, we identified RAB22A as a direct target of miR-203 and RAB22A overexpression blocks the roles of miR-203 in osteosarcoma cell. Furthermore, we demonstrated that RAB22A expression was upregulated in human osteosarcoma cell lines and tissues. Take together, our results demonstrated that miR-203 act as a tumor suppressor miRNA through regulating RAB22A expression and suggested its involvement in osteosarcoma progression and carcinogenesis.
Collapse
|
36
|
Scott MC, Sarver AL, Tomiyasu H, Cornax I, Van Etten J, Varshney J, O'Sullivan MG, Subramanian S, Modiano JF. Aberrant Retinoblastoma (RB)-E2F Transcriptional Regulation Defines Molecular Phenotypes of Osteosarcoma. J Biol Chem 2015; 290:28070-28083. [PMID: 26378234 DOI: 10.1074/jbc.m115.679696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/22/2022] Open
Abstract
We previously identified two distinct molecular subtypes of osteosarcoma through gene expression profiling. These subtypes are associated with distinct tumor behavior and clinical outcomes. Here, we describe mechanisms that give rise to these molecular subtypes. Using bioinformatic analyses, we identified a significant association between deregulation of the retinoblastoma (RB)-E2F pathway and the molecular subtype with worse clinical outcomes. Xenotransplantation models recapitulated the corresponding behavior for each osteosarcoma subtype; thus, we used cell lines to validate the role of the RB-E2F pathway in regulating the prognostic gene signature. Ectopic RB resets the patterns of E2F regulated gene expression in cells derived from tumors with worse clinical outcomes (molecular phenotype 2) to those comparable with those observed in cells derived from tumors with less aggressive outcomes (molecular phenotype 1), providing a functional association between RB-E2F dysfunction and altered gene expression in osteosarcoma. DNA methyltransferase and histone deacetylase inhibitors similarly reset the transcriptional state of the molecular phenotype 2 cells from a state associated with RB deficiency to one seen with RB sufficiency. Our data indicate that deregulation of RB-E2F pathway alters the epigenetic landscape and biological behavior of osteosarcoma.
Collapse
Affiliation(s)
- Milcah C Scott
- Animal Cancer Care and Research Program; Departments of Veterinary Clinical Sciences; Masonic Cancer Center
| | - Aaron L Sarver
- Animal Cancer Care and Research Program; Departments of Veterinary Clinical Sciences
| | - Hirotaka Tomiyasu
- Animal Cancer Care and Research Program; Departments of Veterinary Clinical Sciences; Masonic Cancer Center
| | - Ingrid Cornax
- Animal Cancer Care and Research Program; Masonic Cancer Center; Veterinary Population Medicine
| | - Jamie Van Etten
- Masonic Cancer Center; Department of Surgery, School of Medicine
| | - Jyotika Varshney
- Animal Cancer Care and Research Program; Department of Surgery, School of Medicine; Veterinary Medicine Graduate Program, College of Veterinary Medicine
| | - M Gerard O'Sullivan
- Animal Cancer Care and Research Program; Masonic Cancer Center; Veterinary Population Medicine
| | - Subbaya Subramanian
- Animal Cancer Care and Research Program; Masonic Cancer Center; Department of Surgery, School of Medicine
| | - Jaime F Modiano
- Animal Cancer Care and Research Program; Departments of Veterinary Clinical Sciences; Masonic Cancer Center; Stem Cell Institute; Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455.
| |
Collapse
|
37
|
Ali SR, Humphreys KJ, McKinnon RA, Michael MZ. Impact of Histone Deacetylase Inhibitors on microRNA Expression and Cancer Therapy: A Review. Drug Dev Res 2015; 76:296-317. [PMID: 26303212 DOI: 10.1002/ddr.21268] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromatin-modifying drugs, such as histone deacetylase inhibitors (HDACi), have shown potential as cancer therapeutics, either alone or in combination with other therapies. HDACi have the ability to reverse aberrant epigenetic modifications associated with cancer, namely dysregulated histone acetylation. There are currently three FDA approved HDACi; vorinostat, romidepsin, and panobinostat. Epigenetic modifications can regulate the expression of protein coding genes, and in addition can alter expression of microRNA (miRNA) genes. Many miRNAs play key roles in cell proliferation and apoptosis, and are commonly dysregulated in cancer states. A number of in vitro and in vivo studies have demonstrated the ability of chromatin-modifying drugs to alter miRNA expression, which may provide the basis for further investigation of miRNAs as therapeutic targets or as biomarkers of drug response. This review summarises findings from studies investigating the effects of HDACi on miRNA expression, as well as key clinical trials involving HDACi. Understanding how chromatin-modifying drugs epigenetically modulate miRNA genes provides further insight into the cellular mechanisms that deliver therapeutic responses, and may assist in refining treatment strategies.
Collapse
Affiliation(s)
- Saira R Ali
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Karen J Humphreys
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Ross A McKinnon
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, South Australia, Australia.,Department of Gastroenterology and Hepatology, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
38
|
Fulkerson CM, Dhawan D, Jones DR, Marquez VE, Jones PA, Wang Z, Wu Q, Klaunig JE, Fourez LM, Bonney PL, Knapp DW. Pharmacokinetics and toxicity of the novel oral demethylating agent zebularine in laboratory and tumor bearing dogs. Vet Comp Oncol 2015; 15:226-236. [PMID: 26178438 DOI: 10.1111/vco.12159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to determine the plasma pharmacokinetics (PK) and toxicity of zebularine, an oral cytidine analog with demethylating activity, in dogs. Plasma zebularine concentrations were determined by HPLC-MS/MS following an oral zebularine dose of 8 or 4 mg kg-1 . Plasma zebularine clearance was constant. Mean maximum concentration (Cmax ) was 23 ± 4.8 and 8.6 ± 1.4 µM following 8 and 4 mg kg-1 , respectively. Mean half-life was 5.7 ± 0.84 and 7.1 ± 2.1 following 8 and 4 mg kg-1 , respectively. A single 8 mg kg-1 dose was well tolerated. Daily 4 mg kg-1 treatment in three laboratory dogs resulted in grade 4 neutropenia (n = 3), grade 1 anorexia (n = 2) and grade 1 or 2 dermatologic changes (n = 2). All adverse events resolved with supportive care. A 4 mg kg-1 dose every 21 days was well tolerated. A follow-up dose escalation study is in progress with a lower starting dose.
Collapse
Affiliation(s)
- C M Fulkerson
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - D Dhawan
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - D R Jones
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - V E Marquez
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - P A Jones
- Van Adel Research Institute, Grand Rapids, MI, USA
| | - Z Wang
- Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Q Wu
- Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN, USA
| | - J E Klaunig
- Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN, USA
| | - L M Fourez
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - P L Bonney
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - D W Knapp
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, West Lafayette, IN, USA
| |
Collapse
|
39
|
Klopfleisch R, Kohn B, Gruber AD. Mechanisms of tumour resistance against chemotherapeutic agents in veterinary oncology. Vet J 2015; 207:63-72. [PMID: 26526523 DOI: 10.1016/j.tvjl.2015.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022]
Abstract
Several classes of chemotherapy drugs are used as first line or adjuvant treatment of the majority of tumour types in veterinary oncology. However, some types of tumour are intrinsically resistant to several anti-cancer drugs, and others, while initially sensitive, acquire resistance during treatment. Chemotherapy often significantly prolongs survival or disease free interval, but is not curative. The exact mechanisms behind intrinsic and acquired chemotherapy resistance are unknown for most animal tumours, but there is increasing knowledge on the mechanisms of drug resistance in humans and a few reports on molecular changes in resistant canine tumours have emerged. In addition, approaches to overcome or prevent chemotherapy resistance are becoming available in humans and, given the overlaps in molecular alterations between human and animal tumours, these may also be relevant in veterinary oncology. This review provides an overview of the current state of research on general chemotherapy resistance mechanisms, including drug efflux, DNA repair, apoptosis evasion and tumour stem cells. The known resistance mechanisms in animal tumours and the potential of these findings for improving treatment efficacy in veterinary oncology are also explored.
Collapse
Affiliation(s)
- R Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany.
| | - B Kohn
- Small Animal Clinic, Freie Universität Berlin, Oertzenweg 19 b, 14163 Berlin, Germany
| | - A D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany
| |
Collapse
|
40
|
Xue Z, Zhao J, Niu L, An G, Guo Y, Ni L. Up-Regulation of MiR-300 Promotes Proliferation and Invasion of Osteosarcoma by Targeting BRD7. PLoS One 2015; 10:e0127682. [PMID: 26010572 PMCID: PMC4444266 DOI: 10.1371/journal.pone.0127682] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
Increasing reports suggest that deregulated microRNAs (miRNAs) might provide novel therapeutic targets for cancers. However, the expression and function of miR-300 in osteosarcoma is still unknown. In our study, we found that the expression of miR-300 was up-regulated in osteosarcoma tissues and cells compared with paired adjacent non-tumor bone tissues and osteoblastic cells using RT-qPCR. The enforced expression of miR-300 could promote cell proliferation, invasion and epithelial-mesenchymal transition (EMT). Moreover, we identified that bromodomain-containing protein 7 (BRD7), a new tumor suppressor gene, was a direct target of miR-300. Ectopic expression of BRD7 could significantly inhibit miR-300-promoted proliferation, invasion and EMT. Therefore, our results identify an important role for miR-300 in osteosarcoma through regulating BRD7 expression.
Collapse
Affiliation(s)
- Zhen Xue
- Department of Orthopaedic Surgery, The Affiliated No.2 Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
- * E-mail:
| | - Jindong Zhao
- Department of Orthopaedic Surgery, the Fifth Hospital of Harbin City, Harbin, Heilongjiang Province, 150040, China
| | - Liyuan Niu
- Department of Physical diagnosis, The Affiliated Hospital of Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Gang An
- Department of Orthopaedic Surgery, The Affiliated No.2 Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Yashan Guo
- Department of Orthopaedic Surgery, The Affiliated No.2 Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Linying Ni
- Department of Orthopaedic Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| |
Collapse
|
41
|
Foley JM, Scholten DJ, Monks NR, Cherba D, Monsma DJ, Davidson P, Dylewski D, Dykema K, Winn ME, Steensma MR. Anoikis-resistant subpopulations of human osteosarcoma display significant chemoresistance and are sensitive to targeted epigenetic therapies predicted by expression profiling. J Transl Med 2015; 13:110. [PMID: 25889105 PMCID: PMC4419490 DOI: 10.1186/s12967-015-0466-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/17/2015] [Indexed: 01/27/2023] Open
Abstract
Background Osteosarcoma (OS) is the most common type of solid bone cancer, with latent metastasis being a typical mode of disease progression and a major contributor to poor prognosis. For this to occur, cells must resist anoikis and be able to recapitulate tumorigenesis in a foreign microenvironment. Finding novel approaches to treat osteosarcoma and target those cell subpopulations that possess the ability to resist anoikis and contribute to metastatic disease is imperative. Here we investigate anchorage-independent (AI) cell growth as a model to better characterize anoikis resistance in human osteosarcoma while using an expression profiling approach to identify and test targetable signaling pathways. Methods Established human OS cell lines and patient-derived human OS cell isolates were subjected to growth in either adherent or AI conditions using Ultra-Low Attachment plates in identical media conditions. Growth rate was assessed using cell doubling times and chemoresistance was assessed by determining cell viability in response to a serial dilution of either doxorubicin or cisplatin. Gene expression differences were examined using quantitative reverse-transcription PCR and microarray with principal component and pathway analysis. In-vivo OS xenografts were generated by either subcutaneous or intratibial injection of adherent or AI human OS cells into athymic nude mice. Statistical significance was determined using student’s t-tests with significance set at α = 0.05. Results We show that AI growth results in a global gene expression profile change accompanied by significant chemoresistance (up to 75 fold, p < 0.05). AI cells demonstrate alteration of key mediators of mesenchymal differentiation (β-catenin, Runx2), stemness (Sox2), proliferation (c-myc, Akt), and epigenetic regulation (HDAC class 1). AI cells were equally tumorigenic as their adherent counterparts, but showed a significantly decreased rate of growth in-vitro and in-vivo (p < 0.05). Treatment with the pan-histone deacetylase inhibitor vorinostat and the DNA methyltransferase inhibitor 5-azacytidine mitigated AI growth, while 5-azacytidine sensitized anoikis-resistant cells to doxorubicin (p < 0.05). Conclusions These data demonstrate remarkable plasticity in anoikis-resistant human osteosarcoma subpopulations accompanied by a rapid development of chemoresistance and altered growth rates mirroring the early stages of latent metastasis. Targeting epigenetic regulation of this process may be a viable therapeutic strategy. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0466-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica M Foley
- Helen DeVos Children's Hospital, Spectrum Health System, Grand Rapids, MI, USA.
| | - Donald J Scholten
- Van Andel Research Institute, Grand Rapids, MI, USA. .,Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| | - Noel R Monks
- Van Andel Research Institute, Grand Rapids, MI, USA.
| | - David Cherba
- Van Andel Research Institute, Grand Rapids, MI, USA.
| | | | | | | | - Karl Dykema
- Van Andel Research Institute, Grand Rapids, MI, USA.
| | - Mary E Winn
- Van Andel Research Institute, Grand Rapids, MI, USA.
| | - Matthew R Steensma
- Helen DeVos Children's Hospital, Spectrum Health System, Grand Rapids, MI, USA. .,Van Andel Research Institute, Grand Rapids, MI, USA. .,Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
42
|
Deguelin inhibits the migration and invasion of U-2 OS human osteosarcoma cells via the inhibition of matrix metalloproteinase-2/-9 in vitro. Molecules 2014; 19:16588-608. [PMID: 25322282 PMCID: PMC6271177 DOI: 10.3390/molecules191016588] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma is the most common malignant primary bone tumor in children and young adults and lung metastasis is the main cause of death in those patients. Deguelin, a naturally occurring rotenoid, is known to be an Akt inhibitor and to exhibit cytotoxic effects, including antiproliferative and anticarcinogenic activities, in several cancers. In the present study, we determined if deguelin would inhibit migration and invasion in U-2 OS human osteosarcoma cells. Deguelin significantly inhibited migration and invasion of U-2 OS human osteosarcoma cells which was associated with a reduction of activities of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9). Furthermore, results from western blotting indicated that deguelin decreased the cell proliferation and cell growth-associated protein levels, such as SOS1, PKC, Ras, PI3K, p-AKT(Ser473), IRE-1α, MEKK3, iNOS, COX2, p-ERK1/2, p-JNK1/2, p-p38; the cell motility and focal adhesion-associated protein levels, such as Rho A, FAK, ROCK-1; the invasion-associated protein levels, such as TIMP1, uPA, MMP-2. MMP-9, MMP-13, MMP-1 and VEGF in U-2 OS cells. Confocal microscopy revealed that deguelin reduced NF-κB p65, Rho A and ROCK-1 protein levels in cytosol. MMP-7, MMP-9 and Rho A mRNA levels were suppressed by deguelin. These in vitro results provide evidence that deguelin may have potential as a novel anti-cancer agent for the treatment of osteosarcoma and provides the rationale for in vivo studies in animal models.
Collapse
|
43
|
Liu Z, Zhang G, Li J, Liu J, Lv P. The tumor-suppressive microRNA-135b targets c-myc in osteoscarcoma. PLoS One 2014; 9:e102621. [PMID: 25025684 PMCID: PMC4099365 DOI: 10.1371/journal.pone.0102621] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/20/2014] [Indexed: 01/30/2023] Open
Abstract
Osteosarcoma is the most common primary tumor of the bone. It leads to many deaths because of its rapid proliferation and metastasis. Recent studies have shown that microRNAs are important gene regulators that are involved in various cancer-related processes. In this study, we found that miR-135b was down-regulated in both osteoscarcoma patient tumor tissues and osteoscarcoma cell lines in comparison to paired adjacent non-tumor bone tissue. We observed that a lower level of miR-135b was associated with metastasis. The ectopic expression of miR-135b markedly suppressed osteoscarcoma cell proliferation, migration, and invasion. Conversely, the inhibition of miR-135b expression dramatically accelerated cell proliferation, migration, and invasion. The forced expression of miR-135b in osteosarcoma cells resulted in a significant reduction in the protein level of c-Myc and repressed the activity of a luciferase reporter that contained the 3′-untranslated region of the c-Myc mRNA. These effects were abolished by the mutation of the predicted miR-135b-binding site, which indicates that c-Myc may be a miR-135b target gene. Moreover, the ectopic expression of c-Myc partially reversed the inhibition of cell proliferation and invasion that was caused by miR-135b. These data therefore suggest that miR-135b may function as a tumor suppressor to regulate osteosarcoma cell proliferation and invasion through a mechanism that targets the c-Myc oncogene. These findings indicate that miR-135b may play a role in the pathogenesis of osteosarcoma.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Orthopedic Surgery, Peking University Shougang Hospital, Beijing, China
- * E-mail:
| | - Guangwu Zhang
- Department of Orthopedic Surgery, Peking University Shougang Hospital, Beijing, China
| | - Jian Li
- Department of Orthopedic Surgery, Peking University Shougang Hospital, Beijing, China
| | - Jiabang Liu
- Department of Orthopedic Surgery, Peking University Shougang Hospital, Beijing, China
| | - Pengfeng Lv
- Department of Orthopedic Surgery, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
44
|
Zhang P, Pollock RE. Epigenetic Regulators: New Therapeutic Targets for Soft Tissue Sarcoma. ACTA ACUST UNITED AC 2014; 1. [PMID: 26078988 DOI: 10.14800/ccm.191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Soft tissue sarcoma is a malignancy that develops from human soft tissues such as muscle, nerve, fat, and blood vessels. The World Health Organization classification comprises about 50 different histologic types of soft tissue sarcoma. Soft tissue sarcoma is treated most often with surgery. Chemotherapy and radiotherapy have shown only minor effects on patient survival in this disease. The overall 5-year survival rate of soft tissue sarcoma is 50%; it has not changed for the past several decades. A new class of therapeutic targets for soft tissue sarcoma was identified recently. Epigenetic regulators, such as DNA methyltransferases, histone deacetylases, and histone-modifying enzyme enhancer of zeste homolog 2, have been found to be involved in pathogenesis of various soft tissue sarcomas. Small-molecule inhibitors of these epigenetic regulators may provide a new targeted therapy approach to soft tissue sarcomas in the future.
Collapse
Affiliation(s)
- Pingyu Zhang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Raphael E Pollock
- Department of Surgical Oncology, Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
45
|
Barøy T, Kresse SH, Skårn M, Stabell M, Castro R, Lauvrak S, Llombart-Bosch A, Myklebost O, Meza-Zepeda LA. Reexpression of LSAMP inhibits tumor growth in a preclinical osteosarcoma model. Mol Cancer 2014; 13:93. [PMID: 24885297 PMCID: PMC4029956 DOI: 10.1186/1476-4598-13-93] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/11/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Osteosarcomas are the most common primary malignant tumors of bone, showing complex chromosomal rearrangements with multiple gains and losses. A frequent deletion within the chromosomal region 3q13.31 has been identified by us and others, and is mainly reported to be present in osteosarcomas. The purpose of the study was to further characterize the frequency and the extent of the deletion in an extended panel of osteosarcoma samples, and the expression level of the affected genes within the region. We have identified LSAMP as the target gene for the deletion, and have studied the functional implications of LSAMP-reexpression. METHODS LSAMP copy number, expression level and protein level were investigated by quantitative PCR and western blotting in an osteosarcoma panel. The expression of LSAMP was restored in an osteosarcoma cell line, and differences in proliferation rate, tumor formation, gene expression, migration rate, differentiation capabilities, cell cycle distribution and apoptosis were investigated by metabolic dyes, tumor formation in vivo, gene expression profiling, time-lapse photography, differentiation techniques and flow cytometry, respectively. RESULTS We found reduced copy number of LSAMP in 45/76 osteosarcoma samples, reduced expression level in 25/42 samples and protein expression in 9/42 samples. By restoring the expression of LSAMP in a cell line with a homozygous deletion of the gene, the proliferation rate in vitro was significantly reduced and tumor growth in vivo was significantly delayed. In response to reexpression of LSAMP, mRNA expression profiling revealed consistent upregulation of the genes hairy and enhancer of split 1 (HES1), cancer/testis antigen 2 (CTAG2) and kruppel-like factor 10 (KLF10). CONCLUSIONS The high frequency and the specificity of the deletion indicate that it is important for the development of osteosarcomas. The deletion targets the tumor suppressor LSAMP, and based on the functional evidence, the tumor suppressor function of LSAMP is most likely exerted by reducing the proliferation rate of the tumor cells, possibly by indirectly upregulating one or more of the genes HES1, CTAG2 or KLF10. To our knowledge, this study describes novel functions of LSAMP, a first step to understanding the functional role of this specific deletion in osteosarcomas.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/mortality
- Bone Neoplasms/pathology
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Line, Tumor
- Cell Proliferation/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 3
- Early Growth Response Transcription Factors/genetics
- Early Growth Response Transcription Factors/metabolism
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Gene Deletion
- Gene Dosage
- Gene Expression Regulation, Neoplastic
- Genetic Complementation Test
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Homozygote
- Humans
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Male
- Mutation Rate
- Osteosarcoma/genetics
- Osteosarcoma/metabolism
- Osteosarcoma/mortality
- Osteosarcoma/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Survival Analysis
- Transcription Factor HES-1
Collapse
Affiliation(s)
- Tale Barøy
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Stine H Kresse
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Magne Skårn
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Marianne Stabell
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Russell Castro
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Silje Lauvrak
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | | | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
- Genomics Core Facility, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
46
|
Li B, Ye Z. Epigenetic alterations in osteosarcoma: promising targets. Mol Biol Rep 2014; 41:3303-15. [PMID: 24500341 DOI: 10.1007/s11033-014-3193-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 01/22/2014] [Indexed: 01/10/2023]
Abstract
Cancer is being reinterpreted due to recent discoveries related to epigenetic regulation during development, and the importance of epigenetic mechanisms in initiation and progression of cancer has been further highlighted by the recent explosion in medical information. Osteosarcoma is highly genetically unstable, and current therapeutic regimens are subject to chemoresistance and tumor relapse. Understanding the epigenetic mechanisms in the pathogenesis of osteosarcoma will provide novel avenues for cancer therapy. In this review, we examine the epigenetic alterations in gene expression in osteosarcoma, and discuss the utilization of epigenetic regulation therapy in treatment against osteosarcoma.
Collapse
Affiliation(s)
- Binghao Li
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310008, China
| | | |
Collapse
|
47
|
Lucon DR, Rocha CDS, Craveiro RB, Dilloo D, Cardinalli IA, Cavalcanti DP, Aguiar SDS, Maurer-Morelli C, Yunes JA. Downregulation of 14q32 microRNAs in Primary Human Desmoplastic Medulloblastoma. Front Oncol 2013; 3:254. [PMID: 24093088 PMCID: PMC3782711 DOI: 10.3389/fonc.2013.00254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/10/2013] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma (MB) is one of the most common pediatric cancers, likely originating from abnormal development of cerebellar progenitor neurons. MicroRNA (miRNA) has been shown to play an important role in the development of the central nervous system. Microarray analysis was used to investigate miRNA expression in desmoplastic MB from patients diagnosed at a young age (1 or 2 years old). Normal fetal or newborn cerebellum was used as control. A total of 84 differentially expressed miRNAs (64 downregulated and 20 upregulated) were found. Most downregulated miRNAs (32/64) were found to belong to the cluster of miRNAs at the 14q32 locus, suggesting that this miRNA locus is regulated as a module in MB. Possible mechanisms of 14q32 miRNAs downregulation were investigated by the analysis of publicly available gene expression data sets. First, expression of estrogen-related receptor-γ (ESRRG), a reported positive transcriptional regulator of some 14q32 miRNAs, was found downregulated in desmoplastic MB. Second, expression of the parentally imprinted gene MEG3 was lower in MB in comparison to normal cerebellum, suggesting a possible epigenetic silencing of the 14q32 locus. miR-129-5p (11p11.2/7q32.1), miR-206 (6p12.2), and miR-323-3p (14q32.2), were chosen for functional studies in DAOY cells. Overexpression of miR-129-5p using mimics decreased DAOY proliferation. No effect was found with miR-206 or miR-323 mimics.
Collapse
Affiliation(s)
- Danielle Ribeiro Lucon
- Centro Infantil Boldrini , Campinas , Brazil ; Departamento de Genética Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas , Campinas , Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Blattmann C, Thiemann M, Stenzinger A, Christmann A, Roth E, Ehemann V, Debus J, Kulozik AE, Weichert W, Huber PE, Oertel S, Abdollahi A. Radiosensitization by histone deacetylase inhibition in an osteosarcoma mouse model. Strahlenther Onkol 2013; 189:957-66. [PMID: 23801068 DOI: 10.1007/s00066-013-0372-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/29/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Osteosarcomas (OS) are highly malignant and radioresistant tumors. Histone deacetylase inhibitors (HDACi) constitute a novel class of anticancer agents. We sought to investigate the effect of combined treatment with suberoylanilide hydroxamic acid (SAHA) and radiotherapy in OS in vivo. METHODS Clonogenic survival of human OS cell lines as well as tumor growth delay of OS xenografts were tested after treatment with either vehicle, radiotherapy (XRT), SAHA, or XRT and SAHA. Tumor proliferation, necrosis, microvascular density, apoptosis, and p53/p21 were monitored by immunohistochemistry. The CD95 pathway was performed by flow cytometry, caspase (3/7/8) activity measurements, and functional inhibition of CD95 death signaling. RESULTS Combined treatment with SAHA and XRT markedly reduced the surviving fraction of OS cells as compared to XRT alone. Likewise, dual therapy significantly inhibited OS tumor growth in vivo as compared to XRT alone, reflected by reduced tumor proliferation, impaired angiogenesis, and increased apoptosis. Addition of HDACi to XRT led to elevated p53, p21, CD95, and CD95L expression. Inhibition of CD95 signaling reduced HDACi- and XRT-induced apoptosis. CONCLUSION Our data show that HDACi increases the radiosensitivity of osteosarcoma cells at least in part via ligand-induced apoptosis. HDACi thus emerge as potentially useful treatment components of OS.
Collapse
Affiliation(s)
- C Blattmann
- Pädiatrie 5, Olgahospital, Bismarckstr. 8, 70176, Stuttgart, Germany,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
In recent years, histone deacetylase inhibitors (HDACis), a novel class of agents that targets mechanistic abnormalities in cancers, have shown promising anti-cancer activity in both hematological and solid cancers. Among them, vorinostat was approved by FDA to treat cutaneous T-cell lymphoma and is being evaluated in other cancer types. Although initially designed to target histone deacetylase, vorinostat were found to have additional effects on other epigenetic machineries, for example acetylation of non-HDAC, methylation and microRNA (miRNA) expression. In this review, we examined all known mechanisms of action for vorinostat. We also summarized the current findings on the `crosstalk' between different epigenetic machineries. These findings suggest that improved understanding of epigenetic regulatory role of vorinostat and/or other HDACis will provide novel insights in improving utilization of this class of novel agents.
Collapse
Affiliation(s)
- Jean Lee
- Department of Medicine, University of Chicago, USA
| | | |
Collapse
|
50
|
Sustained Low-Dose Treatment with the Histone Deacetylase Inhibitor LBH589 Induces Terminal Differentiation of Osteosarcoma Cells. Sarcoma 2013; 2013:608964. [PMID: 23533324 PMCID: PMC3603321 DOI: 10.1155/2013/608964] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/25/2013] [Indexed: 11/17/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) were identified nearly four decades ago based on their ability to induce cellular differentiation. However, the clinical development of these compounds as cancer therapies has focused on their capacity to induce apoptosis in hematologic and lymphoid malignancies, often in combination with conventional cytotoxic agents. In many cases, HDACi doses necessary to induce these effects result in significant toxicity. Since osteosarcoma cells express markers of terminal osteoblast differentiation in response to DNA methyltransferase inhibitors, we reasoned that the epigenetic reprogramming capacity of HDACi might be exploited for therapeutic benefit. Here, we show that continuous exposure of osteosarcoma cells to low concentrations of HDACi LBH589 (Panobinostat) over a three-week period induces terminal osteoblast differentiation and irreversible senescence without inducing cell death. Remarkably, transcriptional profiling revealed that HDACi therapy initiated gene signatures characteristic of chondrocyte and adipocyte lineages in addition to marked upregulation of mature osteoblast markers. In a mouse xenograft model, continuous low dose treatment with LBH589 induced a sustained cytostatic response accompanied by induction of mature osteoblast gene expression. These data suggest that the remarkable capacity of osteosarcoma cells to differentiate in response to HDACi therapy could be exploited for therapeutic benefit without inducing systemic toxicity.
Collapse
|