1
|
Gray DA. Sexual selection and 'species recognition' revisited: serial processing and order-of-operations in mate choice. Proc Biol Sci 2022; 289:20212687. [PMID: 35317675 PMCID: PMC8941403 DOI: 10.1098/rspb.2021.2687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Following the modern synthesis, mating signals were thought of principally as species recognition traits, a view later challenged by a burgeoning interest in sexual selection-specifically mate choice. In the 1990s, these different signal functions were proposed to represent a single process driven by the shape of female preference functions across both intra- and interspecific signal space. However, the properties of reliable 'recognition' signals (stereotyped; low intraspecific variation) and informative 'quality' signals (condition dependent; high intraspecific variation) seem at odds, perhaps favouring different signal components for different functions. Surprisingly, the idea that different components of mating signals are evaluated in series, first to recognize generally compatible mates and then to select for quality, has never been explicitly tested. Here I evaluate patterns of (i) intraspecific signal variation, (ii) female preference function shape and (iii) phylogenetic signal for male cricket call components known to be processed in series. The results show that signal components processed first tend to have low variation, closed preference functions and low phylogenetic signal, whereas signal components processed later show the opposite, suggesting that mating signal evaluation follows an 'order-of-operations'. Applicability of this finding to diverse groups of organisms and sensory modalities is discussed.
Collapse
Affiliation(s)
- David A Gray
- Department of Biology, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| |
Collapse
|
2
|
Clemens J, Schöneich S, Kostarakos K, Hennig RM, Hedwig B. A small, computationally flexible network produces the phenotypic diversity of song recognition in crickets. eLife 2021; 10:e61475. [PMID: 34761750 PMCID: PMC8635984 DOI: 10.7554/elife.61475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/03/2021] [Indexed: 01/31/2023] Open
Abstract
How neural networks evolved to generate the diversity of species-specific communication signals is unknown. For receivers of the signals, one hypothesis is that novel recognition phenotypes arise from parameter variation in computationally flexible feature detection networks. We test this hypothesis in crickets, where males generate and females recognize the mating songs with a species-specific pulse pattern, by investigating whether the song recognition network in the cricket brain has the computational flexibility to recognize different temporal features. Using electrophysiological recordings from the network that recognizes crucial properties of the pulse pattern on the short timescale in the cricket Gryllus bimaculatus, we built a computational model that reproduces the neuronal and behavioral tuning of that species. An analysis of the model's parameter space reveals that the network can provide all recognition phenotypes for pulse duration and pause known in crickets and even other insects. Phenotypic diversity in the model is consistent with known preference types in crickets and other insects, and arises from computations that likely evolved to increase energy efficiency and robustness of pattern recognition. The model's parameter to phenotype mapping is degenerate - different network parameters can create similar changes in the phenotype - which likely supports evolutionary plasticity. Our study suggests that computationally flexible networks underlie the diverse pattern recognition phenotypes, and we reveal network properties that constrain and support behavioral diversity.
Collapse
Affiliation(s)
- Jan Clemens
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck SocietyGöttingenGermany
- BCCN GöttingenGöttingenGermany
| | - Stefan Schöneich
- University of Cambridge, Department of ZoologyCambridgeUnited Kingdom
- Friedrich-Schiller-University Jena, Institute for Zoology and Evolutionary ResearchJenaGermany
| | - Konstantinos Kostarakos
- University of Cambridge, Department of ZoologyCambridgeUnited Kingdom
- Institute of Biology, University of GrazUniversitätsplatzAustria
| | - R Matthias Hennig
- Humboldt-Universität zu Berlin, Department of BiologyPhilippstrasseGermany
| | - Berthold Hedwig
- University of Cambridge, Department of ZoologyCambridgeUnited Kingdom
| |
Collapse
|
3
|
Kaláb O, Musiolek D, Rusnok P, Hurtik P, Tomis M, Kočárek P. Estimating the effect of tracking tag weight on insect movement using video analysis: A case study with a flightless orthopteran. PLoS One 2021; 16:e0255117. [PMID: 34293059 PMCID: PMC8297838 DOI: 10.1371/journal.pone.0255117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
In this study, we describe an inexpensive and rapid method of using video analysis and identity tracking to measure the effects of tag weight on insect movement. In a laboratory experiment, we assessed the tag weight and associated context-dependent effects on movement, choosing temperature as a factor known to affect insect movement and behavior. We recorded the movements of groups of flightless adult crickets Gryllus locorojo (Orthoptera:Gryllidae) as affected by no tag (control); by light, medium, or heavy tags (198.7, 549.2, and 758.6 mg, respectively); and by low, intermediate, or high temperatures (19.5, 24.0, and 28.3°C, respectively). Each individual in each group was weighed before recording and was recorded for 3 consecutive days. The mean (± SD) tag mass expressed as a percentage of body mass before the first recording was 26.8 ± 3.7% with light tags, 72 ± 11.2% with medium tags, and 101.9 ± 13.5% with heavy tags. We found that the influence of tag weight strongly depended on temperature, and that the negative effects on movement generally increased with tag weight. At the low temperature, nearly all movement properties were negatively influenced. At the intermediate and high temperatures, the light and medium tags did not affect any of the movement properties. The continuous 3-day tag load reduced the average movement speed only for crickets with heavy tags. Based on our results, we recommend that researchers consider or investigate the possible effects of tags before conducting any experiment with tags in order to avoid obtaining biased results.
Collapse
Affiliation(s)
- Oto Kaláb
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - David Musiolek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavel Rusnok
- Institute for Research and Applications of Fuzzy Modeling, Centre of Excellence IT4Innovations, University of Ostrava, Ostrava, Czechia
| | - Petr Hurtik
- Institute for Research and Applications of Fuzzy Modeling, Centre of Excellence IT4Innovations, University of Ostrava, Ostrava, Czechia
| | - Martin Tomis
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Petr Kočárek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| |
Collapse
|
4
|
Baker CA, Clemens J, Murthy M. Acoustic Pattern Recognition and Courtship Songs: Insights from Insects. Annu Rev Neurosci 2019; 42:129-147. [PMID: 30786225 DOI: 10.1146/annurev-neuro-080317-061839] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Across the animal kingdom, social interactions rely on sound production and perception. From simple cricket chirps to more elaborate bird songs, animals go to great lengths to communicate information critical for reproduction and survival via acoustic signals. Insects produce a wide array of songs to attract a mate, and the intended receivers must differentiate these calls from competing sounds, analyze the quality of the sender from spectrotemporal signal properties, and then determine how to react. Insects use numerically simple nervous systems to analyze and respond to courtship songs, making them ideal model systems for uncovering the neural mechanisms underlying acoustic pattern recognition. We highlight here how the combination of behavioral studies and neural recordings in three groups of insects-crickets, grasshoppers, and fruit flies-reveals common strategies for extracting ethologically relevant information from acoustic patterns and how these findings might translate to other systems.
Collapse
Affiliation(s)
- Christa A Baker
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA;
| | - Jan Clemens
- University Medical Center Goettingen, Max-Planck-Society, European Neuroscience Institute, D-37077 Goettingen, Germany;
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
5
|
Gray DA, Gabel E, Blankers T, Hennig RM. Multivariate female preference tests reveal latent perceptual biases. Proc Biol Sci 2017; 283:rspb.2016.1972. [PMID: 27807265 DOI: 10.1098/rspb.2016.1972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/10/2016] [Indexed: 11/12/2022] Open
Abstract
The question of why males of many species produce elaborate mating displays has now been largely resolved: females prefer to mate with males that produce such displays. However, the question of why females prefer such displays has been controversial, with an emerging consensus that such displays often provide information to females about the direct fitness benefits that males provide to females and/or the indirect fitness benefits provided to offspring. Alternative explanations, such as production of arbitrarily attractive sons or innate pre-existing female sensory or perceptual bias, have also received support in certain taxa. Here, we describe multivariate female preference functions for male acoustic traits in two chirping species of field crickets with slow pulse rates; our data reveal cryptic female preferences for long trills that have not previously been observed in other chirping species. The trill preferences are evolutionarily pre-existing in the sense that males have not (yet?) exploited them, and they coexist with chirp preferences as alternative stable states within female song preference space. We discuss escape from neuronal adaptation as a possible mechanism underlying such latent preferences.
Collapse
Affiliation(s)
- D A Gray
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - E Gabel
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - T Blankers
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - R M Hennig
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Divergence in male cricket song and female preference functions in three allopatric sister species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:347-60. [PMID: 27026021 DOI: 10.1007/s00359-016-1083-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
Multivariate female preference functions for male sexual signals have rarely been investigated, especially in a comparative context among sister species. Here we examined male signal and female preference co-variation in three closely related, but allopatric species of Gryllus crickets and quantified male song traits as well as female preferences. We show that males differ conspicuously in either one of two relatively static song traits, carrier frequency or pulse rate; female preference functions for these traits also differed, and would in combination enhance species discrimination. In contrast, the relatively dynamic song traits, chirp rate and chirp duty cycle, show minimal divergence among species and relatively greater conservation of female preference functions. Notably, among species we demonstrate similar mechanistic rules for the integration of pulse and chirp time scales, despite divergence in pulse rate preferences. As these are allopatric taxa, selection for species recognition per se is unlikely. More likely sexual selection combined with conserved properties of preference filters enabled divergent coevolution of male song and female preferences.
Collapse
|
7
|
Computational principles underlying recognition of acoustic signals in grasshoppers and crickets. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:61-71. [PMID: 25258206 DOI: 10.1007/s00359-014-0946-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
Grasshoppers and crickets independently evolved hearing organs and acoustic communication. They differ considerably in the organization of their auditory pathways, and the complexity of their songs, which are essential for mate attraction. Recent approaches aimed at describing the behavioral preference functions of females in both taxa by a simple modeling framework. The basic structure of the model consists of three processing steps: (1) feature extraction with a bank of 'LN models'-each containing a linear filter followed by a nonlinearity, (2) temporal integration, and (3) linear combination. The specific properties of the filters and nonlinearities were determined using a genetic learning algorithm trained on a large set of different song features and the corresponding behavioral response scores. The model showed an excellent prediction of the behavioral responses to the tested songs. Most remarkably, in both taxa the genetic algorithm found Gabor-like functions as the optimal filter shapes. By slight modifications of Gabor filters several types of preference functions could be modeled, which are observed in different cricket species. Furthermore, this model was able to explain several so far enigmatic results in grasshoppers. The computational approach offered a remarkably simple framework that can account for phenotypically rather different preference functions across several taxa.
Collapse
|
8
|
Hennig RM, Heller KG, Clemens J. Time and timing in the acoustic recognition system of crickets. Front Physiol 2014; 5:286. [PMID: 25161622 PMCID: PMC4130308 DOI: 10.3389/fphys.2014.00286] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 07/14/2014] [Indexed: 12/01/2022] Open
Abstract
The songs of many insects exhibit precise timing as the result of repetitive and stereotyped subunits on several time scales. As these signals encode the identity of a species, time and timing are important for the recognition system that analyzes these signals. Crickets are a prominent example as their songs are built from sound pulses that are broadcast in a long trill or as a chirped song. This pattern appears to be analyzed on two timescales, short and long. Recent evidence suggests that song recognition in crickets relies on two computations with respect to time; a short linear-nonlinear (LN) model that operates as a filter for pulse rate and a longer integration time window for monitoring song energy over time. Therefore, there is a twofold role for timing. A filter for pulse rate shows differentiating properties for which the specific timing of excitation and inhibition is important. For an integrator, however, the duration of the time window is more important than the precise timing of events. Here, we first review evidence for the role of LN-models and integration time windows for song recognition in crickets. We then parameterize the filter part by Gabor functions and explore the effects of duration, frequency, phase, and offset as these will correspond to differently timed patterns of excitation and inhibition. These filter properties were compared with known preference functions of crickets and katydids. In a comparative approach, the power for song discrimination by LN-models was tested with the songs of over 100 cricket species. It is demonstrated how the acoustic signals of crickets occupy a simple 2-dimensional space for song recognition that arises from timing, described by a Gabor function, and time, the integration window. Finally, we discuss the evolution of recognition systems in insects based on simple sensory computations.
Collapse
Affiliation(s)
- R Matthias Hennig
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin Berlin, Germany
| | - Klaus-Gerhard Heller
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin Berlin, Germany
| | - Jan Clemens
- Princeton Neuroscience Institute, Princeton University Princeton, NJ, USA
| |
Collapse
|
9
|
Clemens J, Hennig RM. Computational principles underlying the recognition of acoustic signals in insects. J Comput Neurosci 2013; 35:75-85. [PMID: 23417450 DOI: 10.1007/s10827-013-0441-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Many animals produce pulse-like signals during acoustic communication. These signals exhibit structure on two time scales: they consist of trains of pulses that are often broadcast in packets-so called chirps. Temporal parameters of the pulse and of the chirp are decisive for female preference. Despite these signals being produced by animals from many different taxa (e.g. frogs, grasshoppers, crickets, bushcrickets, flies), a general framework for their evaluation is still lacking. We propose such a framework, based on a simple and physiologically plausible model. The model consists of feature detectors, whose time-varying output is averaged over the signal and then linearly combined to yield the behavioral preference. We fitted this model to large data sets collected in two species of crickets and found that Gabor filters--known from visual and auditory physiology--explain the preference functions in these two species very well. We further explored the properties of Gabor filters and found a systematic relationship between parameters of the filters and the shape of preference functions. Although these Gabor filters were relatively short, they were also able to explain aspects of the preference for signal parameters on the longer time scale due to the integration step in our model. Our framework explains a wide range of phenomena associated with female preference for a widespread class of signals in an intuitive and physiologically plausible fashion. This approach thus constitutes a valuable tool to understand the functioning and evolution of communication systems in many species.
Collapse
Affiliation(s)
- Jan Clemens
- Behavioral Physiology Group, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | | |
Collapse
|