1
|
Seki M, Mukohda M, Tajima H, Morikita N, Imai R, Itaya K, Mizuno R, Ozaki H. Long-term treatment with the streptococcal exotoxin streptolysin O inhibits vascular smooth muscle contraction by inducing iNOS expression in endothelial cells. J Pharmacol Exp Ther 2024; 392:JPET-AR-2024-002121. [PMID: 38858090 DOI: 10.1124/jpet.124.002121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Streptolysin O (SLO), a bacterial toxin produced by common hemolytic streptococci, including Streptococcus pyogenes and resident microbiota, may be associated with inflammation in the cardiovascular system. We previously reported that short-term treatment with SLO at relatively high concentrations (10-1000 ng/mL) diminished acetylcholine-induced, endothelial-dependent relaxation in a concentration-dependent manner. However, the vascular function effects of long-term exposure to SLO at lower concentrations are poorly understood. In this study, treatment of rat aorta with endothelium with SLO (0.1-10 ng/mL) for 72 h inhibited contractions in response to norepinephrine and phenylephrine in a concentration-dependent manner, and this effect was abolished by endothelium denudation. We also observed decreased endothelium-dependent relaxation in aorta treated with a lower concentration of SLO (10 ng/mL) for 72 h. Long-term treatment with SLO (10 ng/mL) increased the expression of iNOS in aorta with endothelium but not aorta without endothelium, and the SLO-induced decrease in contraction was restored by treatment with NOS inhibitors. Pharmacologic and gene-mutant analyses further indicated that SLO-induced vascular dysfunction and iNOS upregulation are mediated through the TLR4/NOX2/ROS/p38 MAPK pathways. In vivo SLO treatment (46.8 pg/kg/min) for 7 days also diminished vascular contraction and relaxation activity in aorta with endothelium. We concluded that long-term treatment with SLO inhibits vascular contractile responses, primarily due to increased iNOS expression in the endothelium through TLR4-mediated pathways. Our present results, together with those of our previous study, suggest that endothelial cells play a key role in the pathophysiologic changes in cardiovascular function associated with long-term exposure to SLO. Significance Statement In the present study, we showed that long-term exposure to streptococcal exotoxin SLO inhibits agonist-induced contraction in rat aorta with endothelium, driven primarily by elevated iNOS production via NOX2-mediated ROS production through TLR4 activation on endothelial cells. In vivo treatment with SLO for 7 days also diminished vascular contraction and relaxation, providing evidence of possible pathophysiologic roles of SLO in endothelium-dependent vascular homeostasis.
Collapse
Affiliation(s)
| | | | | | - Nayu Morikita
- Veterinary Medicine, Okayama University of Science, Japan
| | - Ryuya Imai
- Veterinary Medicine, Okayama University of Science, Japan
| | - Kazuhide Itaya
- Veterinary Medicine, Okayama University of Science, Japan
| | - Risuke Mizuno
- Veterinary Medicine, Okayama University of Science, Japan
| | - Hiroshi Ozaki
- Veterinary Medicine, Okayama University of Science, Japan
| |
Collapse
|
2
|
Tateishi-Karimata H, Kawauchi K, Takahashi S, Sugimoto N. Development of a Pseudocellular System to Quantify Specific Interactions Determining the G-Quadruplex Function in Cells. J Am Chem Soc 2024; 146:8005-8015. [PMID: 38498910 DOI: 10.1021/jacs.3c11160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Intracellular chemical microenvironments, including ion concentrations and molecular crowding, play pivotal roles in cell behaviors, such as proliferation, differentiation, and cell death via regulation of gene expression. However, there is no method for quantitative analysis of intracellular environments due to their complexity. Here, we have developed a system for highlighting the environment inside of the cell (SHELL). SHELL is a pseudocellular system, wherein small molecules are removed from the cell and a crowded intracellular environment is maintained. SHELL offers two prominent advantages: (1) It allows for precise quantitative biochemical analysis of a specific factor, and (2) it enables the study of any cell, thereby facilitating the study of target molecule effects in various cellular environments. Here, we used SHELL to study G-quadruplex formation, an event that implicated cancer. We show that G-quadruplexes are more stable in SHELL compared with in vitro conditions. Although malignant transformation perturbs cellular K+ concentrations, environments in SHELL act as buffers against G-quadruplex destabilization at lower K+ concentrations. Notably, the buffering effect was most pronounced in SHELL derived from nonaggressive cancer cells. Stable G-quadruplexes form due to the binding of the G-quadruplex with K+ in different cancer cells. Furthermore, the observed pattern of G-quadruplex-induced transcriptional inhibition in SHELL is consistent with that in living cells at different cancer stages. Our results indicate that ion binding to G-quadruplexes regulates gene expression during pathogenesis.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Keiko Kawauchi
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
3
|
Kunishige R, Murata M, Kano F. Targeted protein degradation by Trim-Away using cell resealing coupled with microscopic image-based quantitative analysis. Front Cell Dev Biol 2022; 10:1027043. [PMID: 36601537 PMCID: PMC9806799 DOI: 10.3389/fcell.2022.1027043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
"Trim-Away" technology enables rapid degradation of endogenous proteins without prior modification of protein-coding genes or mRNAs through delivery of antibodies that target proteins of interest. Although this approach can be readily applied to almost any cytosolic protein, strategies for cytosolic antibody delivery have been limited to microinjection or electroporation, which require skill-dependent operation or specialized equipment. Thus, the development of antibody delivery methods that are convenient, scalable, and preferably do not require detachment of adherent cells is required to extend the versatility of the Trim-Away method. Here, we developed a cell resealing technique optimized for Trim-Away degradation, which uses the pore-forming toxin streptolysin O (SLO) to permeabilize the cell membrane and delivered the antibodies of interest into HEK293T, HeLa, and HK-2 cell lines. We demonstrated the ability of Trim-Away protein degradation using IKKα and mTOR as targets, and we showed the availability of the developed system in antibody screening for the Trim-Away method. Furthermore, we effectively coupled Trim-Away with cyclic immunofluorescence and microscopic image-based analysis, which enables single-cell multiplexed imaging analysis. Taking advantage of this new analysis strategy, we were able to compensate for low signal-to-noise due to cell-to-cell variation, which occurs in the Trim-Away method because of the heterogenous contents of the introduced antibody, target protein, and TRIM21 in individual cells. Therefore, the reported cell resealing technique coupled with microscopic image analysis enables Trim-Away users to elucidate target protein function and the effects of target protein degradation on various cellular functions in a more quantitative and precise manner.
Collapse
Affiliation(s)
- Rina Kunishige
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan,Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, Yokohama, Japan
| | - Masayuki Murata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan,Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, Yokohama, Japan,International Research Center for Neurointelligence, Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan,Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, Yokohama, Japan,*Correspondence: Fumi Kano,
| |
Collapse
|
4
|
Shedding light on the base-pair opening dynamics of nucleic acids in living human cells. Nat Commun 2022; 13:7143. [PMID: 36446768 PMCID: PMC9708698 DOI: 10.1038/s41467-022-34822-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
Base-pair opening is a fundamental property of nucleic acids that plays important roles in biological functions. However, studying the base-pair opening dynamics inside living cells has remained challenging. Here, to determine the base-pair opening kinetics inside living human cells, the exchange rate constant ([Formula: see text]) of the imino proton with the proton of solvent water involved in hairpin and G-quadruplex (GQ) structures is determined by the in-cell NMR technique. It is deduced on determination of [Formula: see text] values that at least some G-C base pairs of the hairpin structure and all G-G base-pairs of the GQ structure open more frequently in living human cells than in vitro. It is suggested that interactions with endogenous proteins could be responsible for the increase in frequency of base-pair opening. Our studies demonstrate a difference in dynamics of nucleic acids between in-cell and in vitro conditions.
Collapse
|
5
|
Kajii K, Shimomura A, T Higashide M, Oki M, Tsuji G. Effects of Sugars on Giant Unilamellar Vesicle Preparation, Fusion, PCR in Liposomes, and Pore Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8871-8880. [PMID: 35836326 DOI: 10.1021/acs.langmuir.2c00989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The water-in-oil emulsion transfer method was developed for preparing giant unilamellar vesicles (GUVs) and is useful for studying cellular functions under conditions that mimic cellular environments. A shortcoming of this method for encapsulating biochemical reactions is that it requires high sugar concentrations to enable the density effect to transverse the oil-water interface. In this study, we investigated the effects of sugars on GUV preparation and several biochemical reactions. We found that changing the sugar in the inner solution from sucrose to maltose or trehalose improved GUV formation. The fusion ratio of the freeze-thaw method was better in the traditional glucose-sucrose condition compared with the other examined conditions. For the inner biochemical reaction, we performed PCR in liposomes. The presence of maltose in the inner solution improved the stability of GUVs against damage caused by thermal cycles. Finally, fructose in the outer solution reduced leakage of the inner solution via pores on the membranes of GUVs. Our findings provide new insight for optimizing sugar conditions for preparing GUVs and inner GUV reactions. This could increase the utilization of GUVs as artificial cell compartment models.
Collapse
Affiliation(s)
- Kyoka Kajii
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui City 910-8507, Fukui, Japan
| | - Ayu Shimomura
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui City 910-8507, Fukui, Japan
| | - Mika T Higashide
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui City 910-8507, Fukui, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui City 910-8507, Fukui, Japan
- Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui City 910-8507, Fukui, Japan
| | - Gakushi Tsuji
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui City 910-8507, Fukui, Japan
- Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui City 910-8507, Fukui, Japan
| |
Collapse
|
6
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Guerrero PA, Murakami Y, Malik A, Seeberger PH, Kinoshita T, Varón Silva D. Rescue of Glycosylphosphatidylinositol-Anchored Protein Biosynthesis Using Synthetic Glycosylphosphatidylinositol Oligosaccharides. ACS Chem Biol 2021; 16:2297-2306. [PMID: 34618440 PMCID: PMC8609528 DOI: 10.1021/acschembio.1c00465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The attachment of proteins to the cell membrane using a glycosylphosphatidylinositol (GPI) anchor is a ubiquitous process in eukaryotic cells. Deficiencies in the biosynthesis of GPIs and the concomitant production of GPI-anchored proteins lead to a series of rare and complicated disorders associated with inherited GPI deficiencies (IGDs) in humans. Currently, there is no treatment for patients suffering from IGDs. Here, we report the design, synthesis, and use of GPI fragments to rescue the biosynthesis of GPI-anchored proteins (GPI-APs) caused by mutation in genes involved in the assembly of GPI-glycolipids in cells. We demonstrated that the synthetic fragments GlcNAc-PI (1), Man-GlcN-PI (5), and GlcN-PI with two (3) and three lipid chains (4) rescue the deletion of the GPI biosynthesis in cells devoid of the PIGA, PIGL, and PIGW genes in vitro. The compounds allowed for concentration-dependent recovery of GPI biosynthesis and were highly active on the cytoplasmic face of the endoplasmic reticulum membrane. These synthetic molecules are leads for the development of treatments for IGDs and tools to study GPI-AP biosynthesis.
Collapse
Affiliation(s)
- Paula A. Guerrero
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14424 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Yoshiko Murakami
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Osaka 565-0871, Japan
- Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-Oka, Osaka 565-0871, Japan
| | - Ankita Malik
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14424 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14424 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Osaka 565-0871, Japan
- Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-Oka, Osaka 565-0871, Japan
| | - Daniel Varón Silva
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14424 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
8
|
Sakamoto T, Yamaoki Y, Nagata T, Katahira M. Detection of parallel and antiparallel DNA triplex structures in living human cells using in-cell NMR. Chem Commun (Camb) 2021; 57:6364-6367. [PMID: 34137388 DOI: 10.1039/d1cc01761f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We introduced oligodeoxynucleotides (ODNs) that form parallel and antiparallel triplex structures in vitro into living human cells and recorded their in-cell NMR spectra. Observation of landmark signals for triplex structures proved for the first time that parallel and antiparallel triplex structures are formed in living human cells.
Collapse
Affiliation(s)
- Tomoki Sakamoto
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. and Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Mukohda M, Nakamura S, Takeya K, Matsuda A, Yano T, Seki M, Mizuno R, Ozaki H. Streptococcal Exotoxin Streptolysin O Causes Vascular Endothelial Dysfunction Through PKCβ Activation. J Pharmacol Exp Ther 2021; 379:117-124. [PMID: 34389653 DOI: 10.1124/jpet.121.000752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022] Open
Abstract
Streptolysin O (SLO) is produced by common hemolytic streptococci that cause a wide range of diseases from pharyngitis to life-threatening necrotizing fasciitis and toxic shock syndrome. While the importance of SLO in invasive hemolytic streptococcus infection has been well demonstrated, the role of circulating SLO in non-invasive infection remains unclear. The aim of this study was to characterize the pharmacological effect of SLO on vascular functions, focusing on cellular signaling pathways. In control Wistar rats, SLO treatment (1-1000 ng/mL) impaired acetylcholine-induced endothelial-dependent relaxation in the aorta and second-order mesenteric artery in a dose-dependent manner, without any effects on sodium nitroprusside-induced endothelium-independent relaxation or agonist-induced contractions. SLO also increased phosphorylation of the endothelial NO synthase (eNOS) inhibitory site at Thr495 in the aorta. Pharmacological analysis indicated that either endothelial dysfunction or eNOS phosphorylation was mediated by protein kinase Cβ (PKCβ), but not by the p38 mitogen-activated protein kinase (MAPK) pathway. Consistent with this, SLO increased phosphorylation levels of PKC substrates in the aorta. In vivo study of control Wistar rats indicated that intravenous administration of SLO did not change basal blood pressure, but significantly counteracted the acetylcholine-induced decrease in blood pressure. Interestingly, plasma anti-SLO IgG levels were significantly higher in 10- to 15-week-old spontaneously hypertensive rats compared to age-matched control rats (P<0.05). These findings demonstrated that SLO causes vascular endothelial dysfunction, which is mediated by PKCβ-induced phosphorylation of the eNOS inhibitory site. Significance Statement This study showed for the first time, that in vitro exposure of vascular tissues to SLO impairs endothelial function, an effect that is mediated by PKCb-induced phosphorylation of the eNOS inhibitory site. Intravenous administration of SLO in control and hypertensive rats blunted the ACh-induced decrease in blood pressure, providing evidence for a possible role of SLO in dysregulation of blood pressure.
Collapse
Affiliation(s)
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Japan
| | - Kosuke Takeya
- Faculty of Veterinary Medicine, Okayama University of Science, Japan
| | - Akira Matsuda
- Faculty of Veterinary Medicine, Okayama University of Science, Japan
| | - Takanori Yano
- Faculty of Science, Okayama University of Science, Japan
| | | | - Risuke Mizuno
- Faculty of Veterinary Medicine, Okayama University of Science, Japan
| | - Hiroshi Ozaki
- Faculty of Veterinary Medicine, Okayama University of Science, Japan
| |
Collapse
|
10
|
Microscopic image-based covariation network analysis for actin scaffold-modified insulin signaling. iScience 2021; 24:102724. [PMID: 34337357 PMCID: PMC8324808 DOI: 10.1016/j.isci.2021.102724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022] Open
Abstract
To infer a "live" protein network in single cells, we developed a novel Protein Localization and Modification-based Covariation Network (PLOM-CON) analysis method using a large set of quantitative data on the abundance (quantity), post-translational modification state (quality), and localization/morphological information of target proteins from microscope immunostained images. The generated network exhibited synchronized time-dependent behaviors of the target proteins to visualize how a live protein network develops or changes in cells under specific experimental conditions. As a proof of concept for PLOM-CON analysis, we applied this method to elucidate the role of actin scaffolds, in which actin fibers and signaling molecules accumulate and form membrane-associated protein condensates, in insulin signaling in rat hepatoma cells. We found that the actin scaffold in cells may function as a platform for glycogenesis and protein synthesis upon insulin stimulation.
Collapse
|
11
|
Tsuji G, Sunami T, Oki M, Ichihashi N. Exchange of Proteins in Liposomes through Streptolysin O Pores. Chembiochem 2021; 22:1966-1973. [PMID: 33586304 DOI: 10.1002/cbic.202100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Indexed: 01/10/2023]
Abstract
Liposomes, which are vesicles surrounded by lipid membranes, can be used as biochemical reactors by encapsulating various reactions. Accordingly, they are useful for studying cellular functions under controlled conditions that mimic the environment within a cell. However, one of the shortcomings of liposomes as biochemical reactors is the difficulty of introducing or removing proteins due to the impermeability of the membrane. In this study, we established a method for exchanging proteins in liposomes by forming reversible pores in the membrane. We used the toxic protein streptolysin O (SLO); this forms pores in membranes made of phospholipids containing cholesterol that can be closed by the addition of calcium ions. After optimizing the experimental procedure and lipid composition, we observed the exchange of fluorescent proteins (transferrin Alexa Fluor 488 and 647) in 9.9 % of liposomes. We also introduced T7 RNA polymerase, a 98-kDa enzyme, and observed RNA synthesis in ∼8 % of liposomes. Our findings establish a new method for controlling the internal protein composition of liposomes, thereby increasing their utility as bioreactors.
Collapse
Affiliation(s)
- Gakushi Tsuji
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan.,Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan
| | - Takeshi Sunami
- Institute for Academic InitiativesOsaka University, Osaka University (Japan), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan.,Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Universal Biology Institute, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
12
|
Sonoda Y, Kano F, Murata M. Applications of cell resealing to reconstitute microRNA loading to extracellular vesicles. Sci Rep 2021; 11:2900. [PMID: 33536479 PMCID: PMC7859222 DOI: 10.1038/s41598-021-82452-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/20/2021] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are cargo carried by extracellular vesicles (EVs) and are associated with cell-cell interactions. The response to the cellular environment, such as disease states, genetic/metabolic changes, or differences in cell type, highly regulates cargo sorting to EVs. However, morphological features during EV formation and secretion involving miRNA loading are unknown. This study developed a new method of EV loading using cell resealing and reconstituted the elementary miRNA-loading processes. Morphology, secretory response, and cellular uptake ability of EVs obtained from intact and resealed HeLa cells were comparable. Exogenously added soluble factors were introduced into multivesicular endosomes (MVEs) and their subsequent secretion to the extracellular region occurred in resealed HeLa cells. In addition, miRNA transport to MVEs and miRNA encapsulation to EVs followed a distinct pathway regulated by RNA-binding proteins, such as Argonaute and Y-box binding protein 1, depending on miRNA types. Our cell-resealing system can analyze disease-specific EVs derived from disease model cells, where pathological cytosol is introduced into cells. Thus, EV formation in resealed cells can be used not only to create a reconstitution system to give mechanistic insight into EV encapsulation but also for applications such as loading various molecules into EVs and identifying disease-specific EV markers.
Collapse
Affiliation(s)
- Yuki Sonoda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
| |
Collapse
|
13
|
Yamaoki Y, Nagata T, Sakamoto T, Katahira M. Observation of nucleic acids inside living human cells by in-cell NMR spectroscopy. Biophys Physicobiol 2020; 17:36-41. [PMID: 33110737 PMCID: PMC7550250 DOI: 10.2142/biophysico.bsj-2020006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
The intracellular environment is highly crowded with biomacromolecules such as proteins and nucleic acids. Under such conditions, the structural and biophysical features of nucleic acids have been thought to be different from those in vitro. To obtain high-resolution structural information on nucleic acids in living cells, the in-cell NMR method is a unique tool. Following the first in-cell NMR measurement of nucleic acids in 2009, several interesting insights were obtained using Xenopus laevis oocytes. However, the in-cell NMR spectrum of nucleic acids in living human cells was not reported until two years ago due to the technical challenges of delivering exogenous nucleic acids. We reported the first in-cell NMR spectra of nucleic acids in living human cells in 2018, where we applied a pore-forming toxic protein, streptolysin O. The in-cell NMR measurements demonstrated that the hairpin structures of nucleic acids can be detected in living human cells. In this review article, we summarize our recent work and discuss the future prospects of the in-cell NMR technique for nucleic acids.
Collapse
Affiliation(s)
- Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.,Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomoki Sakamoto
- Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.,Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
14
|
Recent progress of in-cell NMR of nucleic acids in living human cells. Biophys Rev 2020; 12:411-417. [PMID: 32144741 DOI: 10.1007/s12551-020-00664-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
The inside of living cells is highly crowded with biological macromolecules. It has long been considered that the properties of nucleic acids and proteins, such as their structures, dynamics, interactions, and enzymatic activities, in intracellular environments are different from those under in vitro dilute conditions. In-cell NMR is a robust and powerful method used in the direct measurement of those properties in living cells. However, until 2 years ago, in-cell NMR was limited to Xenopus laevis oocytes due to technical challenges of incorporating exogenous nucleic acids. In the last 2 years, in-cell NMR spectra of nucleic acid introduced into living human cells have been reported. By use of the in-cell NMR spectra of nucleic acids in living human cells, the formation of hairpin structures with Watson-Crick base pairs, and i-motif and G-quadruplex structures with non-Watson-Crick base pairs was demonstrated. Others investigated the mRNA-antisense drug interactions and DNA-small compound interactions. In this article, we review these studies to underscore the potential of in-cell NMR for addressing the structures, dynamics, and interactions of nucleic acids in living human cells.
Collapse
|
15
|
Kunishige R, Kano F, Murata M. The cell resealing technique for manipulating, visualizing, and elucidating molecular functions in living cells. Biochim Biophys Acta Gen Subj 2020; 1864:129329. [DOI: 10.1016/j.bbagen.2019.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
|
16
|
Abstract
Morphology of Golgi apparatus changes frequently and diversely depending on various cellular conditions and these changes correlate with the balance between membrane inflow and outflow at the Golgi via vesicular transports. In a previous study, we introduced a semi-intact cell system suitable for the reconstitution of morphological changes that organelles undergo as well as the vesicular transport between them. Semi-intact cells are cells that have undergone plasma membrane permeabilization by the cholesterol-dependent pore-forming cytolysin, streptolysin O (SLO). Permeabilization enables the introduction of various molecules into the cells, as well as the substitution of the original cytosol with an exogenously made cytosol prepared from cells in various stages of cell cycle, differentiation, and disease progression. Coupled with a green fluorescent protein(GFP)-visualization technique, this cell-based system enables the analysis of the molecular mechanisms underlying biological processes that are highly dependent on the integrity of the intracellular architecture. In this chapter, we present a variety of reconstitution assays concerning biological reactions pertaining to the Golgi apparatus.
Collapse
|
17
|
Changes in the asymmetric distribution of cholesterol in the plasma membrane influence streptolysin O pore formation. Sci Rep 2019; 9:4548. [PMID: 30872611 PMCID: PMC6418215 DOI: 10.1038/s41598-019-39973-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/21/2019] [Indexed: 01/23/2023] Open
Abstract
ATP-binding cassette A1 (ABCA1) plays a key role in generating high-density lipoprotein (HDL) and preventing atherosclerosis. ABCA1 exports cholesterol and phospholipid to apolipoprotein A-I (apoA-I) in serum to generate HDL. We found that streptolysin O (SLO), a cholesterol-dependent pore-forming toxin, barely formed pores in ABCA1-expressing cells, even in the absence of apoA-I. Neither cholesterol content in cell membranes nor the amount of SLO bound to cells was affected by ABCA1. On the other hand, binding of the D4 domain of perfringolysin O (PFO) to ABCA1-expressing cells increased, suggesting that the amount of cholesterol in the outer leaflet of the plasma membrane (PM) increased and that the cholesterol dependences of these two toxins differ. Addition of cholesterol to the PM by the MβCD-cholesterol complex dramatically restored SLO pore formation in ABCA1-expressing cells. Therefore, exogenous expression of ABCA1 causes reduction in the cholesterol level in the inner leaflet, thereby suppressing SLO pore formation.
Collapse
|
18
|
Kano F, Murata M. Phosphatidylinositol-3-phosphate-mediated actin domain formation linked to DNA synthesis upon insulin treatment in rat hepatoma-derived H4IIEC3 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:793-805. [PMID: 30742930 DOI: 10.1016/j.bbamcr.2019.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 01/20/2023]
Abstract
Phosphatidylinositol-3-phosphate (PI3P) is a lipid that accumulates in the early endosomal membrane, and acts as a scaffold to recruit proteins that contain a PI3P-binding domain, such as the FYVE domain. In this study, we examined the effect of PI3P depletion on the insulin response in rat hepatoma-derived H4IIEC3 cells. We found that insulin treatment induced the transient formation of an actin domain structure, a mesh-like tangled network of actin filaments where phosphorylated Akt, endosomal proteins, and PI3P accumulated. Actin domain formation was repressed by the depletion of PI3P by SAR405, an inhibitor of the class III PI3 kinase, Vps34, by the inhibition of PI3P function by the competitive binding of an excess amount of GST-fused 2xFYVE protein to intracellular PI3P, and by the use of diabetic model cells, in which PI3P was depleted. SAR405 did not affect the phosphorylation level of Akt, and the transcriptional regulation of gluconeogenic and cholesterol synthetic genes after insulin treatment. Interestingly, insulin-induced DNA synthesis was specifically inhibited by SAR405, cytochalasin B, and also in diabetic model cells. These results suggest that PI3P is required for the formation of actin domains, which affected a signaling pathway downstream of Akt associated with DNA synthesis in H4IIEC3 cells.
Collapse
Affiliation(s)
- Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Laboratory of Frontier Image Analysis, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Masayuki Murata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Laboratory of Frontier Image Analysis, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
19
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 434] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
20
|
Teng KW, Ren P, Selvin PR. Delivery of Fluorescent Probes Using Streptolysin O for Fluorescence Microscopy of Living Cells. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2018; 93:e60. [PMID: 30058756 PMCID: PMC6097887 DOI: 10.1002/cpps.60] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Methods to efficiently deliver fluorophores across the cell membrane are crucial for imaging the dynamics of intracellular proteins using fluorescence. Here we describe a simple protocol for permeabilizing living cells using streptolysin O, a bacterial toxin, which allows transient uptake of fluorescent probes for labeling specific intracellular proteins. The technique is applicable for delivering different classes of fluorescent probes with a molecular weight of <150 kDa, and it is also applicable to a variety of different cell lines. The technique enables the utilization of a broad range of fluorophores for live cell imaging of intracellular proteins. Extended observation of intracellular fluorescence bound to specific proteins is now possible through super-resolution microscopy by using fluorophores that are photostable in "cell-friendly" deoxygenating and reducing conditions. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Kai Wen Teng
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States,Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Pin Ren
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States,Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Paul R. Selvin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States,Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
21
|
Yamaoki Y, Kiyoishi A, Miyake M, Kano F, Murata M, Nagata T, Katahira M. The first successful observation of in-cell NMR signals of DNA and RNA in living human cells. Phys Chem Chem Phys 2018; 20:2982-2985. [PMID: 29022027 DOI: 10.1039/c7cp05188c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In order to understand intracellular biological events, information on the structure, dynamics and interaction of proteins and nucleic acids in living cells is of crucial importance. In-cell NMR is a promising method to obtain this information. Although NMR signals of proteins in human cells have been reported, those of nucleic acids were reported only in Xenopus laevis oocytes, i.e., not in human cells. Here, DNA and RNA were introduced into human cells by means of pore formation by bacterial toxin streptolysin O and subsequent resealing. Then, NMR signals of DNA and RNA were successfully observed for the first time in living human cells. The observed signals directly suggested the formation of DNA and RNA hairpin structures in living human cells.
Collapse
Affiliation(s)
- Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Murakami M, Kano F, Murata M. LLO-mediated Cell Resealing System for Analyzing Intracellular Activity of Membrane-impermeable Biopharmaceuticals of Mid-sized Molecular Weight. Sci Rep 2018; 8:1946. [PMID: 29386585 PMCID: PMC5792490 DOI: 10.1038/s41598-018-20482-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/19/2018] [Indexed: 12/23/2022] Open
Abstract
Cell-based assays have become increasingly important in the preclinical studies for biopharmaceutical products such as specialty peptides, which are of interest owing to their high substrate specificity. However, many of the latter are membrane impermeable and must be physically introduced into cells to evaluate their intracellular activities. We previously developed a "cell-resealing technique" that exploited the temperature-dependent pore-forming activity of the streptococcal toxin, streptolysin O (SLO), that enabled us to introduce various molecules into cells for evaluation of their intracellular activities. In this study, we report a new cell resealing method, the listeriolysin O (LLO)-mediated resealing method, to deliver mid-sized, membrane-impermeable biopharmaceuticals into cells. We found that LLO-type resealing required no exogenous cytosol to repair the injured cell membrane and allowed the specific entry of mid-sized molecules into cells. We use this method to introduce either a membrane-impermeable, small compound (8-OH-cAMP) or specialty peptide (Akt-in), and demonstrated PKA activation or Akt inhibition, respectively. Collectively, the LLO-type resealing method is a user-friendly and reproducible intracellular delivery system for mid-sized membrane-impermeable molecules into cells and for evaluating their intracellular activities.
Collapse
Affiliation(s)
- Masataka Murakami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Fumi Kano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan. .,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan. .,Laboratoty of Frontier Image Analysis, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
23
|
Blanca Ramírez M, Lara Ordóñez AJ, Fdez E, Madero-Pérez J, Gonnelli A, Drouyer M, Chartier-Harlin MC, Taymans JM, Bubacco L, Greggio E, Hilfiker S. GTP binding regulates cellular localization of Parkinson's disease-associated LRRK2. Hum Mol Genet 2018; 26:2747-2767. [PMID: 28453723 PMCID: PMC5886193 DOI: 10.1093/hmg/ddx161] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) comprise the most common cause of familial Parkinson's disease (PD), and sequence variants modify risk for sporadic PD. Previous studies indicate that LRRK2 interacts with microtubules (MTs) and alters MT-mediated vesicular transport processes. However, the molecular determinants within LRRK2 required for such interactions have remained unknown. Here, we report that most pathogenic LRRK2 mutants cause relocalization of LRRK2 to filamentous structures which colocalize with a subset of MTs, and an identical relocalization is seen upon pharmacological LRRK2 kinase inhibition. The pronounced colocalization with MTs does not correlate with alterations in LRRK2 kinase activity, but rather with increased GTP binding. Synthetic mutations which impair GTP binding, as well as LRRK2 GTP-binding inhibitors profoundly interfere with the abnormal localization of both pathogenic mutant as well as kinase-inhibited LRRK2. Conversely, addition of a non-hydrolyzable GTP analog to permeabilized cells enhances the association of pathogenic or kinase-inhibited LRRK2 with MTs. Our data elucidate the mechanism underlying the increased MT association of select pathogenic LRRK2 mutants or of pharmacologically kinase-inhibited LRRK2, with implications for downstream MT-mediated transport events.
Collapse
Affiliation(s)
- Marian Blanca Ramírez
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Antonio Jesús Lara Ordóñez
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Elena Fdez
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Jesús Madero-Pérez
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Adriano Gonnelli
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Matthieu Drouyer
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.,Inserm, UMR-S 1172 Early Stages of Parkinson's Disease Team, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.,Inserm, UMR-S 1172 Early Stages of Parkinson's Disease Team, F-59000 Lille, France
| | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.,Inserm, UMR-S 1172 Early Stages of Parkinson's Disease Team, F-59000 Lille, France
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Sabine Hilfiker
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| |
Collapse
|
24
|
Establishment and phenotyping of disease model cells created by cell-resealing technique. Sci Rep 2017; 7:15167. [PMID: 29123170 PMCID: PMC5680332 DOI: 10.1038/s41598-017-15443-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022] Open
Abstract
Cell-based assays are growing in importance for screening drugs and investigating their mechanisms of action. Most of the assays use so-called “normal” cell strain because it is difficult to produce cell lines in which the disease conditions are reproduced. In this study, we used a cell-resealing technique, which reversibly permeabilizes the plasma membrane, to develop diabetic (Db) model hepatocytes into which cytosol from diabetic mouse liver had been introduced. Db model hepatocytes showed several disease-specific phenotypes, namely disturbance of insulin-induced repression of gluconeogenic gene expression and glucose secretion. Quantitative image analysis and principal component analysis revealed that the ratio of phosphorylated Akt (pAkt) to Akt was the best index to describe the difference between wild-type and Db model hepatocytes. By performing image-based drug screening, we found pioglitazone, a PPARγ agonist, increased the pAkt/Akt ratio, which in turn ameliorated the insulin-induced transcriptional repression of the gluconeogenic gene phosphoenolpyruvate carboxykinase 1. The disease-specific model cells coupled with image-based quantitative analysis should be useful for drug development, enabling the reconstitution of disease conditions at the cellular level and the discovery of disease-specific markers.
Collapse
|
25
|
Ojima K, Ichimura E, Yasukawa Y, Oe M, Muroya S, Suzuki T, Wakamatsu JI, Nishimura T. Myosin substitution rate is affected by the amount of cytosolic myosin in cultured muscle cells. Anim Sci J 2017. [PMID: 28631391 DOI: 10.1111/asj.12826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In striated muscles, approximately 300 myosin molecules form a single thick filament in myofibrils. Each myosin is continuously displaced by another myosin to maintain the thick filament structure. Our previous study using a fluorescence recovery after photobleaching (FRAP) technique showed that the myosin replacement rate is decreased by inhibition of protein synthesis, but myosin is still exchangeable. This result prompted us to examine whether myosin in the cytoplasm is involved in myosin replacement in myofibrils. To address this, FRAP was measured in green fluorescent protein (GFP)-tagged myosin heavy chain 3 (Myh3) expressing myotubes that were treated with streptolysin-O (SLO), which forms pores specifically in the plasma membrane to induce leakage of cytoplasmic proteins. Our biochemical data demonstrated that the cytoplasmic myosin content was reduced in SLO-permeabilized semi-intact myotubes. Furthermore, FRAP experiments showed a sluggish substitution rate of GFP-Myh3 in SLO-permeabilized myotubes. Taken together, these results demonstrate that the myosin substitution rate is significantly reduced by a decreased amount of myosin in the cytoplasm and that cytoplasmic myosin contributes to myosin replacement in myofibrils.
Collapse
Affiliation(s)
- Koichi Ojima
- Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan
| | - Emi Ichimura
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuya Yasukawa
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mika Oe
- Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan
| | - Susumu Muroya
- Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan
| | - Takahiro Suzuki
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun-Ichi Wakamatsu
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takanori Nishimura
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
26
|
Teng KW, Ishitsuka Y, Ren P, Youn Y, Deng X, Ge P, Lee SH, Belmont AS, Selvin PR. Labeling proteins inside living cells using external fluorophores for microscopy. eLife 2016; 5. [PMID: 27935478 PMCID: PMC5148600 DOI: 10.7554/elife.20378] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022] Open
Abstract
Site-specific fluorescent labeling of proteins inside live mammalian cells has been achieved by employing Streptolysin O, a bacterial toxin which forms temporary pores in the membrane and allows delivery of virtually any fluorescent probes, ranging from labeled IgG’s to small ligands, with high efficiency (>85% of cells). The whole process, including recovery, takes 30 min, and the cell is ready to be imaged immediately. A variety of cell viability tests were performed after treatment with SLO to ensure that the cells have intact membranes, are able to divide, respond normally to signaling molecules, and maintains healthy organelle morphology. When combined with Oxyrase, a cell-friendly photostabilizer, a ~20x improvement in fluorescence photostability is achieved. By adding in glutathione, fluorophores are made to blink, enabling super-resolution fluorescence with 20–30 nm resolution over a long time (~30 min) under continuous illumination. Example applications in conventional and super-resolution imaging of native and transfected cells include p65 signal transduction activation, single molecule tracking of kinesin, and specific labeling of a series of nuclear and cytoplasmic protein complexes. DOI:http://dx.doi.org/10.7554/eLife.20378.001
Collapse
Affiliation(s)
- Kai Wen Teng
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Yuji Ishitsuka
- Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Pin Ren
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Yeoan Youn
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Xiang Deng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Pinghua Ge
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Sang Hak Lee
- Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Andrew S Belmont
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Paul R Selvin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Physics of Living Cell, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
27
|
Shibata T, Yamashita S, Hirusaki K, Katoh K, Ohta Y. Isolation of mitochondria by gentle cell membrane disruption, and their subsequent characterization. Biochem Biophys Res Commun 2015; 463:563-8. [PMID: 26036573 DOI: 10.1016/j.bbrc.2015.05.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 11/26/2022]
Abstract
Mitochondria play a key role in several physiological processes as in integrating signals in the cell. However, understanding of the mechanism by which mitochondria sense and respond to signals has been limited due to the lack of an appropriate model system. In this study, we developed a method to isolate and characterize mitochondria without cell homogenization. By gently pipetting cells treated with streptolysin-O, a pore-forming membrane protein, we disrupted the cell membrane and were able to isolate both elongated and spherical mitochondria. Fluorescence imaging combined with super resolution microscopy showed that both the outer and inner membranes of the elongated mitochondria isolated using the newly developed method were intact. In addition, a FRET-based ATP sensor expressed in the mitochondrial matrix demonstrated that ATP generation by FoF1-ATPase in the isolated elongated mitochondria was as high as that in intracellular mitochondria. On the other hand, some of the spherical mitochondria isolated with this method had the outer membrane that no longer encapsulated the inner membrane. In addition, all mitochondria isolated using conventional procedures involving homogenization were spherical, many of them had damaged membranes, and low levels of ATP generation. Our results suggest that elongated mitochondria isolated from cells through gentle cell membrane disruption using a pore-forming protein tend to be more similar to intracellular mitochondria, having an intact membrane system and higher activity than spherical mitochondria.
Collapse
Affiliation(s)
- Takahiro Shibata
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Saki Yamashita
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Kotoe Hirusaki
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Yoshihiro Ohta
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
28
|
Matsuto M, Kano F, Murata M. Reconstitution of the targeting of Rab6A to the Golgi apparatus in semi-intact HeLa cells: A role of BICD2 in stabilizing Rab6A on Golgi membranes and a concerted role of Rab6A/BICD2 interactions in Golgi-to-ER retrograde transport. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2592-609. [PMID: 25962623 DOI: 10.1016/j.bbamcr.2015.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022]
Abstract
Rab is a small GTP-binding protein family that regulates various pathways of vesicular transport. Although more than 60 Rab proteins are targeted to specific organelles in mammalian cells, the mechanisms underlying the specificity of Rab proteins for the respective organelles remain unknown. In this study, we reconstituted the Golgi targeting of Rab6A in streptolysin O (SLO)-permeabilized HeLa cells in a cytosol-dependent manner and investigated the biochemical requirements of targeting. Golgi-targeting assays identified Bicaudal-D (BICD)2, which is reportedly involved in the dynein-mediated transport of mRNAs during oogenesis and embryogenesis in Drosophila, as a cytosolic factor for the Golgi targeting of Rab6A in SLO-permeabilized HeLa cells. Subsequent immunofluorescence analyses indicated decreased amounts of the GTP-bound active form of Rab6 in BICD2-knockdown cells. In addition, fluorescence recovery after photobleaching (FRAP) analyses revealed that overexpression of the C-terminal region of BICD2 decreased the exchange rate of GFP-Rab6A between the Golgi membrane and the cytosol. Collectively, these results indicated that BICD2 facilitates the binding of Rab6A to the Golgi by stabilizing its GTP-bound form. Moreover, several analyses of vesicular transport demonstrated that Rab6A and BICD2 play crucial roles in Golgi tubule fusion with the endoplasmic reticulum (ER) in brefeldin A (BFA)-treated cells, indicating that BICD2 is involved in coat protein I (COPI)-independent Golgi-to-ER retrograde vesicular transport.
Collapse
Affiliation(s)
- Mariko Matsuto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Fumi Kano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|