1
|
Delvenne JF, Malloy E. Functional implications of age-related atrophy of the corpus callosum. Neurosci Biobehav Rev 2024; 169:105982. [PMID: 39701505 DOI: 10.1016/j.neubiorev.2024.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The corpus callosum plays a critical role in inter-hemispheric communication by coordinating the transfer of sensory, motor, cognitive, and emotional information between the two hemispheres. However, as part of the normal aging process, the corpus callosum undergoes significant structural changes, including reductions in both its size and microstructural integrity. These age-related alterations can profoundly impact the brain's ability to coordinate functions across hemispheres, leading to a decline in various aspects of sensory processing, motor coordination, cognitive functioning, and emotional regulation. This review aims to synthesize current research on age-related changes in the corpus callosum, examining the regional differences in atrophy, its underlying causes, and its functional implications. By exploring these aspects, we seek to emphasize the clinical significance of corpus callosum degeneration and its impact on the quality of life in older adults, as well as the potential for early detection and targeted interventions to preserve brain health during aging. Finally, the review calls for further research into the mechanisms underlying corpus callosum atrophy and its broader implications for aging.
Collapse
Affiliation(s)
| | - Ella Malloy
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
2
|
Cantone M, Fisicaro F, Ferri R, Bella R, Pennisi G, Lanza G, Pennisi M. Sex differences in mild vascular cognitive impairment: A multimodal transcranial magnetic stimulation study. PLoS One 2023; 18:e0282751. [PMID: 36867595 PMCID: PMC9983846 DOI: 10.1371/journal.pone.0282751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Sex differences in vascular cognitive impairment (VCI) at risk for future dementia are still debatable. Transcranial magnetic stimulation (TMS) is used to evaluate cortical excitability and the underlying transmission pathways, although a direct comparison between males and females with mild VCI is lacking. METHODS Sixty patients (33 females) underwent clinical, psychopathological, functional, and TMS assessment. Measures of interest consisted of: resting motor threshold, latency of motor evoked potentials (MEPs), contralateral silent period, amplitude ratio, central motor conduction time (CMCT), including the F wave technique (CMCT-F), short-interval intracortical inhibition (SICI), intracortical facilitation, and short-latency afferent inhibition, at different interstimulus intervals (ISIs). RESULTS Males and females were comparable for age, education, vascular burden, and neuropsychiatric symptoms. Males scored worse at global cognitive tests, executive functioning, and independence scales. MEP latency was significantly longer in males, from both sides, as well CMCT and CMCT-F from the left hemisphere; a lower SICI at ISI of 3 ms from the right hemisphere was also found. After correction for demographic and anthropometric features, the effect of sex remained statistically significant for MEP latency, bilaterally, and for CMCT-F and SICI. The presence of diabetes, MEP latency bilaterally, and both CMCT and CMCT-F from the right hemisphere inversely correlated with executive functioning, whereas TMS did not correlate with vascular burden. CONCLUSIONS We confirm the worse cognitive profile and functional status of males with mild VCI compared to females and first highlight sex-specific changes in intracortical and cortico-spinal excitability to multimodal TMS in this population. This points to some TMS measures as potential markers of cognitive impairment, as well as targets for new drugs and neuromodulation therapies.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- Neurology Unit, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Giovanni Pennisi
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- * E-mail:
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Differential Ageing of the Brain Hemispheres: Evidence from a Longitudinal Study of Hand Preferences in Common Marmosets. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This paper is concerned with decreasing asymmetry of motor control in ageing. It discusses age-related changes in humans and reports a longitudinal study of hand preferences in common marmosets. An annual assessment of hand preference for holding food was recorded throughout the lifespan of 19 marmosets that lived for at least 9 years, and half of those lived for at least 11 years. Those with a left-hand preference showed a gradual reduction in the strength of their hand preference throughout adult life. No significant change in the strength of hand preference was found in right-handed marmosets. Hence, ageing has a specific effect on motor control by the right hemisphere.
Collapse
|
4
|
Anna R, Jarosław F, Izabela W, Karolina L, Małgorzata K, Malgorzata S. Differences in the Level of Functional Fitness and Precise Hand Movements of People with and without Cognitive Disorders. Exp Aging Res 2021; 48:351-361. [PMID: 34605367 DOI: 10.1080/0361073x.2021.1982350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES to assess and compare the gross and fine motor skills in people with identified cognitive impairment and in people from the control group. METHOD The research was conducted at the Center of Dementia-Related Diseases, involved participants with (n = 39) and without (n = 29) cognitive disorders. Fast, precise hand movements were measured via Vienna System Test. The up-and-go, chair-stand, 6-minute walk tests were used to assess functional fitness. The results for participants with and without cognitive disorders were compared. RESULTS People from both groups do not differ significantly in terms of the level of condition-based functional fitness. Participants with cognitive disorders achieve worse results in hand coordination tests which are more complex and require both speed and accuracy of hand movements. DISCUSSION The deterioration of precise hand movements with the correct functional efficiency may indicate degenerative changes in brain areas associated with complex thought processes, conceptual thinking, and may lead to dementia.
Collapse
Affiliation(s)
- Rohan Anna
- Morphology and Embriology Department, Wroclaw Medical University, Wroclaw, Poland
| | - Fugiel Jarosław
- Department of Biostructure, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Winkel Izabela
- Research and Education Center of Dementia, Ścinawa, Poland
| | - Lindner Karolina
- Geriatrics Department, Wroclaw Medical University, Wroclaw, Poland
| | - Kołodziej Małgorzata
- Department of Biostructure, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
5
|
Ermer E, Harcum S, Lush J, Magder LS, Whitall J, Wittenberg GF, Dimyan MA. Contraction Phase and Force Differentially Change Motor Evoked Potential Recruitment Slope and Interhemispheric Inhibition in Young Versus Old. Front Hum Neurosci 2020; 14:581008. [PMID: 33132888 PMCID: PMC7573560 DOI: 10.3389/fnhum.2020.581008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Interhemispheric interactions are important for arm coordination and hemispheric specialization. Unilateral voluntary static contraction is known to increase bilateral corticospinal motor evoked potential (MEP) amplitude. It is unknown how increasing and decreasing contraction affect the opposite limb. Since dynamic muscle contraction is more ecologically relevant to daily activities, we studied MEP recruitment using a novel method and short interval interhemispheric inhibition (IHI) from active to resting hemisphere at 4 phases of contralateral ECR contraction: Rest, Ramp Up [increasing at 25% of maximum voluntary contraction (MVC)], Execution (tonic at 50% MVC), and Ramp Down (relaxation at 25% MVC) in 42 healthy adults. We analyzed the linear portion of resting extensor carpi radialis (ECR) MEP recruitment by stimulating at multiple intensities and comparing slopes, expressed as mV per TMS stimulation level, via linear mixed modeling. In younger participants (age ≤ 30), resting ECR MEP recruitment slopes were significantly and equally larger both at Ramp Up (slope increase = 0.047, p < 0.001) and Ramp Down (slope increase = 0.031, p < 0.001) compared to rest, despite opposite directions of force change. In contrast, Active ECR MEP recruitment slopes were larger in Ramp Down than all other phases (Rest:0.184, p < 0.001; Ramp Up:0.128, p = 0.001; Execution: p = 0.003). Older (age ≥ 60) participants’ resting MEP recruitment slope was higher than younger participants across all phases. IHI did not reduce MEP recruitment slope equally in old compared to young. In conclusion, our data indicate that MEP recruitment slope in the resting limb is affected by the homologous active limb contraction force, irrespective of the direction of force change. The active arm MEP recruitment slope, in contrast, remains relatively unaffected. Older participants had steeper MEP recruitment slopes and less interhemispheric inhibition compared to younger participants.
Collapse
Affiliation(s)
- Elsa Ermer
- University of Maryland, Baltimore, MD, United States.,Department of Neurology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Stacey Harcum
- University of Maryland, Baltimore, MD, United States
| | - Jaime Lush
- University of Maryland, Baltimore, MD, United States.,Department of Neurology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Laurence S Magder
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Jill Whitall
- University of Maryland, Baltimore, MD, United States.,Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - George F Wittenberg
- University of Maryland, Baltimore, MD, United States.,Department of Neurology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Michael A Dimyan
- University of Maryland, Baltimore, MD, United States.,Department of Neurology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States.,Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
6
|
Morris A, Ravishankar M, Pivetta L, Chowdury A, Falco D, Damoiseaux JS, Rosenberg DR, Bressler SL, Diwadkar VA. Response Hand and Motor Set Differentially Modulate the Connectivity of Brain Pathways During Simple Uni-manual Motor Behavior. Brain Topogr 2018; 31:985-1000. [PMID: 30032347 DOI: 10.1007/s10548-018-0664-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/17/2018] [Indexed: 01/02/2023]
Abstract
We investigated the flexible modulation of undirected functional connectivity (uFC) of brain pathways during simple uni-manual responding. Two questions were central to our interests: (1) does response hand (dominant vs. non-dominant) differentially modulate connectivity and (2) are these effects related to responding under varying motor sets. fMRI data were acquired in twenty right-handed volunteers who responded with their right (dominant) or left (non-dominant) hand (blocked across acquisitions). Within acquisitions, the task oscillated between periodic responses (promoting the emergence of motor sets) or randomly induced responses (disrupting the emergence of motor sets). Conjunction analyses revealed eight shared nodes across response hand and condition, time series from which were analyzed. For right hand responses connectivity of the M1 ←→ Thalamus and SMA ←→ Parietal pathways was more significantly modulated during periodic responding. By comparison, for left hand responses, connectivity between five network pairs (including M1 and SMA, insula, basal ganglia, premotor cortex, parietal cortex, thalamus) was more significantly modulated during random responding. uFC analyses were complemented by directed FC based on multivariate autoregressive models of times series from the nodes. These results were complementary and highlighted significant modulation of dFC for SMA → Thalamus, SMA → M1, basal ganglia → Insula and basal ganglia → Thalamus. The results demonstrate complex effects of motor organization and task demand and response hand on different connectivity classes of fMRI data. The brain's sub-networks are flexibly modulated by factors related to motor organization and/or task demand, and our results have implications for assessment of medical conditions associated with motor dysfunction.
Collapse
Affiliation(s)
- Alexandra Morris
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Suite 5A, Tolan Park Medical Building, 3901 Chrysler Service Drive, Detroit, MI, 48201, USA
| | - Mathura Ravishankar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Suite 5A, Tolan Park Medical Building, 3901 Chrysler Service Drive, Detroit, MI, 48201, USA
| | - Lena Pivetta
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Suite 5A, Tolan Park Medical Building, 3901 Chrysler Service Drive, Detroit, MI, 48201, USA
| | - Asadur Chowdury
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Suite 5A, Tolan Park Medical Building, 3901 Chrysler Service Drive, Detroit, MI, 48201, USA
| | - Dimitri Falco
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, USA
| | - Jessica S Damoiseaux
- Department of Psychology, Wayne State University, Detroit, USA.,Institute of Gerontology, Wayne State University, Detroit, USA
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Suite 5A, Tolan Park Medical Building, 3901 Chrysler Service Drive, Detroit, MI, 48201, USA
| | - Steven L Bressler
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Suite 5A, Tolan Park Medical Building, 3901 Chrysler Service Drive, Detroit, MI, 48201, USA.
| |
Collapse
|
7
|
Foerster ÁS, Rezaee Z, Paulus W, Nitsche MA, Dutta A. Effects of Cathode Location and the Size of Anode on Anodal Transcranial Direct Current Stimulation Over the Leg Motor Area in Healthy Humans. Front Neurosci 2018; 12:443. [PMID: 30022928 PMCID: PMC6039564 DOI: 10.3389/fnins.2018.00443] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/12/2018] [Indexed: 12/30/2022] Open
Abstract
Objective: Non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) involves passing low currents through the brain and is a promising tool for the modulation of cortical excitability. In this study, we investigated the effects of cathode location and the size of anode for anodal tDCS of the right-leg area of the motor cortex, which is challenging due to its depth and orientation in the inter-hemispheric fissure. Methods: We first computationally investigated the effects of cathode location and the size of the anode to find the best montage for specificity of stimulation effects for the targeted leg motor area using finite element analysis (FEA). We then compared the best electrode montage found from FEA with the conventional montage (contralateral supraorbital cathode) via neurophysiological testing of both, the targeted as well as the contralateral leg motor area. Results: The conventional anodal tDCS electrode montage for leg motor cortex stimulation using a large-anode (5 cm × 7 cm, current strength 2 mA) affected the contralateral side more strongly in both the FEA and the neurophysiological testing when compared to other electrode montages. A small-anode (3.5 cm × 1 cm at 0.2 mA) with the same current density at the electrode surface and identical contralateral supraorbital cathode placement improved specificity. The best cathode location for the small-anode in terms of specificity for anodal tDCS of the right-leg motor area was T7 (10-10 EEG system). Conclusion: A small-anode (3.5 cm × 1 cm) with the same current density at the electrode surface as a large-anode (5 cm × 7 cm) resulted in similar cortical excitability alterations of the targeted leg motor cortex respresentation. In relation to the other stimulation conditions, the small-anode montage with the cathode positioned at T7 resulted in the best specificity.
Collapse
Affiliation(s)
- Águida S Foerster
- Department of Clinical Neurophysiology, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany.,IfADo - Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
| | - Zeynab Rezaee
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, United States
| | - Walter Paulus
- Department of Clinical Neurophysiology, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael A Nitsche
- IfADo - Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Anirban Dutta
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, United States
| |
Collapse
|
8
|
Vasylenko O, Gorecka MM, Rodríguez-Aranda C. Manual dexterity in young and healthy older adults. 1. Age- and gender-related differences in unimanual and bimanual performance. Dev Psychobiol 2018. [PMID: 29528105 DOI: 10.1002/dev.21619] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study aimed to better characterize age-related differences in dexterity by using an integrative approach where movement times and kinematics were measured for both hands. Forty-five young (age 19-31) and 55 healthy older adults (age 60-88) were evaluated during unimanual and bimanual performance of the Purdue Pegboard Test. Gender effects were also assessed. From video-recorded data, movement times and kinematics were obtained for reaching, grasping, transport, and inserting. Results showed that older adults had longer movement times for grasping and inserting with the right hand, and across all movements with the left hand. Kinematic differences were found in path length, linear, and angular velocity. The patterns of slowing were similar in unimanual and bimanual tasks. Gender effects showed more slowing in older males than older females. Age differences in dexterity not only comprise slowing of movements but also kinematic alterations. The importance of gender in hand function was demonstrated.
Collapse
Affiliation(s)
- Olena Vasylenko
- Department of Psychology, University of Tromsø, Tromsø, Norway
| | - Marta M Gorecka
- Department of Psychology, University of Tromsø, Tromsø, Norway.,Department of Neurology, University Hospital of Northern Norway, Tromsø, Norway
| | | |
Collapse
|
9
|
Sebastjan A, Skrzek A, Ignasiak Z, Sławińska T. Age-related changes in hand dominance and functional asymmetry in older adults. PLoS One 2017; 12:e0177845. [PMID: 28558047 PMCID: PMC5448747 DOI: 10.1371/journal.pone.0177845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/04/2017] [Indexed: 12/31/2022] Open
Abstract
The aim of the study was to investigate fine motor performance and ascertain age-related changes in laterality between the dominant and non-dominant hand. A representative sample of 635 adults (144 males and 491 females) aged 50 years and over completed a test battery MLS (Motor Performance Series) to assess a broad range of hand functions. Functional asymmetry was observed in all four motor tests (postural tremor, aiming, tapping, and inserting long pins). Significant differences between the dominant and non-dominant hand were obtained in both sexes across all age groups, except in the oldest female group (age >70) for the aiming (number of hits and errors) and postural tremor (number of errors) tasks. These differences in age-related changes may be attributed to hemispheric asymmetry, environmental factors, or use-dependent plasticity. Conflicting evidence in the literature warrants additional research to better explain age-related alterations of hand dominance and manual performance in old age.
Collapse
Affiliation(s)
- Anna Sebastjan
- Faculty of Physical Education, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Anna Skrzek
- Faculty of Physiotherapy, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Zofia Ignasiak
- Faculty of Physical Education, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Teresa Sławińska
- Faculty of Physical Education, University School of Physical Education in Wroclaw, Wroclaw, Poland
| |
Collapse
|
10
|
Maes C, Gooijers J, Orban de Xivry JJ, Swinnen SP, Boisgontier MP. Two hands, one brain, and aging. Neurosci Biobehav Rev 2017; 75:234-256. [PMID: 28188888 DOI: 10.1016/j.neubiorev.2017.01.052] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/18/2016] [Accepted: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Many activities of daily living require moving both hands in an organized manner in space and time. Therefore, understanding the impact of aging on bimanual coordination is essential for prolonging functional independence and well-being in older adults. Here we investigated the behavioral and neural determinants of bimanual coordination in aging. The studies surveyed in this review reveal that aging is associated with cortical hyper-activity (but also subcortical hypo-activity) during performance of bimanual tasks. In addition to changes in activation in local areas, the interaction between distributed brain areas also exhibits age-related effects, i.e., functional connectivity is increased in the resting brain as well as during task performance. The mechanisms and triggers underlying these functional activation and connectivity changes remain to be investigated. This requires further research investment into the detailed study of interactions between brain structure, function and connectivity. This will also provide the foundation for interventional research programs towards preservation of brain health and behavioral performance by maximizing neuroplasticity potential in older adults.
Collapse
Affiliation(s)
- Celine Maes
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Jean-Jacques Orban de Xivry
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium; KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), 3001 Leuven, Belgium
| | - Matthieu P Boisgontier
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium.
| |
Collapse
|
11
|
Hoppenrath K, Härtig W, Funke K. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion. Front Neural Circuits 2016; 10:22. [PMID: 27065812 PMCID: PMC4811908 DOI: 10.3389/fncir.2016.00022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/13/2016] [Indexed: 11/13/2022] Open
Abstract
Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS) appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS) applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV) fast-spiking interneurons (FSIs), evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs) of FSIs start to grow around postnatal day (PD) 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo-in vitro whole-cell patch clamp recordings from pre-labeled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29-38, evident as higher rates of induced action potential firing at low current injections (100-200 pA) and a more depolarized resting membrane potential. This effect was absent in younger (PD26-28) and older animals (PD40-62). Slices of verum iTBS-treated rats further showed higher rates of spontaneous excitatory postsynaptic currents (sEPSCs). Based on these and previous findings we conclude that FSIs are particularly sensitive to TBS during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits.
Collapse
Affiliation(s)
- Kathrin Hoppenrath
- Department of Neurophysiology, Medical Faculty, Ruhr-University BochumBochum, Germany; Rottendorf Pharma GmbHEnnigerloh, Germany
| | - Wolfgang Härtig
- Pathophysiology of Neuroglia, Paul Flechsig Institute for Brain Research, University of Leipzig Leipzig, Germany
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
12
|
Serbruyns L, Leunissen I, Huysmans T, Cuypers K, Meesen RL, van Ruitenbeek P, Sijbers J, Swinnen SP. Subcortical volumetric changes across the adult lifespan: subregional thalamic atrophy accounts for age-related sensorimotor performance declines. Cortex 2015; 65:128-38. [PMID: 25682047 DOI: 10.1016/j.cortex.2015.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/28/2014] [Accepted: 01/05/2015] [Indexed: 01/01/2023]
Abstract
Even though declines in sensorimotor performance during healthy aging have been documented extensively, its underlying neural mechanisms remain unclear. Here, we explored whether age-related subcortical atrophy plays a role in sensorimotor performance declines, and particularly during bimanual manipulative performance (Purdue Pegboard Test). The thalamus, putamen, caudate and pallidum of 91 participants across the adult lifespan (ages 20-79 years) were automatically segmented. In addition to studying age-related changes in the global volume of each subcortical structure, local deformations within these structures, indicative of subregional volume changes, were assessed by means of recently developed shape analyses. Results showed widespread age-related global and subregional atrophy, as well as some notable subregional expansion. Even though global atrophy failed to explain the observed performance declines with aging, shape analyses indicated that atrophy in left and right thalamic subregions, specifically subserving connectivity with the premotor, primary motor and somatosensory cortical areas, mediated the relation between aging and performance decline. It is concluded that subregional volume assessment by means of shape analyses offers a sensitive tool with high anatomical resolution in the search for specific age-related associations between brain structure and behavior.
Collapse
Affiliation(s)
- Leen Serbruyns
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Belgium
| | - Inge Leunissen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Belgium
| | - Toon Huysmans
- Vision Lab, Department of Physics, University of Antwerp, Belgium
| | - Koen Cuypers
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Belgium; REVAL Rehabilitation Research Centre, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Raf L Meesen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Belgium; REVAL Rehabilitation Research Centre, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Peter van Ruitenbeek
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Belgium
| | - Jan Sijbers
- Vision Lab, Department of Physics, University of Antwerp, Belgium
| | - Stephan P Swinnen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Belgium; Leuven Research Institute for Neuroscience & Disease (LIND), KU Leuven, Belgium.
| |
Collapse
|
13
|
Bashir S, Perez JM, Horvath JC, Pena-Gomez C, Vernet M, Capia A, Alonso-Alonso M, Pascual-Leone A. Differential effects of motor cortical excitability and plasticity in young and old individuals: a Transcranial Magnetic Stimulation (TMS) study. Front Aging Neurosci 2014; 6:111. [PMID: 24959141 PMCID: PMC4050736 DOI: 10.3389/fnagi.2014.00111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/20/2014] [Indexed: 12/01/2022] Open
Abstract
Aging is associated with changes in the motor system that, over time, can lead to functional impairments and contribute negatively to the ability to recover after brain damage. Unfortunately, there are still many questions surrounding the physiological mechanisms underlying these impairments. We examined cortico-spinal excitability and plasticity in a young cohort (age range: 19–31) and an elderly cohort (age range: 47–73) of healthy right-handed individuals using navigated transcranial magnetic stimulation (nTMS). Subjects were evaluated with a combination of physiological [motor evoked potentials (MEPs), motor threshold (MT), intracortical inhibition (ICI), intracortical facilitation (ICF), and silent period (SP)] and behavioral [reaction time (RT), pinch force, 9 hole peg task (HPT)] measures at baseline and following one session of low-frequency (1 Hz) navigated repetitive TMS (rTMS) to the right (non-dominant) hemisphere. In the young cohort, the inhibitory effect of 1 Hz rTMS was significantly in the right hemisphere and a significant facilitatory effect was noted in the unstimulated hemisphere. Conversely, in the elderly cohort, we report only a trend toward a facilitatory effect in the unstimulated hemisphere, suggesting reduced cortical plasticity and interhemispheric communication. To this effect, we show that significant differences in hemispheric cortico-spinal excitability were present in the elderly cohort at baseline, with significantly reduced cortico-spinal excitability in the right hemisphere as compared to the left hemisphere. A correlation analysis revealed no significant relationship between cortical thickness of the selected region of interest (ROI) and MEPs in either young or old subjects prior to and following rTMS. When combined with our preliminary results, further research into this topic could lead to the development of neurophysiological markers pertinent to the diagnosis, prognosis, and treatment of neurological diseases characterized by monohemispheric damage and lateralized motor deficits.
Collapse
Affiliation(s)
- Shahid Bashir
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA ; Faculty of Medicine, Department of Physiology, Autism Research and Treatment Center, King Saud University Riyadh, Saudi Arabia
| | - Jennifer M Perez
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Jared C Horvath
- Psychological Sciences, University of Melbourne Melbourne, Australia
| | - Cleofe Pena-Gomez
- Departament de Psiquiatria i Psicobiologia Clínica, Facultat de Medicina, Universitat de Barcelona Barcelona, Spain
| | - Marine Vernet
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Anuhya Capia
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Miguel Alonso-Alonso
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA ; Institut Universitari de Neurorehabilitació Guttmann, Universidad Autónoma de Barcelona Badalona, Spain
| |
Collapse
|
14
|
Paizis C, Skoura X, Personnier P, Papaxanthis C. Motor Asymmetry Attenuation in Older Adults during Imagined Arm Movements. Front Aging Neurosci 2014; 6:49. [PMID: 24688468 PMCID: PMC3960501 DOI: 10.3389/fnagi.2014.00049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
Laterality is an important feature of motor behavior. Several studies have shown that lateralization in right-handed young adults (i.e., right versus left arm superiority) emerges also during imagined actions, that is when an action is internally simulated without any motor output. Such information, however, is lacking for elderly people and it could be valuable to further comprehend the evolution of mental states of action in normal aging. Here, we evaluated the influence of age on motor laterality during mental actions. Twenty-four young (mean age: 24.7 ± 4.4 years) and 24 elderly (mean age: 72.4 ± 3.6 years) participants mentally simulated and actually executed pointing movements with either their dominant-right or non-dominant-left arm in the horizontal plane. We recorded and analyzed the time of actual and mental movements and looked for differences between groups and arms. In addition, electromyographic activity from arm muscle was recorded to quantify any enhancement in muscle activation during mental actions. Our findings indicated that both groups mentally simulated arm movements without activating the muscles of the right or the left arm above the baseline level. This finding suggests that young and, notably, elderly adults are able to generate covert actions without any motor output. We found that manual asymmetries (i.e., faster movements with the right arm) were preserved in young adults for both actual and mental movements. In elderly adults, manual asymmetries were observed for actual but not for mental movements (i.e., equal movement times for both arms). These findings clearly indicate an age-related reduction of motor laterality during mental actions.
Collapse
Affiliation(s)
- Christos Paizis
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Université de Bourgogne , Dijon , France ; Unité 1093, Cognition, Action et Plasticité Sensorimotrice, Institut National de la Santé et de la Recherche Médicale , Dijon , France ; Sport Science Faculty, Center for Performance Expertise G. Cometti, University of Burgundy , Dijon , France
| | - Xanthi Skoura
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Université de Bourgogne , Dijon , France ; Unité 1093, Cognition, Action et Plasticité Sensorimotrice, Institut National de la Santé et de la Recherche Médicale , Dijon , France
| | - Pascaline Personnier
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Université de Bourgogne , Dijon , France ; Unité 1093, Cognition, Action et Plasticité Sensorimotrice, Institut National de la Santé et de la Recherche Médicale , Dijon , France
| | - Charalambos Papaxanthis
- Unité de Formation et de Recherche en Sciences et Techniques des Activités Physiques et Sportives, Université de Bourgogne , Dijon , France ; Unité 1093, Cognition, Action et Plasticité Sensorimotrice, Institut National de la Santé et de la Recherche Médicale , Dijon , France
| |
Collapse
|
15
|
Serbruyns L, Gooijers J, Caeyenberghs K, Meesen RL, Cuypers K, Sisti HM, Leemans A, Swinnen SP. Bimanual motor deficits in older adults predicted by diffusion tensor imaging metrics of corpus callosum subregions. Brain Struct Funct 2013; 220:273-90. [DOI: 10.1007/s00429-013-0654-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/07/2013] [Indexed: 12/13/2022]
|