1
|
Yu H, Wu M, Zhao N, Dong M, Wang Y, Yu K, Sun C, Xu N, Ge L, Liu W. Anti-Ricin toxin human neutralizing antibodies and DMAbs protection against ricin toxin poisoning. Toxicol Lett 2023:S0378-4274(23)00209-6. [PMID: 37390852 DOI: 10.1016/j.toxlet.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
DNA-encoded monoclonal antibodies (DMAbs) and in vivo expression of antibody therapeutics presents an innovative alternative to conventional delivery methods. Therefore, in order to prevent the lethal dose of ricin toxin (RT) and to avoid human anti-mouse antibody (HAMA) reaction, we developed the human neutralizing antibody 4-4E against RT and constructed DMAb-4-4E. The human neutralizing antibody 4-4E could neutralize RT in vitro and in vivo, while the mice in RT group all died. Using intramuscular electroporation (IM EP), antibodies were rapidly expressed in vivo within 7 days and were enriched in intestine and gastrocnemius muscle mostly. Besides, we found that DMAbs have shown a broad protective efficacy of RT poisoning prophylaxis. Driven by plasmids for IgG expression, mice were survived and the blood glucose level of mice in DMAb-IgG group returned to normal at 72h post RT challenge, and the RT group died within 48h. Furthermore, hindrance of protein disulfide isomerase (PDI) and accumulation of RT in endosomes were found in IgG-protected cells, revealing the possible mechanism of neutralization details. These data support the further study of RT-neutralizing monoclonal antibodies (mAbs) in the development.
Collapse
Affiliation(s)
- Haotian Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Meng Wu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Na Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Mingxin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Yan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, 130122, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Kaikai Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Na Xu
- Jilin Medical University, Jilin, 132013, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China.
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
| | - Wensen Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China.
| |
Collapse
|
2
|
Rasetti-Escargueil C, Avril A. Medical Countermeasures against Ricin Intoxication. Toxins (Basel) 2023; 15:toxins15020100. [PMID: 36828415 PMCID: PMC9966136 DOI: 10.3390/toxins15020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Ricin toxin is a disulfide-linked glycoprotein (AB toxin) comprising one enzymatic A chain (RTA) and one cell-binding B chain (RTB) contained in the castor bean, a Ricinus species. Ricin inhibits peptide chain elongation via disruption of the binding between elongation factors and ribosomes, resulting in apoptosis, inflammation, oxidative stress, and DNA damage, in addition to the classically known rRNA damage. Ricin has been used in traditional medicine throughout the world since prehistoric times. Because ricin toxin is highly toxic and can be readily extracted from beans, it could be used as a bioweapon (CDC B-list). Due to its extreme lethality and potential use as a biological weapon, ricin toxin remains a global public health concern requiring specific countermeasures. Currently, no specific treatment for ricin intoxication is available. This review focuses on the drugs under development. In particular, some examples are reviewed to demonstrate the proof of concept of antibody-based therapy. Chemical inhibitors, small proteins, and vaccines can serve as alternatives to antibodies or may be used in combination with antibodies.
Collapse
Affiliation(s)
- Christine Rasetti-Escargueil
- Unité des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Avenue du Docteur Roux, 75015 Paris, France
- Correspondence:
| | - Arnaud Avril
- Unité Immunopathologies, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
3
|
Ricin toxin and its neutralizing antibodies: A review. Toxicon 2022; 214:47-53. [PMID: 35595086 DOI: 10.1016/j.toxicon.2022.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022]
Abstract
Ricin toxin (RT) belongs to the ribosome-inactivating protein (RIP) family of toxins and is considered to be a moderate threat by the US Center of Disease Control and Prevention (CDC). RT poses a great potential threat to the public, but there has been a lack of effective treatment options so far. Over the past few decades, researches on the prevention and treatment of RT poisoning have been investigated, among which neutralizing antibodies targeting RT specifically have always been a research hotspot. In this review, we have summarized the mechanism of action of RT, the research results and the design strategies of RT neutralizing antibodies, and discussed the key issues in the development of RT neutralizing antibody researches.
Collapse
|
4
|
Sivaccumar J, Sandomenico A, Vitagliano L, Ruvo M. Monoclonal Antibodies: A Prospective and Retrospective View. Curr Med Chem 2021; 28:435-471. [PMID: 32072887 DOI: 10.2174/0929867327666200219142231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoclonal Antibodies (mAbs) represent one of the most important classes of biotherapeutic agents. They are used to cure many diseases, including cancer, autoimmune diseases, cardiovascular diseases, angiogenesis-related diseases and, more recently also haemophilia. They can be highly varied in terms of format, source, and specificity to improve efficacy and to obtain more targeted applications. This can be achieved by leaving substantially unchanged the basic structural components for paratope clustering. OBJECTIVES The objective was to trace the most relevant findings that have deserved prestigious awards over the years, to report the most important clinical applications and to emphasize their latest emerging therapeutic trends. RESULTS We report the most relevant milestones and new technologies adopted for antibody development. Recent efforts in generating new engineered antibody-based formats are briefly reviewed. The most important antibody-based molecules that are (or are going to be) used for pharmacological practice have been collected in useful tables. CONCLUSION The topics here discussed prove the undisputed role of mAbs as innovative biopharmaceuticals molecules and as vital components of targeted pharmacological therapies.
Collapse
Affiliation(s)
- Jwala Sivaccumar
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
5
|
Orsini Delgado ML, Avril A, Prigent J, Dano J, Rouaix A, Worbs S, Dorner BG, Rougeaux C, Becher F, Fenaille F, Livet S, Volland H, Tournier JN, Simon S. Ricin Antibodies' Neutralizing Capacity against Different Ricin Isoforms and Cultivars. Toxins (Basel) 2021; 13:100. [PMID: 33573016 PMCID: PMC7911099 DOI: 10.3390/toxins13020100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Ricin, a highly toxic protein from Ricinus communis, is considered a potential biowarfare agent. Despite the many data available, no specific treatment has yet been approved. Due to their ability to provide immediate protection, antibodies (Abs) are an approach of choice. However, their high specificity might compromise their capacity to protect against the different ricin isoforms (D and E) found in the different cultivars. In previous work, we have shown the neutralizing potential of different Abs (43RCA-G1 (anti ricin A-chain) and RB34 and RB37 (anti ricin B-chain)) against ricin D. In this study, we evaluated their protective capacity against both ricin isoforms. We show that: (i) RB34 and RB37 recognize exclusively ricin D, whereas 43RCA-G1 recognizes both isoforms, (ii) their neutralizing capacity in vitro varies depending on the cultivar, and (iii) there is a synergistic effect when combining RB34 and 43RCA-G1. This effect is also demonstrated in vivo in a mouse model of intranasal intoxication with ricin D/E (1:1), where approximately 60% and 40% of mice treated 0 and 6 h after intoxication, respectively, are protected. Our results highlight the importance of evaluating the effectiveness of the Abs against different ricin isoforms to identify the treatment with the broadest spectrum neutralizing effect.
Collapse
Affiliation(s)
- Maria Lucia Orsini Delgado
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Arnaud Avril
- Microbiology and Infectious Diseases Department, Anti-Infectious Biotherapies and Immunity Unit, Army Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (A.A.); (C.R.); (J.-N.T.)
| | - Julie Prigent
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Julie Dano
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Audrey Rouaix
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Sylvia Worbs
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute (RKI), 13353 Berlin, Germany; (S.W.); (B.G.D.)
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute (RKI), 13353 Berlin, Germany; (S.W.); (B.G.D.)
| | - Clémence Rougeaux
- Microbiology and Infectious Diseases Department, Anti-Infectious Biotherapies and Immunity Unit, Army Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (A.A.); (C.R.); (J.-N.T.)
| | - François Becher
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - François Fenaille
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Sandrine Livet
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Hervé Volland
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| | - Jean-Nicolas Tournier
- Microbiology and Infectious Diseases Department, Anti-Infectious Biotherapies and Immunity Unit, Army Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (A.A.); (C.R.); (J.-N.T.)
| | - Stéphanie Simon
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (J.P.); (J.D.); (A.R.); (F.B.); (F.F.); (S.L.); (H.V.)
| |
Collapse
|
6
|
Yu H, Chang Y, Dong M, Wang Y, Sun C, Liu Z, Wang X, Xu N, Liu W. Neutralization and binding activity of a human single-chain antibody to ricin toxin. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1698521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Haotian Yu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| | - Ying Chang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
- Jilin Medical University, Jilin, People’s Republic of China
| | - Mingxin Dong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| | - Yan Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| | - Chengbiao Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| | - Zhongliang Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xin Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Na Xu
- Jilin Medical University, Jilin, People’s Republic of China
| | - Wensen Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, People’s Republic of China
| |
Collapse
|
7
|
Bansia H, Bagaria S, Karande AA, Ramakumar S. Structural basis for neutralization of cytotoxic abrin by monoclonal antibody D6F10. FEBS J 2019; 286:1003-1029. [DOI: 10.1111/febs.14716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/02/2018] [Accepted: 11/30/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Harsh Bansia
- Department of Physics Indian Institute of Science Bengaluru India
| | - Shradha Bagaria
- Department of Biochemistry Indian Institute of Science Bengaluru India
| | | | | |
Collapse
|
8
|
Clavero-Álvarez A, Di Mambro T, Perez-Gaviro S, Magnani M, Bruscolini P. Humanization of Antibodies using a Statistical Inference Approach. Sci Rep 2018; 8:14820. [PMID: 30287940 PMCID: PMC6172228 DOI: 10.1038/s41598-018-32986-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023] Open
Abstract
Antibody humanization is a key step in the preclinical phase of the development of therapeutic antibodies, originally developed and tested in non-human models (most typically, in mouse). The standard technique of Complementarity-Determining Regions (CDR) grafting into human Framework Regions of germline sequences has some important drawbacks, in that the resulting sequences often need further back-mutations to ensure functionality and/or stability. Here we propose a new method to characterize the statistical distribution of the sequences of the variable regions of human antibodies, that takes into account phenotypical correlations between pairs of residues, both within and between chains. We define a "humanness score" of a sequence, comparing its performance in distinguishing human from murine sequences, with that of some alternative scores in the literature. We also compare the score with the experimental immunogenicity of clinically used antibodies. Finally, we use the humanness score as an optimization function and perform a search in the sequence space, starting from different murine sequences and keeping the CDR regions unchanged. Our results show that our humanness score outperforms other methods in sequence classification, and the optimization protocol is able to generate humanized sequences that are recognized as human by standard homology modelling tools.
Collapse
Affiliation(s)
| | - Tomas Di Mambro
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Sergio Perez-Gaviro
- Departamento de Física Teórica, Universidad de Zaragoza, Zaragoza, 50009, Spain.,Centro Universitario de la Defensa, Zaragoza, 50090, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Pierpaolo Bruscolini
- Departamento de Física Teórica, Universidad de Zaragoza, Zaragoza, 50009, Spain. .,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, 50018, Spain.
| |
Collapse
|
9
|
Whitfield SJC, Griffiths GD, Jenner DC, Gwyther RJ, Stahl FM, Cork LJ, Holley JL, Green AC, Clark GC. Production, Characterisation and Testing of an Ovine Antitoxin against Ricin; Efficacy, Potency and Mechanisms of Action. Toxins (Basel) 2017; 9:E329. [PMID: 29057798 PMCID: PMC5666376 DOI: 10.3390/toxins9100329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
Ricin is a type II ribosome-inactivating toxin that catalytically inactivates ribosomes ultimately leading to cell death. The toxicity of ricin along with the prevalence of castor beans (its natural source) has led to its increased notoriety and incidences of nefarious use. Despite these concerns, there are no licensed therapies available for treating ricin intoxication. Here, we describe the development of a F(ab')₂ polyclonal ovine antitoxin against ricin and demonstrate the efficacy of a single, post-exposure, administration in an in vivo murine model of intoxication against aerosolised ricin. We found that a single dose of antitoxin afforded a wide window of opportunity for effective treatment with 100% protection observed in mice challenged with aerosolised ricin when given 24 h after exposure to the toxin and 75% protection when given at 30 h. Treated mice had reduced weight loss and clinical signs of intoxication compared to the untreated control group. Finally, using imaging flow cytometry, it was found that both cellular uptake and intracellular trafficking of ricin toxin to the Golgi apparatus was reduced in the presence of the antitoxin suggesting both actions can contribute to the therapeutic mechanism of a polyclonal antitoxin. Collectively, the research highlights the significant potential of the ovine F(ab')₂ antitoxin as a treatment for ricin intoxication.
Collapse
Affiliation(s)
- Sarah J C Whitfield
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | - Gareth D Griffiths
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | - Dominic C Jenner
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | - Robert J Gwyther
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | - Fiona M Stahl
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | - Lucy J Cork
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | - Jane L Holley
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK
| | - A Christopher Green
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | - Graeme C Clark
- Chemical, Biological and Radiological Division, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| |
Collapse
|
10
|
Amiri MM, Golsaz-Shirazi F, Soltantoyeh T, Hosseini-Ghatar R, Bahadori T, Khoshnoodi J, Navabi SS, Farid S, Karimi-Jafari MH, Jeddi-Tehrani M, Shokri F. Hersintuzumab: A novel humanized anti-HER2 monoclonal antibody induces potent tumor growth inhibition. Invest New Drugs 2017; 36:171-186. [PMID: 28983766 DOI: 10.1007/s10637-017-0518-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 09/22/2017] [Indexed: 01/30/2023]
Abstract
Humanized monoclonal antibodies (mAbs) against HER2 including trastuzumab and pertuzumab are widely used to treat HER2 overexpressing metastatic breast cancers. These two mAbs recognize distinct epitopes on HER2 and their combination induces a more potent blockade of HER2 signaling than trastuzumab alone. Recently, we have reported characterization of a new chimeric mAb (c-1T0) which binds to an epitope different from that recognized by trastuzumab and significantly inhibits proliferation of HER2 overexpressing tumor cells. Here, we describe humanization of this mAb by grafting all six complementarity determining regions (CDRs) onto human variable germline genes. Humanized VH and VL sequences were synthesized and ligated to human γ1 and κ constant region genes using splice overlap extension (SOE) PCR. Subsequently, the humanized antibody designated hersintuzumab was expressed and characterized by ELISA, Western blot and flow cytometry. The purified humanized mAb binds to recombinant HER2 and HER2-overexpressing tumor cells with an affinity comparable with the chimeric and parental mouse mAbs. It recognizes an epitope distinct from those recognized by trastuzumab and pertuzumab. Binding of hersintuzumab to HER2 overexpressing tumor cells induces G1 cell cycle arrest, inhibition of ERK and AKT signaling pathways and growth inhibition. Moreover, hersintuzumab could induce antibody-dependent cell cytotoxicity (ADCC) on BT-474 cells. This new humanized mAb is a potentially valuable tool for single or combination breast cancer therapy.
Collapse
Affiliation(s)
- Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Soltantoyeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Hosseini-Ghatar
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Bahadori
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Jalal Khoshnoodi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Sadat Navabi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Farid
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. .,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
Gal Y, Mazor O, Falach R, Sapoznikov A, Kronman C, Sabo T. Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects. Toxins (Basel) 2017; 9:E311. [PMID: 28972558 PMCID: PMC5666358 DOI: 10.3390/toxins9100311] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans), is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential biological threat agent due to its high availability and ease of production. The clinical manifestation of pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome (ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil infiltration and severe edema. Currently, the only post-exposure measure that is effective against pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment depends on antibody affinity and the time of treatment initiation within a limited therapeutic time window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating lung injury. Immunomodulators and other pharmacological-based treatment options should be tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecules and their various combinations.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
12
|
Zhang YF, Ho M. Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma. Sci Rep 2016; 6:33878. [PMID: 27667400 PMCID: PMC5036187 DOI: 10.1038/srep33878] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/05/2016] [Indexed: 01/03/2023] Open
Abstract
Glypican-3 (GPC3) is a cell-surface heparan sulfate proteoglycan highly expressed in hepatocellular carcinoma (HCC). We have generated a group of high-affinity mouse monoclonal antibodies targeting GPC3. Here, we report the humanization and testing of these antibodies for clinical development. We compared the affinity and cytotoxicity of recombinant immunotoxins containing mouse single-chain variable regions fused with a Pseudomonas toxin. To humanize the mouse Fvs, we grafted the combined KABAT/IMGT complementarity determining regions (CDR) into a human IgG germline framework. Interestingly, we found that the proline at position 41, a non-CDR residue in heavy chain variable regions (VH), is important for humanization of mouse antibodies. We also showed that two humanized anti-GPC3 antibodies (hYP7 and hYP9.1b) in the IgG format induced antibody-dependent cell-mediated cytotoxicity and complement-dependent-cytotoxicity in GPC3-positive cancer cells. The hYP7 antibody was tested and showed inhibition of HCC xenograft tumor growth in nude mice. This study successfully humanizes and validates high affinity anti-GPC3 antibodies and sets a foundation for future development of these antibodies in various clinical formats in the treatment of liver cancer.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Mitchell Ho
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
13
|
Jetzt AE, Li XP, Tumer NE, Cohick WS. Toxicity of ricin A chain is reduced in mammalian cells by inhibiting its interaction with the ribosome. Toxicol Appl Pharmacol 2016; 310:120-128. [PMID: 27639428 DOI: 10.1016/j.taap.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 01/11/2023]
Abstract
Ricin is a potent ribotoxin that is considered a bioterror threat due to its ease of isolation and possibility of aerosolization. In yeast, mutation of arginine residues away from the active site results in a ricin toxin A chain (RTA) variant that is unable to bind the ribosome and exhibits reduced cytotoxicity. The goal of the present work was to determine if these residues contribute to ribosome binding and cytotoxicity of RTA in mammalian cells. The RTA mutant R193A/R235A did not interact with mammalian ribosomes, while a G212E variant with a point mutation near its active site bound ribosomes similarly to wild-type (WT) RTA. R193A/R235A retained full catalytic activity on naked RNA but had reduced activity on mammalian ribosomes. To determine the effect of this mutant in intact cells, pre R193A/R235A containing a signal sequence directing it to the endoplasmic reticulum and mature R193A/R235A that directly targeted cytosolic ribosomes were each expressed. Depurination and protein synthesis inhibition were reduced by both pre- and mature R193A/R235A relative to WT. Protein synthesis inhibition was reduced to a greater extent by R193A/R235A than by G212E. Pre R193A/R235A caused a greater reduction in caspase activation and loss of mitochondrial membrane potential than G212E relative to WT RTA. These findings indicate that an RTA variant with reduced ribosome binding is less toxic than a variant with less catalytic activity but normal ribosome binding activity. The toxin-ribosome interaction represents a novel target for the development of therapeutics to prevent or treat ricin intoxication.
Collapse
Affiliation(s)
- Amanda E Jetzt
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, United States
| | - Xiao-Ping Li
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, United States
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, United States
| | - Wendie S Cohick
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, United States.
| |
Collapse
|
14
|
Humanized Monoclonal Antibody That Passively Protects Mice against Systemic and Intranasal Ricin Toxin Challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:795-9. [PMID: 27466351 DOI: 10.1128/cvi.00088-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/21/2016] [Indexed: 11/20/2022]
Abstract
PB10 is a murine monoclonal antibody against an immunodominant epitope on ricin toxin's enzymatic subunit. Here, we characterize a fully humanized version of PB10 IgG1 (hPB10) and demonstrate that it has potent in vitro and in vivo toxin-neutralizing activities. We also report the minimum serum concentrations of hPB10 required to protect mice against 10 times the 50% lethal dose of ricin when delivered by injection and inhalation.
Collapse
|
15
|
Herrera C, Klokk TI, Cole R, Sandvig K, Mantis NJ. A Bispecific Antibody Promotes Aggregation of Ricin Toxin on Cell Surfaces and Alters Dynamics of Toxin Internalization and Trafficking. PLoS One 2016; 11:e0156893. [PMID: 27300140 PMCID: PMC4907443 DOI: 10.1371/journal.pone.0156893] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/21/2016] [Indexed: 11/19/2022] Open
Abstract
JJX12 is an engineered bispecific antibody against ricin, a member of the medically important A-B family of toxins that exploits retrograde transport as means to gain entry into the cytosol of target cells. JJX12 consists of RTA-D10, a camelid single variable domain (VHH) antibody directed against an epitope on ricin's enzymatic subunit (RTA), linked via a 15-mer peptide to RTB-B7, a VHH against ricin's bivalent galactose binding subunit (RTB). We previously reported that JJX12, but not an equimolar mixture of RTA-D10 and RTB-B7 monomers, was able to passively protect mice against a lethal dose ricin challenge, demonstrating that physically linking RTB-B7 and RTA-D10 is critical for toxin-neutralizing activity in vivo. We also reported that JJX12 promotes aggregation of ricin in solution, presumably through the formation of intermolecular crosslinking. In the current study, we now present evidence that JJX12 affects the dynamics of ricin uptake and trafficking in human epithelial cells. Confocal microscopy, as well as live cell imaging coupled with endocytosis pathway-specific inhibitors, revealed that JJX12-toxin complexes are formed on the surfaces of mammalian cells and internalized via a pathway sensitive to amiloride, a known inhibitor of macropinocytosis. Moreover, in the presence of JJX12, retrograde transport of ricin to the trans-Golgi network was significantly reduced, while accumulation of the toxin in late endosomes was significantly enhanced. In summary, we propose that JJX12, by virtue of its ability to crosslink ricin toxin, alters the route of toxin uptake and trafficking within cells.
Collapse
Affiliation(s)
- Cristina Herrera
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Tove Irene Klokk
- Department of Molecular Cell Biology and Centre for Cancer Biomedicine, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Richard Cole
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Kirsten Sandvig
- Department of Molecular Cell Biology and Centre for Cancer Biomedicine, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| |
Collapse
|
16
|
Wang J, Gao S, Xin W, Kang L, Xu N, Zhang T, Liu W, Wang J. A novel recombinant vaccine protecting mice against abrin intoxication. Hum Vaccin Immunother 2016; 11:1361-7. [PMID: 26086588 PMCID: PMC4514378 DOI: 10.1080/21645515.2015.1008879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abrin toxin (AT) consisting of an A chain and a B chain is a potential agent for bioterrorism and an effective vaccine against AT poisoning is urgently required. In this study, AT B chain (ATB) was successfully expressed in the Escherichia coli (E. coli) and assessed the protection capacity against AT intoxication. The recombinant ATB (rATB) subunit induces a good immune response after 4 immunizations. All BALB/c mice immunized intraperitoneally (i.p.) with the purified rATB protein survived after challenged with 5 × LD50 of AT. Transfusion of sera from immunized mice provided passive protection in naive mice. Furthermore, histological findings showed that immunization with rATB decreased the severity of toxin-related tissue damage. This work indicates that the rATB protein may be a promising vaccine candidate against human exposure to AT.
Collapse
Key Words
- AT, abrin toxin
- ATB, abrin toxin B chain
- B chain
- E. coli, Escherichia coli
- ELISA, enzyme-linked immunosorbent assay
- LD50, 50% lethal dose
- PBS, phosphate-buffered saline solution
- RT, ricin toxin
- RTB, ricin toxin B chain
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- abrin toxin
- bioterrorism
- i.p, intraperitoneal or intraperitoneally
- immunogen
- pAb, polyclonal antibody
- vaccine candidate
Collapse
Affiliation(s)
- Junhong Wang
- a State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology ; Beijing , PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Noy-Porat T, Rosenfeld R, Ariel N, Epstein E, Alcalay R, Zvi A, Kronman C, Ordentlich A, Mazor O. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates. Toxins (Basel) 2016; 8:toxins8030064. [PMID: 26950154 PMCID: PMC4810209 DOI: 10.3390/toxins8030064] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 11/16/2022] Open
Abstract
Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit) was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1) that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication.
Collapse
Affiliation(s)
- Tal Noy-Porat
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ronit Rosenfeld
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Naomi Ariel
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Eyal Epstein
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ron Alcalay
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Arie Ordentlich
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ohad Mazor
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
18
|
Dong N, Luo L, Wu J, Jia P, Li Q, Wang Y, Gao Z, Peng H, Lv M, Huang C, Feng J, Li H, Shan J, Han G, Shen B. Monoclonal antibody, mAb 4C13, an effective detoxicant antibody against ricin poisoning. Vaccine 2015; 33:3836-42. [PMID: 26141013 DOI: 10.1016/j.vaccine.2015.06.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 11/30/2022]
Abstract
Ricin is a glycoprotein produced in castor seeds and consists of two polypeptide chains named Ricin Toxin A Chain (RTA) and Ricin Toxin B Chain (RTB), linked via a disulfide bridge. Due to its high toxicity, ricin is regarded as a high terrorist risk for the public. However, antibodies can play a pivotal role in neutralizing the toxin. In this research, the anti-toxicant effect of mAb 4C13, a monoclonal antibody (mAb) established using detoxicated ricin as the immunized antigen, was evaluated. Compared with mAb 4F2 and mAb 5G6, the effective mechanism of mAb 4C13 was analyzed by experiments relating to its cytotoxicity, epitope on ricin, binding kinetics with the toxin, its blockage on the protein synthesis inhibition induced by ricin and the intracelluar tracing of its complex with ricin. Our result indicated that mAb 4C13 could recognize and bind to RTA, RTB and exert its high affinity to the holotoxin. Both cytotoxicity and animal toxicity of ricin were well blocked by pre-incubating the toxin with mAb 4C13. By intravenous injection, mAb 4C13 could rescue the mouse intraperitoneally (ip) injected with a lethal dose of ricin (20μg/kg) even at 6h after the intoxication and its efficacy was dependent on its dosage. This research indicated that mAb 4C13 could be an excellent candidate for therapeutic antibodies. Its potent antitoxic efficiency was related to its recognition on the specific epitope with very high affinity and its blockage of protein synthesis inhibition in cytoplasm followed by cellular internalization with ricin.
Collapse
Affiliation(s)
- Na Dong
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Longlong Luo
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Junhua Wu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Peiyuan Jia
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Qian Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yuxia Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| | - Zhongcai Gao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Hui Peng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ming Lv
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Chunqian Huang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Jiannan Feng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Hua Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Junjie Shan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Gang Han
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
19
|
Wang CF, Nie XJ, Chen GM, Yu ZH, Li Z, Sun ZW, Weng ZF, Yang YY, Chen SL, Zheng SR, Luo YY, Lu YT, Cao HQ, Zhan HX. Early plasma exchange for treating ricin toxicity in children after castor bean ingestion. J Clin Apher 2015; 30:141-6. [PMID: 25116073 DOI: 10.1002/jca.21351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/17/2014] [Accepted: 07/07/2014] [Indexed: 11/11/2022]
Abstract
Plasma exchange (PE) for the treatment of ricin toxicity has not been previously reported. Here we describe the use of PE to treat children who experienced ricin toxicity after ingesting castor beans. Seven children (median age: 8.1 years) who consumed castor beans (median: 5 beans) were treated with PE. All had bradycardia and sinus arrhythmia, and most had experienced episodes of vomiting and/or diarrhea. PE settings were blood flow, 50-80 mL/min; PE rate, 600-800 mL/h; volume of exchange, 1440-1950 mL. Median time from ingestion to PE was 73 h. All clinical symptoms disappeared and vital signs rapidly returned to normal after PE; no severe organ dysfunction occurred. All children were discharged and recovered uneventfully. Concentrations of all serum biochemical parameters significantly decreased immediately after PE. Some, but not all, of these parameters were also significantly decreased at 48 and 72 h after PE compared with before PE. Our findings suggest that PE can be an effective early intervention in the treatment of ricin toxicity due to castor bean ingestion.
Collapse
Affiliation(s)
- Cheng-feng Wang
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, 350025, China
- Department of Pediatrics, Clinical Medical College of Fujian Medical University in Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, China
- Department of Pediatrics, Dongfang Hospital, Affiliated to Xiamen University, Fuzhou, 350025, China
| | - Xiao-jing Nie
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, 350025, China
- Department of Pediatrics, Clinical Medical College of Fujian Medical University in Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, China
- Department of Pediatrics, Dongfang Hospital, Affiliated to Xiamen University, Fuzhou, 350025, China
| | - Guang-ming Chen
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, 350025, China
- Department of Pediatrics, Clinical Medical College of Fujian Medical University in Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, China
- Department of Pediatrics, Dongfang Hospital, Affiliated to Xiamen University, Fuzhou, 350025, China
| | - Zi-hua Yu
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, 350025, China
- Department of Pediatrics, Clinical Medical College of Fujian Medical University in Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, China
- Department of Pediatrics, Dongfang Hospital, Affiliated to Xiamen University, Fuzhou, 350025, China
| | - Zheng Li
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, 350025, China
- Department of Pediatrics, Clinical Medical College of Fujian Medical University in Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, China
- Department of Pediatrics, Dongfang Hospital, Affiliated to Xiamen University, Fuzhou, 350025, China
| | - Zhi-wen Sun
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, 350025, China
- Department of Pediatrics, Clinical Medical College of Fujian Medical University in Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, China
- Department of Pediatrics, Dongfang Hospital, Affiliated to Xiamen University, Fuzhou, 350025, China
| | - Zeng-feng Weng
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, 350025, China
- Department of Pediatrics, Clinical Medical College of Fujian Medical University in Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, China
- Department of Pediatrics, Dongfang Hospital, Affiliated to Xiamen University, Fuzhou, 350025, China
| | - Yu-ying Yang
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, 350025, China
- Department of Pediatrics, Clinical Medical College of Fujian Medical University in Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, China
- Department of Pediatrics, Dongfang Hospital, Affiliated to Xiamen University, Fuzhou, 350025, China
| | - Shu-lian Chen
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, 350025, China
- Department of Pediatrics, Clinical Medical College of Fujian Medical University in Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, China
- Department of Pediatrics, Dongfang Hospital, Affiliated to Xiamen University, Fuzhou, 350025, China
| | - Si-rui Zheng
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, 350025, China
- Department of Pediatrics, Clinical Medical College of Fujian Medical University in Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, China
- Department of Pediatrics, Dongfang Hospital, Affiliated to Xiamen University, Fuzhou, 350025, China
| | - Ying-yun Luo
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, 350025, China
- Department of Pediatrics, Clinical Medical College of Fujian Medical University in Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, China
- Department of Pediatrics, Dongfang Hospital, Affiliated to Xiamen University, Fuzhou, 350025, China
| | - Yan-ting Lu
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, 350025, China
- Department of Pediatrics, Clinical Medical College of Fujian Medical University in Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, China
- Department of Pediatrics, Dongfang Hospital, Affiliated to Xiamen University, Fuzhou, 350025, China
| | - Hui-qin Cao
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, 350025, China
- Department of Pediatrics, Clinical Medical College of Fujian Medical University in Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, China
- Department of Pediatrics, Dongfang Hospital, Affiliated to Xiamen University, Fuzhou, 350025, China
| | - Hai-xia Zhan
- Department of Pediatrics, Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, 350025, China
- Department of Pediatrics, Clinical Medical College of Fujian Medical University in Fuzhou General Hospital of Nanjing Military Command, PLA, Fuzhou, Fujian, China
- Department of Pediatrics, Dongfang Hospital, Affiliated to Xiamen University, Fuzhou, 350025, China
| |
Collapse
|
20
|
Ahmadzadeh V, Farajnia S, Feizi MAH, Nejad RAK. Antibody humanization methods for development of therapeutic applications. Monoclon Antib Immunodiagn Immunother 2014; 33:67-73. [PMID: 24746146 DOI: 10.1089/mab.2013.0080] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recombinant antibody technologies are rapidly becoming available and showing considerable clinical success. However, the immunogenicity of murine-derived monoclonal antibodies is restrictive in cancer immunotherapy. Humanized antibodies can overcome these problems and are considered to be a promising alternative therapeutic agent. There are several approaches for antibody humanization. In this article we review various methods used in the antibody humanization process.
Collapse
Affiliation(s)
- Vahideh Ahmadzadeh
- 1 Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | | | | | | |
Collapse
|
21
|
Design, expression and characterization of a single chain anti-CD20 antibody; a germline humanized antibody derived from Rituximab. Protein Expr Purif 2014; 102:45-51. [PMID: 25088934 DOI: 10.1016/j.pep.2014.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022]
Abstract
CD20 is a B cell lineage specific surface antigen involved in various B cell malignancies. So far, several murine and chimeric antibodies have been produced against this antigen among which Rituximab is a commercially approved antibody widely used in treatment of cancers associated with CD20 overexpression. The current study reports the production and characterization of a humanized single chain version of Rituximab through CDR grafting method. For either heavy or light chain variable domains, a human antibody with the highest sequence homology to Rituximab was selected from human germline sequences and used as framework donors. Vernier zone residues in framework regions were replaced with those of Rituximab to retain the antigen binding affinity of parental antibody. The reactivity of humanized single chain antibody with CD20 was examined by ELISA and dot blot assays. The ability of antibody to suppress the growth of CD20 overexpressing Raji cells was tested by MTT assay. Analysis of reactivity with CD20 antigen revealed that the humanized single chain antibody reacted to the target antigen with high affinity. Proliferation inhibition assay showed that humanized scFv could suppress the proliferation of Raji cells efficiently in a dose-dependent manner. This successful production of a humanized scFv with the ability to inhibit growth of CD20-expressing cancer cell may provide a promising alternative strategy for CD20 targeted therapy.
Collapse
|
22
|
Kinetic Characterization of a Panel of High-Affinity Monoclonal Antibodies Targeting Ricin and Recombinant Re-Formatting for Biosensor Applications. Antibodies (Basel) 2014. [DOI: 10.3390/antib3020215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Kurella VB, Gali R. Structure guided homology model based design and engineering of mouse antibodies for humanization. Bioinformation 2014; 10:180-6. [PMID: 24966517 PMCID: PMC4070046 DOI: 10.6026/97320630010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/23/2022] Open
Abstract
No universal strategy exists for humanizing mouse antibodies, and most approaches are based on primary sequence alignment and grafting. Although this strategy theoretically decreases the immunogenicity of mouse antibodies, it neither addresses conformational changes nor steric clashes that arise due to grafting of human germline frameworks to accommodate mouse CDR regions. To address these issues, we created and tested a structure-based biologic design approach using a de novo homology model to aid in the humanization of 17 unique mouse antibodies. Our approach included building a structure-based de novo homology model from the primary mouse antibody sequence, mutation of the mouse framework residues to the closest human germline sequence and energy minimization by simulated annealing on the humanized homology model. Certain residues displayed force field errors and revealed steric clashes upon closer examination. Therefore, further mutations were introduced to rationally correct these errors. In conclusion, use of de novo antibody homology modeling together with simulated annealing improved the ability to predict conformational and steric clashes that may arise due to conversion of a mouse antibody into the humanized form and would prevent its neutralization when administered in vivo. This design provides a robust path towards the development of a universal strategy for humanization of mouse antibodies using computationally derived antibody homologous structures.
Collapse
Affiliation(s)
- Vinodh B Kurella
- Center for Biomedical Informatics and The Harvard Clinical and Translational Science Center, Harvard Medical School, Boston MA-02115, USA
| | - Reddy Gali
- Center for Biomedical Informatics and The Harvard Clinical and Translational Science Center, Harvard Medical School, Boston MA-02115, USA
| |
Collapse
|
24
|
Wang J, Gao S, Zhang T, Kang L, Cao W, Xu N, Liu W, Wang J. A recombinant chimeric protein containing B chains of ricin and abrin is an effective vaccine candidate. Hum Vaccin Immunother 2014; 10:938-44. [PMID: 24509607 DOI: 10.4161/hv.27870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Both ricin toxin (RT) and abrin toxin (AT) are 2 important toxin agents as potantial bioweapons. A dual subunit vaccine against RT and AT exposure is a promising option for developing prophylactic vaccination. In this study, we constructed a dual vaccine with RT B chain and AT B chain named RTB-ATB. The RTB-ATB chimeric protein was expressed in Escherichia coli (E. coli), and the purified protein was used to evaluate the immune response by a 2 × 2 × 2 × 2 factorial design. The main effects included dose of RTB-ATB, route of immunization injection, immunization time interval, and dose of native toxins challenge. For 2 × LD(50) challenge of RT or AT, 100% of the RTB-ATB immunized mice survived and regained or exceeded their initial weights within 10 days. For 4 × LD(50) challenge, different routes of immunization injection caused significant difference (P < 0.05), intraperitoneal (i.p.) administration of immunogen protected mice better than the subcutaneous (s.c.) administration. In conclusion, when administered i.p. to mice with 25 μg per mouse and immunization time interval Π in the absence of adjuvant, the chimeric protein elicited a stronger immune response and protected the animals from a dose of native toxins which was 4 times higher than their LD(50) in unvaccinated mice. Besides, the RTB-ATB chimeric protein could induce specific neutralizing antibodies against these 2 toxins. We anticipate that this study will open new possibilities in the preparation of RTB-ATB dual subunit vaccine against the exposure to deadly RT and AT.
Collapse
Affiliation(s)
- Junhong Wang
- State Key Laboratory of Pathogen and Biosecurity; Institute of Microbiology and Epidemiology; Academy of Military Medical Sciences; Fengtai District, Beijing, PR China; Tianjin Key Lab for Biomarkers Occupational and Environmental Hazard; Medical College of Chinese People's Armed Police Force; Tianjin, PR China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity; Institute of Microbiology and Epidemiology; Academy of Military Medical Sciences; Fengtai District, Beijing, PR China
| | - Tao Zhang
- State Key Laboratory of Pathogen and Biosecurity; Institute of Microbiology and Epidemiology; Academy of Military Medical Sciences; Fengtai District, Beijing, PR China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity; Institute of Microbiology and Epidemiology; Academy of Military Medical Sciences; Fengtai District, Beijing, PR China
| | - Wuchun Cao
- State Key Laboratory of Pathogen and Biosecurity; Institute of Microbiology and Epidemiology; Academy of Military Medical Sciences; Fengtai District, Beijing, PR China
| | - Na Xu
- Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun, PR China
| | - Wensen Liu
- Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun, PR China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity; Institute of Microbiology and Epidemiology; Academy of Military Medical Sciences; Fengtai District, Beijing, PR China
| |
Collapse
|
25
|
Hu CC, Yin J, Chau D, Cherwonogrodzky JW, Hu WG. Active immunity induced by passive IgG post-exposure protection against ricin. Toxins (Basel) 2014; 6:380-93. [PMID: 24451844 PMCID: PMC3920268 DOI: 10.3390/toxins6010380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 11/16/2022] Open
Abstract
Therapeutic antibodies can confer an instant protection against biothreat agents when administered. In this study, intact IgG and F(ab')2 from goat anti-ricin hyperimmune sera were compared for the protection against lethal ricin mediated intoxication. Similar ricin-binding affinities and neutralizing activities in vitro were observed between IgG and F(ab')2 when compared at the same molar concentration. In a murine ricin intoxication model, both IgG and F(ab')2 could rescue 100% of the mice by one dose (3 nmol) administration of antibodies 1 hour after 5 × LD50 ricin challenge. Nine days later, when the rescued mice received a second ricin challenge (5 × LD50), only the IgG-treated mice survived; the F(ab')2-treated mice did not. The experimental design excluded the possibility of residual goat IgG responsible for the protection against the second ricin challenge. Results confirmed that the active immunity against ricin in mice was induced quickly following the passive delivery of a single dose of goat IgG post-exposure. Furthermore, it was demonstrated that the induced active immunity against ricin in mice lasted at least 5 months. Therefore, passive IgG therapy not only provides immediate protection to the victim after ricin exposure, but also elicits an active immunity against ricin that subsequently results in long term protection.
Collapse
Affiliation(s)
- Charles Chen Hu
- Defence Research and Development Canada-Suffield, Box 4000, Station Main, Medicine Hat, AB T1A 8K6, Canada.
| | - Junfei Yin
- Defence Research and Development Canada-Suffield, Box 4000, Station Main, Medicine Hat, AB T1A 8K6, Canada.
| | - Damon Chau
- Defence Research and Development Canada-Suffield, Box 4000, Station Main, Medicine Hat, AB T1A 8K6, Canada.
| | - John W Cherwonogrodzky
- Defence Research and Development Canada-Suffield, Box 4000, Station Main, Medicine Hat, AB T1A 8K6, Canada.
| | - Wei-Gang Hu
- Defence Research and Development Canada-Suffield, Box 4000, Station Main, Medicine Hat, AB T1A 8K6, Canada.
| |
Collapse
|
26
|
Bagaria S, Ponnalagu D, Bisht S, Karande AA. Mechanistic insights into the neutralization of cytotoxic abrin by the monoclonal antibody D6F10. PLoS One 2013; 8:e70273. [PMID: 23922965 PMCID: PMC3726390 DOI: 10.1371/journal.pone.0070273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/14/2013] [Indexed: 01/06/2023] Open
Abstract
Abrin, an A/B toxin obtained from the Abrus precatorius plant is extremely toxic and a potential bio-warfare agent. Till date there is no antidote or vaccine available against this toxin. The only known neutralizing monoclonal antibody against abrin, namely D6F10, has been shown to rescue the toxicity of abrin in cells as well as in mice. The present study focuses on mapping the epitopic region to understand the mechanism of neutralization of abrin by the antibody D6F10. Truncation and mutational analysis of abrin A chain revealed that the amino acids 74-123 of abrin A chain contain the core epitope and the residues Thr112, Gly114 and Arg118 are crucial for binding of the antibody. In silico analysis of the position of the mapped epitope indicated that it is present close to the active site cleft of abrin A chain. Thus, binding of the antibody near the active site blocks the enzymatic activity of abrin A chain, thereby rescuing inhibition of protein synthesis by the toxin in vitro. At 1∶10 molar concentration of abrin:antibody, the antibody D6F10 rescued cells from abrin-mediated inhibition of protein synthesis but did not prevent cell attachment of abrin. Further, internalization of the antibody bound to abrin was observed in cells by confocal microscopy. This is a novel finding which suggests that the antibody might function intracellularly and possibly explains the rescue of abrin's toxicity by the antibody in whole cells and animals. To our knowledge, this study is the first report on a neutralizing epitope for abrin and provides mechanistic insights into the poorly understood mode of action of anti-A chain antibodies against several toxins including ricin.
Collapse
Affiliation(s)
- Shradha Bagaria
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | | | | | | |
Collapse
|
27
|
Improving the Therapeutic Potential of Human Granzyme B for Targeted Cancer Therapy. Antibodies (Basel) 2013. [DOI: 10.3390/antib2010019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|