1
|
McMillan JR, Chaves LF, Armstrong PM. Ecological predictors of mosquito population and arbovirus transmission synchrony estimates. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:564-574. [PMID: 36964697 PMCID: PMC10179454 DOI: 10.1093/jme/tjad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 05/13/2023]
Abstract
Quantifying synchrony in species population fluctuations and determining its driving factors can inform multiple aspects of ecological and epidemiological research and policy decisions. We examined seasonal mosquito and arbovirus surveillance data collected in Connecticut, United States from 2001 to 2020 to quantify spatial relationships in 19 mosquito species and 7 arboviruses timeseries accounting for environmental factors such as climate and land cover characteristics. We determined that mosquito collections, on average, were significantly correlated up to 10 km though highly variable among the examined species. Few arboviruses displayed any synchrony and significant maximum correlated distances never exceeded 5 km. After accounting for distance, mixed effects models showed that mosquito or arbovirus identity explained more variance in synchrony estimates than climate or land cover factors. Correlated mosquito collections up to 10-20 km suggest that mosquito control operations for nuisance and disease vectors alike must expand treatment zones to regional scales for operations to have population-level impacts. Species identity matters as well, and some mosquito species will require much larger treatment zones than others. The much shorter correlated detection distances for arboviruses reinforce the notion that focal-level processes drive vector-borne pathogen transmission dynamics and risk of spillover into human populations.
Collapse
Affiliation(s)
- Joseph R McMillan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Luis Fernando Chaves
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Philip M Armstrong
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| |
Collapse
|
2
|
Species distribution models for conservation: Identifying translocation sites for eastern quolls under climate change. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
3
|
Bellamy S, Alto BW. The Role of Predation in Determining Traits of Aedes aegypti (Diptera: Culicidae) and Infection With Zika Virus. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1197-1201. [PMID: 33554243 DOI: 10.1093/jme/tjab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Non-lethal predator-prey interactions during the immature stages can cause significant changes to mosquito life history traits and their ability to transmit pathogens as adults. Treatment manipulations using mosquitoes Aedes aegypti (L.) and Toxoryhnchites rutilus (Coquillett) were performed during the immature stages to explore the potential impacts of non-lethal interactions on adult susceptibility to infection, disseminated infection and saliva infection of Ae. aegypti following ingestion of Zika virus-infected blood. Treatments inducing density reduction resulted in reduced development time and survivorship to adulthood. However, effects of treatment did not alter infection, dissemination, or saliva infection. These observations indicate that, while non-lethal predation may impact some traits that influence population dynamics and transmission of pathogens, there were no direct effects on mosquito-arbovirus interactions.
Collapse
Affiliation(s)
- Shawna Bellamy
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL
| | - Barry W Alto
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL
| |
Collapse
|
4
|
Alomar AA, Alto BW. Mosquito responses to lethal and nonlethal effects of predation and an insect growth regulator. Ecosphere 2021. [DOI: 10.1002/ecs2.3452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Abdullah A. Alomar
- Entomology and Nematology Department Florida Medical Entomology Laboratory Institute of Food and Agricultural Sciences University of Florida Vero Beach Florida32962USA
| | - Barry W. Alto
- Entomology and Nematology Department Florida Medical Entomology Laboratory Institute of Food and Agricultural Sciences University of Florida Vero Beach Florida32962USA
| |
Collapse
|
5
|
Alomar AA, Eastmond BH, Alto BW. The effects of exposure to pyriproxyfen and predation on Zika virus infection and transmission in Aedes aegypti. PLoS Negl Trop Dis 2020; 14:e0008846. [PMID: 33201875 PMCID: PMC7707533 DOI: 10.1371/journal.pntd.0008846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/01/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne pathogen that can cause global public health threats. In the absence of effective antiviral medications, prevention measures rely largely on reducing the number of adult mosquito vectors by targeting juvenile stages. Despite the importance of juvenile mosquito control measures in reducing adult population size, a full understanding of the effects of these measures in determining mosquito phenotypic traits and in mosquito-arbovirus interactions is poorly understood. Pyriproxyfen is a juvenile hormone analog that primarily blocks adult emergence, but does not cause mortality in larvae. This mechanism has the potential to work in combination with other juvenile sources of mortality in nature such as predation to affect mosquito populations. Here, we experimentally evaluated the effects of juvenile exposure to pyriproxyfen and predatory mosquito Toxorhynchites rutilus on Aedes aegypti phenotypes including susceptibility to ZIKV infection and transmission. We discovered that combined effects of pyriproxyfen and Tx. rutilus led to higher inhibition of adult emergence in Ae. aegypti than observed in pyriproxyfen or Tx. rutilus treatments alone. Adult body size was larger in treatments containing Tx. rutilus and in treatments mimicking the daily mortality of predation compared to control or pyriproxyfen treatments. Susceptibility to infection with ZIKV in Ae. aegypti was reduced in predator treatment relative to those exposed to pyriproxyfen. Disseminated infection, transmission, and titers of ZIKV in Ae. aegypti were similar in all treatments relative to controls. Our data suggest that the combination of pyriproxyfen and Tx. rutilus can inhibit adult Ae. aegypti emergence but may confer a fitness advantage in survivors and does not inhibit their vector competence for ZIKV relative to controls. Understanding the ultimate consequences of juvenile mosquito control measures on subsequent adults’ ability to transmit pathogens is critical to fully understand their overall impacts. Mosquito control approaches primarily depend on lowering the number of potential adult mosquito vectors by inhibiting juvenile stages to reduce the risk of pathogen transmission. Pyriproxyfen is a juvenile hormone analog that inhibits the emergence of adult mosquitoes by interrupting metamorphosis, but does not target larvae. This mechanism allows natural sources of mortality like predation to act in combination with pyriproxyfen to affect mosquito population size. Here, we determined the effects of juvenile exposure to pyriproxyfen and predatory mosquito Toxorhynchites rutilus on adult Aedes aegypti traits, including infection with Zika virus. Combined effects of pyriproxyfen and Tx. rutilus led to strong inhibition of adult emergence in Ae. aegypti. Treatments containing predators or those mimicking the daily mortality of predation produced larger sized adults. Susceptibility to ZIKV infection was lowest in the predator treatment and highest in the pyriproxyfen treatment. Disseminated infection, transmission, and viral titers of ZIKV were similar between treatments. Our data suggest that the combination of pyriproxyfen and predators can enhance inhibition of adult Ae. aegypti emergence, but survivors may have fitness benefits such being larger mosquitoes. Understanding the consequences of control approaches in mosquito-pathogen interactions will assist to evaluate their suitability in mosquito control programs.
Collapse
Affiliation(s)
- Abdullah A. Alomar
- University of Florida, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida, United States of America
| | - Bradley H. Eastmond
- University of Florida, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida, United States of America
| | - Barry W. Alto
- University of Florida, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida, United States of America
- * E-mail:
| |
Collapse
|
6
|
Niang A, Sawadogo SP, Dabiré RK, Tripet F, Diabaté A. Assessment of the ecologically dependent post-zygotic isolation between Anopheles coluzzii and Anopheles gambiae. PLoS One 2020; 15:e0240625. [PMID: 33119635 PMCID: PMC7595400 DOI: 10.1371/journal.pone.0240625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/29/2020] [Indexed: 11/26/2022] Open
Abstract
Within the Anopheles gambiae complex, the sibling species An. coluzzii and An. gambiae are undergoing sympatric speciation. These species are characterized by rare hybrids in most of their geographical distribution. A strong assortative mating mediated by spatial swarm segregation has been shown whereas no intrinsic post-zygotic barriers have been found in laboratory conditions. To test the role of the hybridisation in reproductive isolation in natural populations transplant experiment are therefore needed to establish the significance of post-zygotic barriers. Previous studies indicated that predation is one of the major forces driving ecological divergence between An. gambiae and An. coluzzii. Here we extended these studies to their hybrids. Parental species and their F1 hybrids from reciprocal crosses were generated by the forced-mating technique as follows: female An. coluzzii × male An. coluzzii; female An. coluzzii × male An. gambiae; female An. gambiae × male An. coluzzii and female An. gambiae × Male An. gambiae. First instar larvae of each group from the crossing (here after An. coluzzii, Hybrid COL/GAM, Hybrid GAM/COL and An. gambiae, respectively) were transplanted in a field experiment with predation effect. Emergence success, development time of larvae and body size of the newly emerging adults were estimated as fitness components and then compared between parental species and F1 hybrids in absence and in presence of predators. Our findings confirm that An. coluzzii had higher fitness than An. gambiae in presence of predators versus in absence of predators. Moreover, the fitness of the F1 hybrid COL/GAM whose female parent was An. coluzzii matched that of An. coluzzii while that of the F1 reciprocal hybrid GAM/COL was similar to An. gambiae.
Collapse
Affiliation(s)
- Abdoulaye Niang
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | | | - Roch K. Dabiré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
7
|
Roy J, Barman D, Alam S. Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment. Biosystems 2020; 197:104176. [PMID: 32628979 DOI: 10.1016/j.biosystems.2020.104176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022]
Abstract
In this article, we propose and analyse a predator-prey model where apart from direct predation the prey population is affected by the fear induced from predators. The reproduction of the prey population is reduced as a cost of fear. The predator is assumed to consume the prey according to ratio-dependent functional response and is also involved in intra-specific competition due to limited resources of food. Through model analysis, it has been observed that fear factor regulates the dynamics of the system in a completely different way than in the case where functional response is only prey dependent. Also, intra-specific competition among predators reduces the effect of fear and it forms a different pattern in the system dynamics than that of the effect of fear. Furthermore, the deterministic model has been extended to a stochastic model by perturbing the natural death rates of both prey and predators. It has been observed that the stochastic system possesses a unique positive solution that is globally stable with respect to anywhere in the interior of the positive quadrant. The stochastic extinction and persistence scenario for both the species have been analysed and a detailed comparison between the deterministic and stochastic models have been done through exhaustive numerical simulation. Finally, numerical simulation has been performed to figure out the impact of fear on the population dynamics.
Collapse
Affiliation(s)
- Jyotirmoy Roy
- Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, B. Garden, Howrah, 711103, India
| | - Dipesh Barman
- Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, B. Garden, Howrah, 711103, India
| | - Shariful Alam
- Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, B. Garden, Howrah, 711103, India.
| |
Collapse
|
8
|
Roux O, Robert V. Larval predation in malaria vectors and its potential implication in malaria transmission: an overlooked ecosystem service? Parasit Vectors 2019; 12:217. [PMID: 31068213 PMCID: PMC6505304 DOI: 10.1186/s13071-019-3479-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/03/2019] [Indexed: 01/13/2023] Open
Abstract
The role of aquatic predators in controlling the anopheline aquatic stage has been known for decades. Recently, studies have highlighted that exposition to predation stress during aquatic development can have a profound impact on life-history traits (e.g. growth rate, fecundity and longevity) and consequently on the ability of adults to transmit human malaria parasites. In this study, we present a review aiming to contextualize the role of Anopheles larvae predators as an ecosystem factor interacting with the malaria pathogen through its vector, i.e. the female adult Anopheles. We first envisage the predator diversity that anopheline vectors are susceptible to encounter in their aquatic habitats. We then focus on mosquito-predator interactions with a special mention to anti-predator behaviors and prey adaptations developed to deal with the predation threat. Next, we address the direct and indirect effects of larval predation stress on mosquito populations and on individual life-history traits, which strongly suggest some carry-over effect of the impact of larval predation on vectorial capacity. The last part addresses the impact of human activities on larval predation. Concluding remarks highlight gaps in the knowledge of anopheline bio-ecology which may constitute avenues for researchers in the future.
Collapse
Affiliation(s)
- Olivier Roux
- MIVEGEC Unit, IRD-CNRS, Université de Montpellier, Montpellier, France. .,Institut de Recherche des Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso.
| | - Vincent Robert
- MIVEGEC Unit, IRD-CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
9
|
Chandrasegaran K, Juliano SA. How Do Trait-Mediated Non-lethal Effects of Predation Affect Population-Level Performance of Mosquitoes? Front Ecol Evol 2019; 7. [PMID: 31218216 DOI: 10.3389/fevo.2019.00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Non-lethal, trait-mediated effects of predation impact prey behavior and life-history traits. Studying how these effects in turn influence prey demography is crucial to understand prey life-history evolution. Mosquitoes are important vectors that claim several million lives every year worldwide by transmitting a range of pathogens. Several ecological factors affect life-history traits of both larval and adult mosquitoes, creating effects that cascade to population-level consequences. Few studies have comprehensively explored the non-lethal effects of predation and its interactions with resources and competition on larval, adult, and population traits of mosquitoes. Understanding these interactions is important because the effects of predation are hypothesized to rescue prey populations from the effects of density-dependence resulting from larval competition. Aedes aegypti larvae reared at two different larval densities and subjected to three non-lethal predator treatments were monitored for survival, development time, and adult size through the larval stages to adult eclosion, and adult females were monitored for survival and reproduction through their first gonotrophic cycle. Intraspecific competition increased larval development time, yielded small-bodied adults, and reduced fecundity in individuals exposed to predatory chemical cues as larvae. Exposure to cues from a living predator affected both body size and latency to blood feed in females. Analysis of life-table traits revealed significant effects of competition on net reproductive rate (R 0) of mosquitoes. The interaction between competition and predator treatments significantly affected the cohort rate of increase (r) and the index of performance (r'). The index of performance, which estimates rate of population change based on the size-fecundity relationship, was significantly and positively correlated with r, but overestimated r slightly. Lack of significant effect of predator treatments and larval density on cohort generation time (T c) further suggests that the observed effects of treatments on r and r' were largely a consequence of the effects on R 0. Also, the significant effects of treatment combinations on larval development time, adult body size and fecundity were ultimately manifested as effects on life-table traits estimated from adult survival and reproduction.
Collapse
Affiliation(s)
- Karthikeyan Chandrasegaran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.,School of Biological Sciences, Illinois State University, Normal, IL, United States.,SASTRA University, Tirumalaisamudram, Thanjavur, India.,Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| | - Steven A Juliano
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| |
Collapse
|
10
|
Pontarp M, Brännström Å, Petchey OL. Inferring community assembly processes from macroscopic patterns using dynamic eco‐evolutionary models and Approximate Bayesian Computation (ABC). Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mikael Pontarp
- Department of BiologyLund University Lund Sweden
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
- Department of Ecology and Environmental ScienceUmeå University Umeå Sweden
| | - Åke Brännström
- Department of Mathematics and Mathematical StatisticsUmeå University Umeå Sweden
- Evolution and Ecology ProgramInternational Institute for Applied Systems Analysis (IIASA) Laxenburg Austria
| | - Owen L. Petchey
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
| |
Collapse
|
11
|
Peers MJL, Majchrzak YN, Neilson E, Lamb CT, Hämäläinen A, Haines JA, Garland L, Doran-Myers D, Broadley K, Boonstra R, Boutin S. Quantifying fear effects on prey demography in nature. Ecology 2018; 99:1716-1723. [PMID: 29897623 DOI: 10.1002/ecy.2381] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/18/2018] [Accepted: 04/05/2018] [Indexed: 02/03/2023]
Abstract
In recent years, it has been argued that the effect of predator fear exacts a greater demographic toll on prey populations than the direct killing of prey. However, efforts to quantify the effects of fear have primarily relied on experiments that replace predators with predator cues. Interpretation of these experiments must consider two important caveats: (1) the magnitude of experimenter-induced predator cues may not be realistically comparable to those of the prey's natural sensory environment, and (2) given functional predators are removed from the treatments, the fear effect is measured in the absence of any consumptive effects, a situation which never occurs in nature. We contend that demographic consequences of fear in natural populations may have been overestimated because the intensity of predator cues applied by experimenters in the majority of studies has been unnaturally high, in some instances rarely occurring in nature without consumption. Furthermore, the removal of consumption from the treatments creates the potential situation that individual prey in poor condition (those most likely to contribute strongly to the observed fear effects via starvation or reduced reproductive output) may have been consumed by predators in nature prior to the expression of fear effects, thus confounding consumptive and fear effects. Here, we describe an alternative treatment design that does not utilize predator cues, and in so doing, better quantifies the demographic effect of fear on wild populations. This treatment substitutes the traditional cue experiment where consumptive effects are eliminated and fear is simulated with a design where fear is removed and consumptive effects are simulated through the experimental removal of prey. Comparison to a natural population would give a more robust estimate of the effect of fear in the presence of consumption on the demographic variable of interest. This approach represents a critical advance in quantifying the mechanistic pathways through which predation structures ecological communities. Discussing the merits of both treatments will motivate researchers to go beyond simply describing the existence of fear effects and focus on testing their true magnitude in wild populations and natural communities.
Collapse
Affiliation(s)
- Michael J L Peers
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Yasmine N Majchrzak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Eric Neilson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Clayton T Lamb
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Anni Hämäläinen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Jessica A Haines
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Laura Garland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Darcy Doran-Myers
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Kate Broadley
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| |
Collapse
|
12
|
Mosquito responses to trait- and density-mediated interactions of predation. Oecologia 2018; 187:233-243. [DOI: 10.1007/s00442-018-4107-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 02/26/2018] [Indexed: 12/30/2022]
|
13
|
Chandrasegaran K, Kandregula SR, Quader S, Juliano SA. Context-dependent interactive effects of non-lethal predation on larvae impact adult longevity and body composition. PLoS One 2018; 13:e0192104. [PMID: 29401513 PMCID: PMC5798783 DOI: 10.1371/journal.pone.0192104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/18/2018] [Indexed: 11/18/2022] Open
Abstract
Predation impacts development, behavior and morphology of prey species thereby shaping their abundances, distribution and community structure. Non-lethal threat of predation, specifically, can have a strong influence on prey lifehistory characteristics. While investigations often focus on the impact of predation threat on prey in isolation, tests of its interactive effects with food availability and resource competition on prey survival and fitness can improve understanding of costs, benefits and trade-offs of anti-predator strategies. This study, involving Aedes aegypti mosquitoes as a model organism, investigates both simple and interactive effects of predation threat during the larval stage on survival, size at and time to maturity, stored teneral reserves of glycogen, protein and lipid in adults, and adult longevity. Our results show that development times of mosquito larvae were increased (by 14.84% in males and by 97.63% in females), and size of eclosing adults decreased (by 62.30% in males and by 58.33% in females) when exposed to lowered nutrition and elevated intraspecific competition, but that predation had no detectable effect on these simple traits. Teneral reserves of glycogen, protein and lipid and adult longevity were positively correlated with adult body size. Non-lethal predation threat had significant interactive effects with nutrition and larval competition on teneral reserves in males and adult longevity in males and females. The sexes responded differently to conditions encountered as larvae, with the larval environment affecting development and adult characteristics more acutely for females than for males. The outcome of this study shows how threat of predation on juveniles can have long-lasting effects on adults that are likely to impact mosquito population dynamics and that may impact disease transmission.
Collapse
Affiliation(s)
- Karthikeyan Chandrasegaran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
- SASTRA University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Samyuktha Rao Kandregula
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Suhel Quader
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
- Nature Conservation Foundation, Mysuru, Karnataka, India
| | - Steven A. Juliano
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| |
Collapse
|
14
|
Dieng H, Satho T, Suradi NFB, Hakim H, Abang F, Aliasan NE, Miake F, Zuharah WF, Kassim NFA, Majid AHA, Fadzly N, Vargas REM, Morales NP, Noweg GT. Presence of a predator image in potential breeding sites and oviposition responses of a dengue vector. Acta Trop 2017; 176:446-454. [PMID: 28865898 DOI: 10.1016/j.actatropica.2017.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 10/18/2022]
Abstract
In dengue vector control, attempts to minimize or replace the use of pesticides have mostly involved use of predators, but success has been severely impeded by difficulties associated with financial and environmental costs, predator mass production, and persistence in target habitats. Visual deterrents have been used successfully to control animal pests, in some cases in an effort to replace pesticide use. Despite evidence that visual signals are crucial in site choice for egg deposition by dengue vectors, and that female mosquitoes respond to artificial predation, the role of predator intimidation as it affects the oviposition behavior of dengue vectors remains largely unexplored. Here, we examined the oviposition responses of Aedes aegypti exposed to various mosquito predator pictures. Gravid females were presented with equal opportunities to oviposit in two cups with predator images [Toxorhynchites splendens-TXI, Goldfish (Carassius auratus)-small (SFI) and large (LFI) and Tx. splendens+Goldfish-TXFI] and two others without pictures. Differences in egg deposition were examined between sites with and without these images. When given a chance to oviposit in cups with and without TXI, Ae. aegypti females were similarly attracted to both sites. When provided an opportunity to oviposit in cups displaying pictures of fish (SFI or LFI) and blank cups, egg deposition rates were much lower in the fish picture sites. Females showed a preference for blank cups over TXFI for egg deposition. They also equally avoided cups with pictures of fish, regardless of the size of the picture. Our results indicate that the presence of images of goldfish and their association with Tx. larvae significantly reduced egg deposition by Ae. aegypti, and this was not the case with the predatory larvae alone. The observations that the images of natural predators can repel gravid females of a dengue vector provide novel possibilities to develop effective and inexpensive alternative tools to harmful insecticides.
Collapse
|
15
|
Dutra HLC, Lopes da Silva V, da Rocha Fernandes M, Logullo C, Maciel-de-Freitas R, Moreira LA. The influence of larval competition on Brazilian Wolbachia-infected Aedes aegypti mosquitoes. Parasit Vectors 2016; 9:282. [PMID: 27183820 PMCID: PMC4869337 DOI: 10.1186/s13071-016-1559-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/02/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND With field releases starting in Brazil, particular interest must be given to understanding how the endosymbiotic bacterium Wolbachia pipientis affects Aedes aegypti mosquitoes with a Brazilian genetic background. Currently, there is limited information on how the bacterium affects phenotypic traits such as larval development rate, metabolic reserves and morphometric parameters in Ae. aegypti. Here, we analyze for the first time, the effect of Wolbachia on these key phenotypes and consider how this might impact the potential of the bacterium as a disease control agent in Brazil. METHODS We examined the influence of the wMel strain of Wolbachia in laboratory Ae. aegypti with a Brazilian genetic background, reared under different larval densities. Pupae formation was counted daily to assess differences in development rates. Levels of metabolic reserves and morphometric parameters were assessed in adults resulting from each larval condition. RESULTS wMel infection led to more rapid larval development at higher densities for both males and females, with no effect under less crowded conditions in females. Infection also led to reduced body size at both high and low density, but not at intermediate density, although the scale of this difference was maintained regardless of larval density, in comparison to uninfected individuals. Wing shape also varied significantly between infected and uninfected mosquitoes due to larval density. Glycogen levels in uninfected mosquitoes decreased under higher larval density, but were consistently high with Wolbachia infection, regardless of larval density. CONCLUSIONS We demonstrate that the wMel Wolbachia strain can positively influence some important host fitness traits, and that this interaction is directly linked to the conditions in which the host is reared. Combined with previously published data, these results suggest that this Wolbachia strain could be successfully used as part of the Eliminate Dengue Program in Brazil.
Collapse
Affiliation(s)
- Heverton Leandro Carneiro Dutra
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, Brazil
| | - Vanessa Lopes da Silva
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Mariana da Rocha Fernandes
- Laboratório de Sanidade Animal, Laboratório de Química e Função de Proteínas e Peptídeos e Unidade de Experimentação Animal - RJ, UENF, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Carlos Logullo
- Laboratório de Sanidade Animal, Laboratório de Química e Função de Proteínas e Peptídeos e Unidade de Experimentação Animal - RJ, UENF, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Luciano Andrade Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, Brazil.
| |
Collapse
|
16
|
LORD CC, ALTO BW, ANDERSON SL, CONNELLY CR, DAY JF, RICHARDS SL, SMARTT CT, TABACHNICK WJ. Can Horton hear the whos? The importance of scale in mosquito-borne disease. JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:297-313. [PMID: 24724278 PMCID: PMC5027650 DOI: 10.1603/me11168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The epidemiology of vector-borne pathogens is determined by mechanisms and interactions at different scales of biological organization, from individual-level cellular processes to community interactions between species and with the environment. Most research, however, focuses on one scale or level with little integration between scales or levels within scales. Understanding the interactions between levels and how they influence our perception of vector-borne pathogens is critical. Here two examples of biological scales (pathogen transmission and mosquito mortality) are presented to illustrate some of the issues of scale and to explore how processes on different levels may interact to influence mosquito-borne pathogen transmission cycles. Individual variation in survival, vector competence, and other traits affect population abundance, transmission potential, and community structure. Community structure affects interactions between individuals such as competition and predation, and thus influences the individual-level dynamics and transmission potential. Modeling is a valuable tool to assess interactions between scales and how processes at different levels can affect transmission dynamics. We expand an existing model to illustrate the types of studies needed, showing that individual-level variation in viral dose acquired or needed for infection can influence the number of infectious vectors. It is critical that interactions within and among biological scales and levels of biological organization are understood for greater understanding of pathogen transmission with the ultimate goal of improving control of vector-borne pathogens.
Collapse
Affiliation(s)
- C. C. LORD
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - B. W. ALTO
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - S. L. ANDERSON
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - C. R. CONNELLY
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - J. F. DAY
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - S. L. RICHARDS
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - C. T. SMARTT
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - W. J. TABACHNICK
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| |
Collapse
|