1
|
Troman LA, Collinson I. Pushing the Envelope: The Mysterious Journey Through the Bacterial Secretory Machinery, and Beyond. Front Microbiol 2021; 12:782900. [PMID: 34917061 PMCID: PMC8669966 DOI: 10.3389/fmicb.2021.782900] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria are contained by an envelope composed of inner and outer-membranes with the peptidoglycan (PG) layer between them. Protein translocation across the inner membrane for secretion, or insertion into the inner membrane is primarily conducted using the highly conserved, hourglass-shaped channel, SecYEG: the core-complex of the Sec translocon. This transport process is facilitated by interactions with ancillary subcomplex SecDF-YajC (secretion) and YidC (insertion) forming the holo-translocon (HTL). This review recaps the transport process across the inner-membrane and then further explores how delivery and folding into the periplasm or outer-membrane is achieved. It seems very unlikely that proteins are jettisoned into the periplasm and left to their own devices. Indeed, chaperones such as SurA, Skp, DegP are known to play a part in protein folding, quality control and, if necessary degradation. YfgM and PpiD, by their association at the periplasmic surface of the Sec machinery, most probably are also involved in some way. Yet, it is not entirely clear how outer-membrane proteins are smuggled past the proteases and across the PG to the barrel-assembly machinery (BAM) and their final destination. Moreover, how can this be achieved, as is thought, without the input of energy? Recently, we proposed that the Sec and BAM translocons interact with one another, and most likely other factors, to provide a conduit to the periplasm and the outer-membrane. As it happens, numerous other specialized proteins secretion systems also form trans-envelope structures for this very purpose. The direct interaction between components across the envelope raises the prospect of energy coupling from the inner membrane for active transport to the outer-membrane. Indeed, this kind of long-range energy coupling through large inter-membrane assemblies occurs for small molecule import (e.g., nutrient import by the Ton complex) and export (e.g., drug efflux by the AcrAB-TolC complex). This review will consider this hypothetical prospect in the context of outer-membrane protein biogenesis.
Collapse
Affiliation(s)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Abstract
Gram-negative bacteria have a multicomponent and constitutively active periplasmic chaperone system to ensure the quality control of their outer membrane proteins (OMPs). Recently, OMPs have been identified as a new class of vulnerable targets for antibiotic development, and therefore a comprehensive understanding of OMP quality control network components will be critical for discovering antimicrobials. Here, we demonstrate that the periplasmic chaperone Spy protects certain OMPs against protein-unfolding stress and can functionally compensate for other periplasmic chaperones, namely Skp and FkpA, in the Escherichia coli K-12 MG1655 strain. After extensive in vivo genetic experiments for functional characterization of Spy, we use nuclear magnetic resonance and circular dichroism spectroscopy to elucidate the mechanism by which Spy binds and folds two different OMPs. Along with holding OMP substrates in a dynamic conformational ensemble, Spy binding enables OmpX to form a partially folded β-strand secondary structure. The bound OMP experiences temperature-dependent conformational exchange within the chaperone, pointing to a multitude of local dynamics. Our findings thus deepen the understanding of functional compensation among periplasmic chaperones during OMP biogenesis and will promote the development of innovative antimicrobials against pathogenic Gram-negative bacteria.
Collapse
|
3
|
Molecular mechanism of networking among DegP, Skp and SurA in periplasm for biogenesis of outer membrane proteins. Biochem J 2021; 477:2949-2965. [PMID: 32729902 DOI: 10.1042/bcj20200483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
The biogenesis of outer membrane proteins (OMPs) is an extremely challenging process. In the periplasm of Escherichia coli, a group of quality control factors work together to exercise the safe-guard and quality control of OMPs. DegP, Skp and SurA are the three most prominent ones. Although extensive investigations have been carried out, the molecular mechanism regarding the networking among these proteins remains mostly mysterious. Our group has previously studied the molecular interactions of OMPs with SurA and Skp, using single-molecule detection (SMD). In this work, again using SMD, we studied how OmpC, a representative of OMPs, interacts with DegP, Skp and SurA collectively. Several important discoveries were made. The self-oligomerization of DegP to form hexamer occurs over hundred micromolars. When OmpC is in a monomer state at a low concentration, the OmpC·DegP6 and OmpC·DegP24 complexes form when the DegP concentration is around sub-micromolars and a hundred micromolars, respectively. High OmpC concentration promotes the binding affinity of DegP to OmpC by ∼100 folds. Skp and SurA behave differently when they interact synergistically with DegP in the presence of substrate. DegP can degrade SurA-protected OmpC, but Skp-protected OmpC forms the ternary complex OmpC·(Skp3)n·DegP6 (n = 1,2) to resist the DegP-mediated degradation. Combined with previous results, we were able to depict a comprehensive picture regarding the molecular mechanism of the networking among DegP, Skp and SurA in the periplasm for the OMPs biogenesis under physiological and stressed conditions.
Collapse
|
4
|
Affinity of Skp to OmpC revealed by single-molecule detection. Sci Rep 2020; 10:14871. [PMID: 32913243 PMCID: PMC7483523 DOI: 10.1038/s41598-020-71608-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
Outer membrane proteins (OMPs) are essential to gram-negative bacteria, and molecular chaperones prevent the OMPs from aggregation in the periplasm during the OMPs biogenesis. Skp is one of the molecular chaperones for this purpose. Here, we combined single-molecule fluorescence resonance energy transfer and fluorescence correlation spectroscopy to study the affinity and stoichiometric ratio of Skp in its binding with OmpC at the single-molecule level. The half concentration of the Skp self-trimerization (C1/2) was measured to be (2.5 ± 0.7) × 102 nM. Under an Skp concentration far below the C1/2, OmpC could recruit Skp monomers to form OmpC·Skp3. The affinity to form the OmpC·Skp3 complex was determined to be (5.5 ± 0.4) × 102 pM with a Hill coefficient of 1.6 ± 0.2. Under the micromolar concentrations of Skp, the formation of OmpC·(Skp3)2 was confirmed, and the dissociation constant of OmpC·(Skp3)2 was determined to be 1.2 ± 0.4 μM. The precise information will help us to quantitatively depict the role of Skp in the biogenesis of OMPs.
Collapse
|
5
|
Yu J, Lu L. BamA is a pivotal protein in cell envelope synthesis and cell division in Deinococcus radiodurans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1365-1374. [PMID: 31103441 DOI: 10.1016/j.bbamem.2019.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/29/2022]
Abstract
The beta-barrel assembly machinery (BAM) is an indispensable complex for protein transportation located at the outer membrane of bacteria. BAM is composed of five subunits (BamA-E) in the model bacterium Escherichia coli. DR_0379 is a BamA homolog in Deinococcus radiodurans, but the other subunits have not been detected in this species. In the present study, deletion of bamA resulted in decreased growth rate and altered morphology of D. radiodurans. ΔbamA cells underwent abnormal cell division, leading to aggregated bacteria of diverse size and shape, and the cell envelope was detached from the cell surface, resulting in reduced resistance to high ionic strength. Oxidative stress resistance was significantly enhanced in the mutant, which may be attributed to increased manganese ion concentration and Mn/Fe ratio. Numerous proteins were released into the medium from ΔbamA cells, including surface layer (S-layer) proteins and various transporters located in the periplasm and outer membrane. These results indicate that BamA affects the synthesis and assembly of the outer membrane and S-layer, and thereby influences material transport and cell division. The findings highlight the special functions of BamA in D. radiodurans, and promote our understanding of the multi-layer structure of the D. radiodurans cell envelope.
Collapse
Affiliation(s)
- Jiangliu Yu
- College of Life Science, Anhui Agricultural University, 130 Changjiangxilu, Hefei 230036, PR China.
| | - Luchun Lu
- College of Life Science, Anhui Agricultural University, 130 Changjiangxilu, Hefei 230036, PR China
| |
Collapse
|
6
|
Abstract
The biogenesis of periplasmic and outer membrane proteins (OMPs) in Escherichia coli is assisted by a variety of processes that help with their folding and transport to their final destination in the cellular envelope. Chaperones are macromolecules, usually proteins, that facilitate the folding of proteins or prevent their aggregation without becoming part of the protein's final structure. Because chaperones often bind to folding intermediates, they often (but not always) act to slow protein folding. Protein folding catalysts, on the other hand, act to accelerate specific steps in the protein folding pathway, including disulfide bond formation and peptidyl prolyl isomerization. This review is primarily concerned with E. coli and Salmonella periplasmic and cellular envelope chaperones; it also discusses periplasmic proline isomerization.
Collapse
Affiliation(s)
- Frederick Stull
- Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jean-Michel Betton
- Unité de Repliement et Modélisation des Protéines, Institut Pasteur-CNRS URA2185, 75724 Paris cedex 15, France
| | - James C A Bardwell
- Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
7
|
Li G, He C, Bu P, Bi H, Pan S, Sun R, Zhao XS. Single-Molecule Detection Reveals Different Roles of Skp and SurA as Chaperones. ACS Chem Biol 2018. [PMID: 29543429 DOI: 10.1021/acschembio.8b00097] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Skp and SurA are both periplasmic chaperones involved in the biogenesis of Escherichia coli β-barrel outer membrane proteins (OMPs). It is commonly assumed that SurA plays a major role whereas Skp is a minor factor. However, there is no molecular evidence for whether their roles are redundant. Here, by using different dilution methods, we obtained monodisperse and aggregated forms of OmpC and studied their interactions with Skp and SurA by single-molecule fluorescence resonance energy transfer and fluorescence correlation spectroscopy. We found that Skp can dissolve aggregated OmpC while SurA cannot convert aggregated OmpC into the monodisperse form and the conformations of OmpC recognized by the two chaperones as well as their stoichiometries of binding are different. Our study demonstrates the functional distinctions between Skp and SurA. In particular, the role of Skp is not redundant and is probably more significant under stress conditions.
Collapse
Affiliation(s)
- Geng Li
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Chenhui He
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Peixuan Bu
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Huimin Bi
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Sichen Pan
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Ronghua Sun
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xin Sheng Zhao
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol 2017; 15:123. [PMID: 29268734 PMCID: PMC5740924 DOI: 10.1186/s12915-017-0464-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
9
|
Kinetic insights into the temperature dependence of DNA strand cleavage and religation by topoisomerase III from the hyperthermophile Sulfolobus solfataricus. Sci Rep 2017; 7:5494. [PMID: 28710489 PMCID: PMC5511271 DOI: 10.1038/s41598-017-05837-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/23/2017] [Indexed: 11/08/2022] Open
Abstract
All cellular organisms encode type IA topoisomerases which catalyze DNA topological changes essential for DNA transactions. However, the kinetics of the reaction catalyzed by these enzymes remains poorly characterized. Here we measured the rapid kinetics of template binding, cleavage and religation by Sso topo III, a type IA topoisomerase from the hyperthermophilic archaeon Sulfolobus solfataricus, by using a novel FRET/PIFE-based method in a stopped-flow spectrometer. We show that Sso topo III bound the template rapidly, and the rate of binding was 2–3 orders of magnitudes higher than that of template cleavage at 25 °C. The rate of template cleavage was favored over that of template religation by the enzyme, and was more so at lower temperatures (25–55 °C). Significant template cleavage [(2.23 ± 0.11) × 10−3 s−1] was observed while little religation was detectable at 25 °C. This is consistent with the presence of a higher activation energy for template religation (41 ± 5 kcal·mol−1) than that for template cleavage (32 ± 1 kcal·mol−1). Our results provide a kinetic interpretation for the ability of Sso topo III to relax negatively supercoiled DNA only at higher temperature and offer clues to the adaptation of the reaction mechanisms of thermophilic enzymes to high temperature.
Collapse
|
10
|
Schiffrin B, Calabrese AN, Devine PWA, Harris SA, Ashcroft AE, Brockwell DJ, Radford SE. Skp is a multivalent chaperone of outer-membrane proteins. Nat Struct Mol Biol 2016; 23:786-793. [PMID: 27455461 PMCID: PMC5018216 DOI: 10.1038/nsmb.3266] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/24/2016] [Indexed: 01/17/2023]
Abstract
The trimeric chaperone Skp sequesters outer-membrane proteins (OMPs) within a hydrophobic cage, thereby preventing their aggregation during transport across the periplasm in Gram-negative bacteria. Here, we studied the interaction between Escherichia coli Skp and five OMPs of varying size. Investigations of the kinetics of OMP folding revealed that higher Skp/OMP ratios are required to prevent the folding of 16-stranded OMPs compared with their 8-stranded counterparts. Ion mobility spectrometry-mass spectrometry (IMS-MS) data, computer modeling and molecular dynamics simulations provided evidence that 10- to 16-stranded OMPs are encapsulated within an expanded Skp substrate cage. For OMPs that cannot be fully accommodated in the expanded cavity, sequestration is achieved by binding of an additional Skp trimer. The results suggest a new mechanism for Skp chaperone activity involving the coordination of multiple copies of Skp in protecting a single substrate from aggregation.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Paul W A Devine
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Sarah A Harris
- Astbury Centre for Structural Molecular Biology
- School of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
11
|
Plummer AM, Fleming KG. From Chaperones to the Membrane with a BAM! Trends Biochem Sci 2016; 41:872-882. [PMID: 27450425 DOI: 10.1016/j.tibs.2016.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023]
Abstract
Outer membrane proteins (OMPs) play a central role in the integrity of the outer membrane of Gram-negative bacteria. Unfolded OMPs (uOMPs) transit across the periplasm, and subsequent folding and assembly are crucial for biogenesis. Chaperones and the essential β-barrel assembly machinery (BAM) complex facilitate these processes. In vitro studies suggest that some chaperones sequester uOMPs in internal cavities during their periplasmic transit to prevent deleterious aggregation. Upon reaching the outer membrane, the BAM complex acts catalytically to accelerate uOMP folding. Complementary in vivo experiments have revealed the localization and activity of the BAM complex in living cells. Completing an understanding of OMP biogenesis will require a holistic view of the interplay among the individual components discussed here.
Collapse
Affiliation(s)
- Ashlee M Plummer
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
12
|
Abstract
The β-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.
Collapse
|
13
|
Abstract
Biogenesis of the Gram-negative outer membrane involves the chaperone seventeen kilodalton protein (Skp). A Skp trimer is currently thought to bind its unfolded outer membrane protein (uOMP) substrates. Using sedimentation equilibrium, we discovered that Skp is not an obligate trimer under physiological conditions and that Na(+), Cl(-), Mg(2+), and PO4(3-) ions are not linked to Skp trimerization. These findings suggest that electrostatics play a negligible role in Skp assembly. Our results demonstrate that Skp monomers are populated at biologically relevant concentrations, which raises the idea that kinetic formation of Skp-uOMP complexes likely involves Skp monomer assembly around its substrate. In addition, van't Hoff analysis of Skp self-association does not support a previously proposed coupled folding and trimerization of Skp.
Collapse
Affiliation(s)
- Clifford W. Sandlin
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore MD 21218
| | - Nathan R. Zaccai
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore MD 21218
| | - Karen G. Fleming
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
14
|
Zaccai NR, Sandlin CW, Hoopes JT, Curtis JE, Fleming PJ, Fleming KG, Krueger S. Deuterium Labeling Together with Contrast Variation Small-Angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins. Methods Enzymol 2015; 566:159-210. [PMID: 26791979 PMCID: PMC4913355 DOI: 10.1016/bs.mie.2015.06.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In Gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archaeal prefoldins and the mitochondrial Tim chaperones, that is the α-helical "tentacles" extend from a β-strand "body" to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis, and structure modeling.
Collapse
Affiliation(s)
- Nathan R Zaccai
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Clifford W Sandlin
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - James T Hoopes
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Joseph E Curtis
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Patrick J Fleming
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karen G Fleming
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Susan Krueger
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
| |
Collapse
|
15
|
McMorran LM, Brockwell DJ, Radford SE. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch Biochem Biophys 2014; 564:265-80. [PMID: 24613287 PMCID: PMC4262575 DOI: 10.1016/j.abb.2014.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 11/17/2022]
Abstract
Research into the mechanisms by which proteins fold into their native structures has been on-going since the work of Anfinsen in the 1960s. Since that time, the folding mechanisms of small, water-soluble proteins have been well characterised. By contrast, progress in understanding the biogenesis and folding mechanisms of integral membrane proteins has lagged significantly because of the need to create a membrane mimetic environment for folding studies in vitro and the difficulties in finding suitable conditions in which reversible folding can be achieved. Improved knowledge of the factors that promote membrane protein folding and disfavour aggregation now allows studies of folding into lipid bilayers in vitro to be performed. Consequently, mechanistic details and structural information about membrane protein folding are now emerging at an ever increasing pace. Using the panoply of methods developed for studies of the folding of water-soluble proteins. This review summarises current knowledge of the mechanisms of outer membrane protein biogenesis and folding into lipid bilayers in vivo and in vitro and discusses the experimental techniques utilised to gain this information. The emerging knowledge is beginning to allow comparisons to be made between the folding of membrane proteins with current understanding of the mechanisms of folding of water-soluble proteins.
Collapse
Affiliation(s)
- Lindsay M McMorran
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
16
|
EF-G catalyzes tRNA translocation by disrupting interactions between decoding center and codon-anticodon duplex. Nat Struct Mol Biol 2014; 21:817-24. [PMID: 25108354 DOI: 10.1038/nsmb.2869] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 07/11/2014] [Indexed: 02/01/2023]
Abstract
During translation, elongation factor G (EF-G) catalyzes the translocation of tRNA2-mRNA inside the ribosome. Translocation is coupled to a cycle of conformational rearrangements of the ribosomal machinery, and how EF-G initiates translocation remains unresolved. Here we performed systematic mutagenesis of Escherichia coli EF-G and analyzed inhibitory single-site mutants of EF-G that preserved pretranslocation (Pre)-state ribosomes with tRNAs in A/P and P/E sites (Pre-EF-G). Our results suggest that the interactions between the decoding center and the codon-anticodon duplex constitute the barrier for translocation. Catalysis of translocation by EF-G involves the factor's highly conserved loops I and II at the tip of domain IV, which disrupt the hydrogen bonds between the decoding center and the duplex to release the latter, hence inducing subsequent translocation events, namely 30S head swiveling and tRNA2-mRNA movement on the 30S subunit.
Collapse
|
17
|
Selkrig J, Leyton DL, Webb CT, Lithgow T. Assembly of β-barrel proteins into bacterial outer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1542-50. [DOI: 10.1016/j.bbamcr.2013.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 12/30/2022]
|
18
|
McMorran LM, Bartlett AI, Huysmans GHM, Radford SE, Brockwell DJ. Dissecting the effects of periplasmic chaperones on the in vitro folding of the outer membrane protein PagP. J Mol Biol 2013; 425:3178-91. [PMID: 23796519 PMCID: PMC3906610 DOI: 10.1016/j.jmb.2013.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
Although many periplasmic folding factors have been identified, the mechanisms by which they interact with unfolded outer membrane proteins (OMPs) to promote correct folding and membrane insertion remain poorly understood. Here, we have investigated the effect of two chaperones, Skp and SurA, on the folding kinetics of the OMP, PagP. Folding kinetics of PagP into both zwitterionic diC12:0PC (1,2-dilauroyl-sn-glycero-3-phosphocholine) liposomes and negatively charged 80:20 diC12:0PC:diC12:0PG [1,2-dilauroyl-sn-glycero-3-phospho-(1'-rac-glycerol)] liposomes were investigated using a combination of spectroscopic and SDS-PAGE assays. The results indicate that Skp modulates the observed rate of PagP folding in a manner that is dependent on the composition of the membrane and the ionic strength of the buffer used. These data suggest that electrostatic interactions play an important role in Skp-assisted substrate delivery to the membrane. In contrast, SurA showed no effect on the observed folding rates of PagP, consistent with the view that these chaperones act by distinct mechanisms in partially redundant parallel chaperone pathways that facilitate OMP assembly. In addition to delivery of the substrate protein to the membrane, the ability of Skp to prevent OMP aggregation was investigated. The results show that folding and membrane insertion of PagP can be restored, in part, by Skp in conditions that strongly favour PagP aggregation. These results illustrate the utility of in vitro systems for dissecting the complex folding environment encountered by OMPs in the periplasm and demonstrate the key role of Skp in holding aggregation-prone OMPs prior to their direct or indirect delivery to the membrane.
Collapse
Affiliation(s)
- Lindsay M McMorran
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|