1
|
Nair NU, Schäffer AA, Gertz EM, Cheng K, Zerbib J, Sahu AD, Leor G, Shulman ED, Aldape KD, Ben-David U, Ruppin E. Chromosome 7 Gain Compensates for Chromosome 10 Loss in Glioma. Cancer Res 2024; 84:3464-3477. [PMID: 39078448 PMCID: PMC11479827 DOI: 10.1158/0008-5472.can-24-1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers. This phenomenon has been investigated since the late 1980s without resolution. Expanding beyond previous gene-centric studies, we investigated the co-occurrence in a genome-wide manner, taking an evolutionary perspective. Mining of large-scale tumor aneuploidy data confirmed the previous finding of a small-scale longitudinal study that the most likely order is chromosome 10 loss, followed by chromosome 7 gain. Extensive analysis of genomic and transcriptomic data from both patients and cell lines revealed that this co-occurrence can be explained by functional rescue interactions that are highly enriched on chromosome 7, which could potentially compensate for any detrimental consequences arising from the loss of chromosome 10. Transcriptomic data from various normal, noncancerous human brain tissues were analyzed to assess which tissues may be most predisposed to tolerate compensation of chromosome 10 loss by chromosome 7 gain. The analysis indicated that the preexisting transcriptomic states in the cortex and frontal cortex, where gliomas arise, are more favorable than other brain regions for compensation by rescuer genes that are active on chromosome 7. Collectively, these findings suggest that the phenomenon of chromosome 10 loss and chromosome 7 gain in gliomas is orchestrated by a complex interaction of many genes residing within these two chromosomes and provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain. Significance: Increased expression of multiple rescuer genes on the gained chromosome 7 could compensate for the downregulation of several vulnerable genes on the lost chromosome 10, resolving the long-standing mystery of this frequent co-occurrence in gliomas.
Collapse
Affiliation(s)
- Nishanth Ulhas Nair
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro A. Schäffer
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - E. Michael Gertz
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kuoyuan Cheng
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- MSD, Beijing, China
| | - Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Avinash Das Sahu
- The University of New Mexico, Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Gil Leor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Eldad D. Shulman
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth D. Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Eytan Ruppin
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Lead contact
| |
Collapse
|
2
|
Staszkiewicz R, Sobański D, Pulka W, Gładysz D, Gadzieliński M, Strojny D, Grabarek BO. Variances in the Expression Profile of Circadian Clock-Related Genes in Astrocytic Brain Tumors. Cancers (Basel) 2024; 16:2335. [PMID: 39001398 PMCID: PMC11240661 DOI: 10.3390/cancers16132335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
This study explores the role of circadian clock genes in the progression of astrocytic tumors, a prevalent type of brain tumor. The aim was to assess the expression patterns of these genes in relation to the tumor grade. Using microarray analysis, qRT-PCR, and methylation-specific PCR, we examined gene expression, DNA methylation patterns, and microRNA interactions in tumor samples from 60 patients. Our results indicate that the expression of key circadian clock genes, such as clock circadian regulator (CLOCK), protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1), protein kinase AMP-activated catalytic subunit alpha 2 (PRKAA2), protein kinase AMP-activated non-catalytic subunit beta 1 (PRKAB1), protein kinase AMP-activated non-catalytic subunit beta 2 (PRKAB2), period circadian regulator 1 (PER1), period circadian regulator 2 (PER2) and period circadian regulator 3 (PER3), varies significantly with the tumor grade. Notably, increased CLOCK gene expression and protein levels were observed in higher-grade tumors. DNA methylation analysis revealed that the promoter regions of PER1-3 genes were consistently methylated, suggesting a mechanism for their reduced expression. Our findings also underscore the complex regulatory mechanisms involving miRNAs, such as hsa-miR-106-5p, hsa-miR-20b-5p, and hsa-miR-30d-3p, which impact the expression of circadian clock-related genes. This underscores the importance of circadian clock genes in astrocytic tumor progression and highlights their potential as biomarkers and therapeutic targets. Further research is needed to validate these results and explore their clinical implications.
Collapse
Affiliation(s)
- Rafał Staszkiewicz
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Cracow, Poland
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, 40-555 Katowice, Poland
| | - Dawid Sobański
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Department of Neurosurgery, Szpital sw. Rafala in Cracow, 30-693 Cracow, Poland
| | - Wojciech Pulka
- Department of Neurosurgery, Neurotraumatology and Spinal Surgery, Regional Hospital in Elblag, 82-300 Elblag, Poland;
| | - Dorian Gładysz
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Cracow, Poland
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, 40-555 Katowice, Poland
| | - Marcin Gadzieliński
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Cracow, Poland
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, 40-555 Katowice, Poland
| | - Damian Strojny
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
- Institute of Health Care, National Academy of Applied Sciences in Przemysl, 37-700 Przemysl, Poland
- New Medical Techniques Specjalist Hospital of St. Family in Rudna Mała, 36-054 Rudna Mala, Poland
| | - Beniamin Oskar Grabarek
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (D.S.); (D.G.); (M.G.); (D.S.); (B.O.G.)
| |
Collapse
|
3
|
Kim Y, You JH, Ryu Y, Park G, Lee U, Moon HE, Park HR, Song CW, Ku JL, Park SH, Paek SH. ELAVL2 loss promotes aggressive mesenchymal transition in glioblastoma. NPJ Precis Oncol 2024; 8:79. [PMID: 38548861 PMCID: PMC10978835 DOI: 10.1038/s41698-024-00566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Glioblastoma (GBM), the most lethal primary brain cancer, exhibits intratumoral heterogeneity and molecular plasticity, posing challenges for effective treatment. Despite this, the regulatory mechanisms underlying such plasticity, particularly mesenchymal (MES) transition, remain poorly understood. In this study, we elucidate the role of the RNA-binding protein ELAVL2 in regulating aggressive MES transformation in GBM. We found that ELAVL2 is most frequently deleted in GBM compared to other cancers and associated with distinct clinical and molecular features. Transcriptomic analysis revealed that ELAVL2-mediated alterations correspond to specific GBM subtype signatures. Notably, ELAVL2 expression negatively correlated with epithelial-to-mesenchymal transition (EMT)-related genes, and its loss promoted MES process and chemo-resistance in GBM cells, whereas ELAVL2 overexpression exerted the opposite effect. Further investigation via tissue microarray analysis demonstrated that high ELAVL2 protein expression confers a favorable survival outcome in GBM patients. Mechanistically, ELAVL2 was shown to directly bind to the transcripts of EMT-inhibitory molecules, SH3GL3 and DNM3, modulating their mRNA stability, potentially through an m6A-dependent mechanism. In summary, our findings identify ELAVL2 as a critical tumor suppressor and mRNA stabilizer that regulates MES transition in GBM, underscoring its role in transcriptomic plasticity and glioma progression.
Collapse
Affiliation(s)
- Yona Kim
- Department of Neurosurgery, Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University College of Biological Sciences, Seoul, Korea
| | - Ji Hyeon You
- Department of Neurosurgery, Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
- Interdisciplinary Program in Caner Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Yeonjoo Ryu
- Department of Neurosurgery, Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University College of Biological Sciences, Seoul, Korea
| | - Gyuri Park
- Department of Neurosurgery, Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
- Interdisciplinary Program in Caner Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Urim Lee
- Department of Neurosurgery, Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
- Interdisciplinary Program in Caner Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo Eun Moon
- Department of Neurosurgery, Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Ran Park
- Department of Neurosurgery, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Chang W Song
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Korea.
| |
Collapse
|
4
|
Nair NU, Schäffer AA, Gertz EM, Cheng K, Zerbib J, Sahu AD, Leor G, Shulman ED, Aldape KD, Ben-David U, Ruppin E. Chromosome 7 to the rescue: overcoming chromosome 10 loss in gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576103. [PMID: 38313282 PMCID: PMC10836086 DOI: 10.1101/2024.01.17.576103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers, a phenomenon that has been investigated without resolution since the late 1980s. Expanding beyond previous gene-centric studies, we investigate the co-occurrence in a genome-wide manner taking an evolutionary perspective. First, by mining large tumor aneuploidy data, we predict that the more likely order is 10 loss followed by 7 gain. Second, by analyzing extensive genomic and transcriptomic data from both patients and cell lines, we find that this co-occurrence can be explained by functional rescue interactions that are highly enriched on 7, which can possibly compensate for any detrimental consequences arising from the loss of 10. Finally, by analyzing transcriptomic data from normal, non-cancerous, human brain tissues, we provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain.
Collapse
|
5
|
Mayol del Valle M, Morales B, Philbrick B, Adeagbo S, Goyal S, Newman S, Frontera NL, Nduom E, Olson J, Neill S, Hoang K. Intramedullary Spinal Cord Tumors: Whole-Genome Sequencing to Assist Management and Prognosis. Cancers (Basel) 2024; 16:404. [PMID: 38254893 PMCID: PMC10814932 DOI: 10.3390/cancers16020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Intramedullary spinal cord tumors (IMSCTs) harbor unique genetic mutations which may play a role in prognostication and management. To this end, we present the largest cohort of IMSCTs with genetic characterization in the literature from our multi-site institutional registry. A total of 93 IMSCT patient records were reviewed from the years 1999 to 2020. Out of these, 61 complied with all inclusion criteria, 14 of these patients had undergone genetic studies with 8 undergoing whole-genomic sequencing. Univariate analyses were used to assess any factors associated with progression-free survival (PFS) using the Cox proportional hazards model. Firth's penalized likelihood approach was used to account for the low event rates. Fisher's exact test was performed to compare whole-genome analyses and specific gene mutations with progression. PFS (months) was given as a hazard ratio. Only the absence of copy neutral loss of heterozygosity (LOH) was shown to be significant (0.05, p = 0.008). Additionally, higher risk of recurrence/progression was associated with LOH (p = 0.0179). Our results suggest LOH as a genetic predictor of shorter progression-free survival, particularly within ependymoma and glioblastoma tumor types. Further genomic research with larger multi-institutional datasets should focus on these mutations as possible prognostic factors.
Collapse
Affiliation(s)
- Miguel Mayol del Valle
- Department of Neurosurgery, Emory University Hospital, 1365 Clifton Road NE, Suite B6200, Atlanta, GA 30322, USA; (S.N.); (E.N.); (J.O.); (K.H.)
| | - Bryan Morales
- Department of Neuropathology, Emory University Hospital, 1364 Clifton Road, NE Room H-184, Atlanta, GA 30322, USA; (B.M.); (S.N.)
| | - Brandon Philbrick
- Department of Neurosurgery, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA (S.A.)
| | - Segun Adeagbo
- Department of Neurosurgery, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA (S.A.)
| | - Subir Goyal
- Biostatistics Shared Resource Department, Winship Cancer Institute, Emory University, 1365-C Clifton Road, NE, Atlanta, GA 30322, USA;
| | - Sarah Newman
- Department of Neurosurgery, Emory University Hospital, 1365 Clifton Road NE, Suite B6200, Atlanta, GA 30322, USA; (S.N.); (E.N.); (J.O.); (K.H.)
| | - Natasha L. Frontera
- School of Medicine, University of Puerto Rico Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico;
| | - Edjah Nduom
- Department of Neurosurgery, Emory University Hospital, 1365 Clifton Road NE, Suite B6200, Atlanta, GA 30322, USA; (S.N.); (E.N.); (J.O.); (K.H.)
| | - Jeffrey Olson
- Department of Neurosurgery, Emory University Hospital, 1365 Clifton Road NE, Suite B6200, Atlanta, GA 30322, USA; (S.N.); (E.N.); (J.O.); (K.H.)
| | - Stewart Neill
- Department of Neuropathology, Emory University Hospital, 1364 Clifton Road, NE Room H-184, Atlanta, GA 30322, USA; (B.M.); (S.N.)
| | - Kimberly Hoang
- Department of Neurosurgery, Emory University Hospital, 1365 Clifton Road NE, Suite B6200, Atlanta, GA 30322, USA; (S.N.); (E.N.); (J.O.); (K.H.)
| |
Collapse
|
6
|
Li Q, Zang Y, An D, Liu L, Jiang W, Liu R, Su J, Yang J, Li L, Zhang X. Discovery of Potent and Oral Bioavailable MAT2A Inhibitors for the Treatment of MTAP-Deleted Tumors. ACS Med Chem Lett 2023; 14:1876-1881. [PMID: 38116423 PMCID: PMC10726448 DOI: 10.1021/acsmedchemlett.3c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Inhibition of methionine adenosyltransferase 2A (MAT2A) has received significant interest because of its implication as a synthetic lethal target in methylthioadenosine phosphorylase (MTAP)-deleted cancers. Here, we report the discovery of a series of 3H-pyrido[1,2-c]pyrimidin-3-one derivatives as novel MAT2A inhibitors. The selected compound 30 exhibited high potency for MAT2A inhibition and a favorable pharmacokinetic profile. Furthermore, in an HCT-116 MTAP-deleted xenograft model, compound 30 showed better in vivo potency than current clinical compound AG-270.
Collapse
Affiliation(s)
- Qun Li
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| | - Yang Zang
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| | - Dan An
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| | - Lifei Liu
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| | - Wen Jiang
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| | - Rongchen Liu
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| | - Jiangtao Su
- Hubei
University of Technology, Wuhan, 430068, China
| | - Jun Yang
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
- Humanwell
Pharmaceuticals US Inc. 421 Sovereign Court, Ballwin, Missouri 63011, United States
| | - Lie Li
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| | - Xuejun Zhang
- Hubei
Bio-Pharmaceutical Industrial Technological Institute Inc., No. 666 High Tech Avenue, East Lake
High Tech Development Zone, Wuhan, Hubei 430075, China
- Humanwell
Healthcare (Group) Co., Ltd., No. 666 High Tech Avenue, East Lake High Tech Development
Zone, Wuhan, Hubei 430075, China
| |
Collapse
|
7
|
Wagner PM, Prucca CG, Caputto BL, Guido ME. Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. Int J Mol Sci 2021; 22:8289. [PMID: 34361055 PMCID: PMC8348990 DOI: 10.3390/ijms22158289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.
Collapse
Affiliation(s)
- Paula M. Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - César G. Prucca
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Beatriz L. Caputto
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Mario E. Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
8
|
Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. Int J Mol Sci 2021; 22:8289. [PMID: 34361055 PMCID: PMC8348990 DOI: 10.3390/ijms22158289;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.
Collapse
|
9
|
Konteatis Z, Travins J, Gross S, Marjon K, Barnett A, Mandley E, Nicolay B, Nagaraja R, Chen Y, Sun Y, Liu Z, Yu J, Ye Z, Jiang F, Wei W, Fang C, Gao Y, Kalev P, Hyer ML, DeLaBarre B, Jin L, Padyana AK, Dang L, Murtie J, Biller SA, Sui Z, Marks KM. Discovery of AG-270, a First-in-Class Oral MAT2A Inhibitor for the Treatment of Tumors with Homozygous MTAP Deletion. J Med Chem 2021; 64:4430-4449. [PMID: 33829783 DOI: 10.1021/acs.jmedchem.0c01895] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabolic enzyme methionine adenosyltransferase 2A (MAT2A) was recently implicated as a synthetic lethal target in cancers with deletion of the methylthioadenosine phosphorylase (MTAP) gene, which is adjacent to the CDKN2A tumor suppressor and codeleted with CDKN2A in approximately 15% of all cancers. Previous attempts to target MAT2A with small-molecule inhibitors identified cellular adaptations that blunted their efficacy. Here, we report the discovery of highly potent, selective, orally bioavailable MAT2A inhibitors that overcome these challenges. Fragment screening followed by iterative structure-guided design enabled >10 000-fold improvement in potency of a family of allosteric MAT2A inhibitors that are substrate noncompetitive and inhibit release of the product, S-adenosyl methionine (SAM), from the enzyme's active site. We demonstrate that potent MAT2A inhibitors substantially reduce SAM levels in cancer cells and selectively block proliferation of MTAP-null cells both in tissue culture and xenograft tumors. These data supported progressing AG-270 into current clinical studies (ClinicalTrials.gov NCT03435250).
Collapse
Affiliation(s)
- Zenon Konteatis
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Jeremy Travins
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Stefan Gross
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Katya Marjon
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Amelia Barnett
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Everton Mandley
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Brandon Nicolay
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Raj Nagaraja
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Yue Chen
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Yabo Sun
- Viva Biotech, Shanghai 201203, China
| | | | - Jie Yu
- Viva Biotech, Shanghai 201203, China
| | | | - Fan Jiang
- Viva Biotech, Shanghai 201203, China
| | | | | | - Yi Gao
- ChemPartner, Shanghai 201203, China
| | - Peter Kalev
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Marc L Hyer
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Byron DeLaBarre
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Lei Jin
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Anil K Padyana
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Lenny Dang
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Joshua Murtie
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Scott A Biller
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Zhihua Sui
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Kevin M Marks
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Shen H, Cook K, Gee HE, Hau E. Hypoxia, metabolism, and the circadian clock: new links to overcome radiation resistance in high-grade gliomas. J Exp Clin Cancer Res 2020; 39:129. [PMID: 32631383 PMCID: PMC7339573 DOI: 10.1186/s13046-020-01639-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is the cornerstone of treatment of high-grade gliomas (HGGs). It eradicates tumor cells by inducing oxidative stress and subsequent DNA damage. Unfortunately, almost all HGGs recur locally within several months secondary to radioresistance with intricate molecular mechanisms. Therefore, unravelling specific underlying mechanisms of radioresistance is critical to elucidating novel strategies to improve the radiosensitivity of tumor cells, and enhance the efficacy of radiotherapy. This review addresses our current understanding of how hypoxia and the hypoxia-inducible factor 1 (HIF-1) signaling pathway have a profound impact on the response of HGGs to radiotherapy. In addition, intriguing links between hypoxic signaling, circadian rhythms and cell metabolism have been recently discovered, which may provide insights into our fundamental understanding of radioresistance. Cellular pathways involved in the hypoxic response, DNA repair and metabolism can fluctuate over 24-h periods due to circadian regulation. These oscillatory patterns may have consequences for tumor radioresistance. Timing radiotherapy for specific times of the day (chronoradiotherapy) could be beneficial in patients with HGGs and will be discussed.
Collapse
Affiliation(s)
- Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia.
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia.
| | - Kristina Cook
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health & Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Harriet E Gee
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
- Blacktown Hematology and Cancer Centre, Blacktown Hospital, Blacktown, New South Wales, Australia
| |
Collapse
|
11
|
Arafa K, Emara M. Insights About Circadian Clock and Molecular Pathogenesis in Gliomas. Front Oncol 2020; 10:199. [PMID: 32195174 PMCID: PMC7061216 DOI: 10.3389/fonc.2020.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
The circadian clock is an endogenous time-keeping system that has been discovered across kingdoms of life. It controls and coordinates metabolism, physiology, and behavior to adapt to variations within the day and the seasonal environmental cycles driven by earth rotation. In mammals, although circadian rhythm is controlled by a set of core clock genes that are present in both in suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral tissues, the generation and control of the circadian rhythm at the cellular, tissue, and organism levels occurs in a hierarchal fashion. The SCN is central pacemaker comprising the principal circadian clock that synchronizes peripheral circadian clocks to their appropriate phase. Different epidemiological studies have shown that disruption of normal circadian rhythm is implicated in increasing the risk of developing cancers. In addition, deregulated expression of clock genes has been demonstrated in various types of cancer. These findings indicate a close association between circadian clock and cancer development and progression. Here, we review different evidences of this association in relation to molecular pathogenesis in gliomas.
Collapse
Affiliation(s)
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Cairo, Egypt
| |
Collapse
|
12
|
Loss of 5'-Methylthioadenosine Phosphorylase (MTAP) is Frequent in High-Grade Gliomas; Nevertheless, it is Not Associated with Higher Tumor Aggressiveness. Cells 2020; 9:cells9020492. [PMID: 32093414 PMCID: PMC7072758 DOI: 10.3390/cells9020492] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
The 5’-methylthioadenosine phosphorylase (MTAP) gene is located in the chromosomal region 9p21. MTAP deletion is a frequent event in a wide variety of human cancers; however, its biological role in tumorigenesis remains unclear. The purpose of this study was to characterize the MTAP expression profile in a series of gliomas and to associate it with patients’ clinicopathological features. Moreover, we sought to evaluate, through glioma gene-edited cell lines, the biological impact of MTAP in gliomas. MTAP expression was evaluated in 507 glioma patients by immunohistochemistry (IHC), and the expression levels were associated with patients’ clinicopathological features. Furthermore, an in silico study was undertaken using genomic databases totalizing 350 samples. In glioma cell lines, MTAP was edited, and following MTAP overexpression and knockout (KO), a transcriptome analysis was performed by NanoString Pan-Cancer Pathways panel. Moreover, MTAP’s role in glioma cell proliferation, migration, and invasion was evaluated. Homozygous deletion of 9p21 locus was associated with a reduction of MTAP mRNA expression in the TCGA (The Cancer Genome Atlas) - glioblastoma dataset (p < 0.01). In addition, the loss of MTAP expression was markedly high in high-grade gliomas (46.6% of cases) determined by IHC and Western blotting (40% of evaluated cell lines). Reduced MTAP expression was associated with a better prognostic in the adult glioblastoma dataset (p < 0.001). Nine genes associated with five pathways were differentially expressed in MTAP-knockout (KO) cells, with six upregulated and three downregulated in MTAP. Analysis of cell proliferation, migration, and invasion did not show any significant differences between MTAP gene-edited and control cells. Our results integrating data from patients as well as in silico and in vitro models provide evidence towards the lack of strong biological importance of MTAP in gliomas. Despite the frequent loss of MTAP, it seems not to have a clinical impact in survival and does not act as a canonic tumor suppressor gene in gliomas.
Collapse
|
13
|
González-Tablas M, Arandia D, Jara-Acevedo M, Otero Á, Vital AL, Prieto C, González-Garcia N, Nieto-Librero AB, Tao H, Pascual D, Ruiz L, Sousa P, Galindo-Villardón P, Orfao A, Tabernero MD. Heterogeneous EGFR, CDK4, MDM4, and PDGFRA Gene Expression Profiles in Primary GBM: No Association with Patient Survival. Cancers (Basel) 2020; 12:cancers12010231. [PMID: 31963499 PMCID: PMC7016708 DOI: 10.3390/cancers12010231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The prognostic impact of the expression profile of genes recurrently amplified in glioblastoma multiforme (GBM) remains controversial. METHODS We investigated the RNA gene expression profile of epidermal growth factor receptor (EGFR), cyclin-dependent kinase 4 (CDK4), murine doble minute 4 (MDM4), and platelet derived growth factor receptor alpha (PDGFRA) in 83 primary GBM tumors vs. 42 normal brain tissue samples. Interphase FISH (iFISH) analysis for the four genes, together with analysis of intragenic deletions in EGFR and PDGFRA, were evaluated in parallel at the DNA level. As validation cohort, publicly available RNA gene expression data on 293 samples from 10 different GBM patient series were also studied. RESULTS At the RNA level, CDK4 was the most frequently overexpressed gene (90%) followed by EGFR (58%) and PDGFRA (58%). Chromosome 7 copy number alterations, i.e., trisomy (49%) and polysomy (44%), showed no clear association with EGFR gene expression levels. In turn, intragenic EGFR deletions were found in 39 patients (47%), including EGFRvIII (46%) in association with EGFRvIVa (4%), EGFRvII (2%) or other EGFR deletions (3%) and PDGFRA deletion of exons 8-9 was found in only two tumors (2%). CONCLUSIONS Overall, none of the gene expression profiles and/or intragenic EGFR deletions showed a significant impact on overall survival of GBM supporting the notion that other still unraveled features of the disease might play a more relevant prognostic role in GBM.
Collapse
Affiliation(s)
- María González-Tablas
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Daniel Arandia
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - María Jara-Acevedo
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Sequencing DNA Service (NUCLEUS), University of Salamanca, 37007 Salamanca, Spain
| | - Álvaro Otero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Ana-Luisa Vital
- Centre for Neuroscience and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3004-561 Coimbra, Portugal;
| | - Carlos Prieto
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Bioinformatics Service (NUCLEUS), University of Salamanca, 37007 Salamanca, Spain
| | - Nerea González-Garcia
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Department of Statistics, University of Salamanca, 37007 Salamanca, Spain;
| | - Ana Belén Nieto-Librero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Department of Statistics, University of Salamanca, 37007 Salamanca, Spain;
| | - Herminio Tao
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal;
| | - Daniel Pascual
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Laura Ruiz
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Pablo Sousa
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | | | - Alberto Orfao
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (A.O.); (M.D.T.); Tel.: +34923-29-11-00 (M.D.T.)
| | - María Dolores Tabernero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL-IBSAL), 37007 Salamanca, Spain
- Correspondence: (A.O.); (M.D.T.); Tel.: +34923-29-11-00 (M.D.T.)
| |
Collapse
|
14
|
Xu J, Hou X, Pang L, Sun S, He S, Yang Y, Liu K, Xu L, Yin W, Xu C, Xiao Y. Identification of Dysregulated Competitive Endogenous RNA Networks Driven by Copy Number Variations in Malignant Gliomas. Front Genet 2019; 10:1055. [PMID: 31719831 PMCID: PMC6827427 DOI: 10.3389/fgene.2019.01055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Gliomas represent 80% of malignant brain tumors. Because of the high heterogeneity, the oncogenic mechanisms in gliomas are still unclear. In this study, we developed a new approach to identify dysregulated competitive endogenous RNA (ceRNA) interactions driven by copy number variation (CNV) in both lower-grade glioma (LGG) and glioblastoma multiforme (GBM). By analyzing genome and transcriptome data from The Cancer Genome Atlas (TCGA), we first found out the protein coding genes and long non-coding RNAs (lncRNAs) significantly affected by CNVs and further determined CNV-driven dysregulated ceRNA interactions by a customized pipeline. We obtained 13,776 CNV-driven dysregulated ceRNA pairs (including 3,954 mRNAs and 306 lncRNAs) in LGG and 262 pairs (including 221 mRNAs and 11 lncRNAs) in GBM, respectively. Our results showed that most of the ceRNA interactions were weakened by CNVs in both LGG and GBM, and many CNV-driven genes shared the same ceRNAs in the dysregulated ceRNA networks. Functional analysis indicated that the CNV-driven ceRNA network involved in some important mechanisms of tumorigenesis, such as cell cycle, p53 signaling pathway and TGF-beta signaling pathway. Further investigation of the ceRNA pairs in the communities from the dysregulated ceRNA network revealed more detailed biological functions related to the oncogenesis of malignant gliomas. Moreover, by exploring the association of CNV-driven ceRNAs with prognosis and histological subtype, we found that the copy number status of MTAP, KLHL9, and ELAVL2 related to the overall survival in LGG and showed high correlation with histological subtype. In conclusion, this study provided new insight into the molecular mechanisms and clinical biomarkers in gliomas.
Collapse
Affiliation(s)
- Jinyuan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaobo Hou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shangqin Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shengyuan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yiran Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kun Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Linfu Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenkang Yin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Richardson TE, Sathe AA, Kanchwala M, Jia G, Habib AA, Xiao G, Snuderl M, Xing C, Hatanpaa KJ. Genetic and Epigenetic Features of Rapidly Progressing IDH-Mutant Astrocytomas. J Neuropathol Exp Neurol 2019; 77:542-548. [PMID: 29741737 DOI: 10.1093/jnen/nly026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IDH-mutant astrocytomas are significantly less aggressive than their IDH-wildtype counterparts. We analyzed The Cancer Genome Atlas dataset (TCGA) and identified a small group of IDH-mutant, WHO grade II-III astrocytomas (n = 14) with an unexpectedly poor prognosis characterized by a rapid progression to glioblastoma and death within 3 years of the initial diagnosis. Compared with IDH-mutant tumors with the typical, extended progression-free survival in a control group of age-similar patients, the tumors in the rapidly progressing group were characterized by a markedly increased level of overall copy number alterations ([CNA]; p = 0.006). In contrast, the mutation load was similar, as was the methylation pattern, being consistent with IDH-mutant astrocytoma. Two of the gliomas (14%) in the rapidly progressing, IDH-mutant group but none of the other grade II-III gliomas in the TCGA (n = 283) had pathogenic mutations in genes (FANCB and APC) associated with maintaining chromosomal stability. These results suggest that chromosomal instability can negate the beneficial effect of IDH mutations in WHO II-III astrocytomas. The mechanism of the increased CNA is unknown but in some cases appears to be due to mutations in genes with a role in chromosomal stability. Increased CNA could serve as a biomarker for tumors at risk for rapid progression.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adwait Amod Sathe
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mohammed Kanchwala
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gaoxiang Jia
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amyn A Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas.,North Texas Veterans Affairs Medical Center, Dallas, Texas
| | - Guanghua Xiao
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Matija Snuderl
- Department of Pathology, New York University Langone Medical Center, New York City, New York
| | - Chao Xing
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
16
|
Jenkinson G, Abante J, Koldobskiy MA, Feinberg AP, Goutsias J. Ranking genomic features using an information-theoretic measure of epigenetic discordance. BMC Bioinformatics 2019; 20:175. [PMID: 30961526 PMCID: PMC6454630 DOI: 10.1186/s12859-019-2777-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background Establishment and maintenance of DNA methylation throughout the genome is an important epigenetic mechanism that regulates gene expression whose disruption has been implicated in human diseases like cancer. It is therefore crucial to know which genes, or other genomic features of interest, exhibit significant discordance in DNA methylation between two phenotypes. We have previously proposed an approach for ranking genes based on methylation discordance within their promoter regions, determined by centering a window of fixed size at their transcription start sites. However, we cannot use this method to identify statistically significant genomic features and handle features of variable length and with missing data. Results We present a new approach for computing the statistical significance of methylation discordance within genomic features of interest in single and multiple test/reference studies. We base the proposed method on a well-articulated hypothesis testing problem that produces p- and q-values for each genomic feature, which we then use to identify and rank features based on the statistical significance of their epigenetic dysregulation. We employ the information-theoretic concept of mutual information to derive a novel test statistic, which we can evaluate by computing Jensen-Shannon distances between the probability distributions of methylation in a test and a reference sample. We design the proposed methodology to simultaneously handle biological, statistical, and technical variability in the data, as well as variable feature lengths and missing data, thus enabling its wide-spread use on any list of genomic features. This is accomplished by estimating, from reference data, the null distribution of the test statistic as a function of feature length using generalized additive regression models. Differential assessment, using normal/cancer data from healthy fetal tissue and pediatric high-grade glioma patients, illustrates the potential of our approach to greatly facilitate the exploratory phases of clinically and biologically relevant methylation studies. Conclusions The proposed approach provides the first computational tool for statistically testing and ranking genomic features of interest based on observed DNA methylation discordance in comparative studies that accounts, in a rigorous manner, for biological, statistical, and technical variability in methylation data, as well as for variability in feature length and for missing data. Electronic supplementary material The online version of this article (10.1186/s12859-019-2777-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Garrett Jenkinson
- Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, USA.,Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Currently with Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jordi Abante
- Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Michael A Koldobskiy
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Goutsias
- Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
17
|
Pećina-Šlaus N, Kafka A, Gotovac Jerčić K, Logara M, Bukovac A, Bakarić R, Borovečki F. Comparable Genomic Copy Number Aberrations Differ across Astrocytoma Malignancy Grades. Int J Mol Sci 2019; 20:ijms20051251. [PMID: 30871102 PMCID: PMC6429132 DOI: 10.3390/ijms20051251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 01/13/2023] Open
Abstract
A collection of intracranial astrocytomas of different malignancy grades was analyzed for copy number aberrations (CNA) in order to identify regions that are driving cancer pathogenesis. Astrocytomas were analyzed by Array Comparative Genomic Hybridization (aCGH) and bioinformatics utilizing a Bioconductor package, Genomic Identification of Significant Targets in Cancer (GISTIC) 2.0.23 and DAVID software. Altogether, 1438 CNA were found of which losses prevailed. On our total sample, significant deletions affected 14 chromosomal regions, out of which deletions at 17p13.2, 9p21.3, 13q12.11, 22q12.3 remained significant even at 0.05 q-value. When divided into malignancy groups, the regions identified as significantly deleted in high grades were: 9p21.3; 17p13.2; 10q24.2; 14q21.3; 1p36.11 and 13q12.11, while amplified were: 3q28; 12q13.3 and 21q22.3. Low grades comprised significant deletions at 3p14.3; 11p15.4; 15q15.1; 16q22.1; 20q11.22 and 22q12.3 indicating their involvement in early stages of tumorigenesis. Significantly enriched pathways were: PI3K-Akt, Cytokine-cytokine receptor, the nucleotide-binding oligomerization domain (NOD)–like receptor, Jak-STAT, retinoic acid-inducible gene (RIG)-I-like receptor and Toll-like receptor pathways. HPV and herpex simplex infection and inflammation pathways were also represented. The present study brings new data to astrocytoma research amplifying the wide spectrum of changes that could help us identify the regions critical for tumorigenesis.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Šalata 12, 10000 Zagreb, Croatia.
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Šalata 12, 10000 Zagreb, Croatia.
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| | - Kristina Gotovac Jerčić
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb, School of Medicine and University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia.
| | | | - Anja Bukovac
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Šalata 12, 10000 Zagreb, Croatia.
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| | | | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb, School of Medicine and University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia.
- Department of Neurology, University Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia.
| |
Collapse
|
18
|
Zhang W, Wang SL. An Integrated Framework for Identifying Mutated Driver Pathway and Cancer Progression. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:455-464. [PMID: 29990286 DOI: 10.1109/tcbb.2017.2788016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Next-generation sequencing (NGS) technologies provide amount of somatic mutation data in a large number of patients. The identification of mutated driver pathway and cancer progression from these data is a challenging task because of the heterogeneity of interpatient. In addition, cancer progression at the pathway level has been proved to be more reasonable than at the gene level. In this paper, we introduce an integrated framework to identify mutated driver pathways and cancer progression (iMDPCP) at the pathway level from somatic mutation data. First, we use uncertainty coefficient to quantify mutual exclusivity on gene driver pathways and develop a computational framework to identify mutated driver pathways based on the adaptive discrete differential evolution algorithm. Then, we construct cancer progression model for driver pathways based on the Bayesian Network. Finally, we evaluate the performance of iMDPCP on real cancer somatic mutation datasets. The experimental results indicate that iMDPCP is more accurate than state-of-the-art methods according to the enrichment of KEGG pathways, and it also provides new insights on identifying cancer progression at the pathway level.
Collapse
|
19
|
Tang B, Lee HO, An SS, Cai KQ, Kruger WD. Specific Targeting of MTAP-Deleted Tumors with a Combination of 2'-Fluoroadenine and 5'-Methylthioadenosine. Cancer Res 2018; 78:4386-4395. [PMID: 29844120 PMCID: PMC6072572 DOI: 10.1158/0008-5472.can-18-0814] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
Abstract
Homozygous deletion of the methylthioadenosine phosphorylase (MTAP) gene is a frequent event in a wide variety of human cancers and is a possible molecular target for therapy. One potential therapeutic strategy to target MTAP-deleted tumors involves combining toxic purine analogues such as 6'-thioguanine (6TG) or 2'-fluoroadenine (2FA) with the MTAP substrate 5'-deoxy-5'-methylthioadenosine (MTA). The rationale is that excess MTA will protect normal MTAP+ cells from purine analogue toxicity because MTAP catalyzes the conversion of MTA to adenine, which then inhibits the conversion of purine base analogues into nucleotides. However, in MTAP- tumor cells, no protection takes place because adenine is not formed. Here, we examine the effects of 6TG and 2FA in combination with MTA in vitro and in vivoIn vitro, MTA protected against both 6TG and 2FA toxicity in an MTAP-dependent manner, shifting the IC50 concentration by one to three orders of magnitude. However, in mice, MTA protected against toxicity from 2FA but failed to protect against 6TG. Addition of 100 mg/kg MTA to 20 mg/kg 2FA entirely reversed the toxicity of 2FA in a variety of tissues and the treatment was well tolerated by mice. The 2FA+MTA combination inhibited tumor growth of four different MTAP- human tumor cell lines in mouse xenograft models. Our results suggest that 2FA+MTA may be a promising combination for treating MTAP-deleted tumors.Significance: Loss of MTAP occurs in about 15% of all human cancers; the MTAP protection strategy presented in this study could be very effective in treating these cancers. Cancer Res; 78(15); 4386-95. ©2018 AACR.
Collapse
Affiliation(s)
- Baiqing Tang
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Hyung-Ok Lee
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Serim S An
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
20
|
González-Tablas M, Crespo I, Vital AL, Otero Á, Nieto AB, Sousa P, Patino-Alonso MC, Corchete LA, Tão H, Rebelo O, Barbosa M, Almeida MR, Guedes AF, Lopes MC, French PJ, Orfao A, Tabernero MD. Prognostic stratification of adult primary glioblastoma multiforme patients based on their tumor gene amplification profiles. Oncotarget 2018; 9:28083-28102. [PMID: 29963263 PMCID: PMC6021328 DOI: 10.18632/oncotarget.25562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023] Open
Abstract
Several classification systems have been proposed to address genomic heterogeneity of glioblastoma multiforme, but they either showed limited prognostic value and/or are difficult to implement in routine diagnostics. Here we propose a prognostic stratification model for these primary tumors based on tumor gene amplification profiles, that might be easily implemented in routine diagnostics, and potentially improve the patients management. Gene amplification profiles were prospectively evaluated in 80 primary glioblastoma multiforme tumors using single-nucleotide polymorphism arrays and the results obtained validated in publicly available data from 267/347 cases. Gene amplification was detected in 45% of patients, and chromosome 7p11.2 including the EGFR gene, was the most frequently amplified chromosomal region – either alone (18%) or in combination with amplification of DNA sequences in other chromosomal regions (10% of cases). Other frequently amplified DNA sequences included regions in chromosomes 12q(10%), 4q12(7%) and 1q32.1(4%). Based on their gene amplification profiles, glioblastomas were subdivided into: i) tumors with no gene amplification (55%); ii) tumors with chromosome 7p/EGFR gene amplification (with or without amplification of other chromosomal regions) (38%); and iii) glioblastoma multiforme with a single (11%) or multiple (6%) amplified DNA sequences in chromosomal regions other than chromosome 7p. From the prognostic point of view, these amplification profiles showed a significant impact on overall survival of glioblastoma multiforme patients (p>0.001). Based on these gene amplification profiles, a risk-stratification scoring system was built for prognostic stratification of glioblastoma which might be easily implemented in routine diagnostics, and potentially contribute to improved patient management.
Collapse
Affiliation(s)
- María González-Tablas
- Centre for Cancer Research (CIC IBMCC-CSIC/USAL), Department of Medicine, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Inês Crespo
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Vital
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Álvaro Otero
- Servicio de Neurocirugía, Hospital Universitario e Instituto Biosanitario de Salamanca (IBSAL), Salamanca, Spain
| | - Ana Belén Nieto
- Department of Statistics, University of Salamanca, Salamanca, Spain
| | - Pablo Sousa
- Servicio de Neurocirugía, Hospital Universitario e Instituto Biosanitario de Salamanca (IBSAL), Salamanca, Spain
| | | | - Luis Antonio Corchete
- Departamento de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Hermínio Tão
- Neurosurgery Service, University Hospital of Coimbra, Coimbra, Portugal
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Service, University Hospital of Coimbra, Coimbra, Portugal
| | - Marcos Barbosa
- Neurosurgery Service, University Hospital of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Ana Filipa Guedes
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - María Celeste Lopes
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Pim J French
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Alberto Orfao
- Centre for Cancer Research (CIC IBMCC-CSIC/USAL), Department of Medicine, CIBERONC, University of Salamanca, Salamanca, Spain.,Instituto Biosanitario de Salamanca (IBSAL), Salamanca, Spain
| | - María Dolores Tabernero
- Centre for Cancer Research (CIC IBMCC-CSIC/USAL), Department of Medicine, CIBERONC, University of Salamanca, Salamanca, Spain.,Instituto Biosanitario de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
21
|
Cheng XY, Liu Z, Shang L, Cai HQ, Zhang Y, Cai Y, Xu X, Hao JJ, Wang MR. Deletion and downregulation of MTAP contribute to the motility of esophageal squamous carcinoma cells. Onco Targets Ther 2017; 10:5855-5862. [PMID: 29270023 PMCID: PMC5729838 DOI: 10.2147/ott.s151953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most common malignancies, with a low 5-year overall survival rate. In previous studies, we and others have found that 9p21.3 was the most frequently deleted region in ESCC. The MTAP gene, which is located close to CDKN2A/B in 9p21.3, encodes methylthioadenosine phosphorylase. This enzyme plays an important role during the process of adenosine transfer. In the present study, we found that MTAP is deleted at the genomic level in 19.1% (64/341) of primary ESCC tumors, and decreased mRNA and protein expression were present in 31.1% (28/90) and 33.3% (6/18) of ESCCs, respectively. Further statistical analysis showed a positive correlation between deletion and decreased mRNA expression of MTAP in the ESCC tissues tested (coefficient: 0.826; P=1.17×10−23). Knockdown of MTAP expression using small interfering RNA-mediated silencing promoted the invasion and migration of ESCC cells. Also, overexpression of MATP using pcDNA3.1-MTAP plasmid decreased the cell invasion and migration. At the molecular level, MTAP knockdown downregulated E-cadherin and p-GSK3β but upregulated Slug expression. Our results indicated that MTAP deletion results in the decreased expression in ESCCs and that it plays a role in promoting the mobility and inducing the epithelial-to-mesenchymal transition of ESCC cells via the GSK3β/Slug/E-cadherin axis. The data suggest that MTAP might function as a tumor suppressor gene in ESCC.
Collapse
Affiliation(s)
- Xiao-Yu Cheng
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.,Center for Cancer Precision Medicine, Chinese Academy of Medical Sciences < Peking Union Medical College, Beijing, China
| | - Zou Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.,Center for Cancer Precision Medicine, Chinese Academy of Medical Sciences < Peking Union Medical College, Beijing, China
| | - Li Shang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Hong-Qing Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.,Center for Cancer Precision Medicine, Chinese Academy of Medical Sciences < Peking Union Medical College, Beijing, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.,Center for Cancer Precision Medicine, Chinese Academy of Medical Sciences < Peking Union Medical College, Beijing, China
| | - Xin Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.,Center for Cancer Precision Medicine, Chinese Academy of Medical Sciences < Peking Union Medical College, Beijing, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.,Center for Cancer Precision Medicine, Chinese Academy of Medical Sciences < Peking Union Medical College, Beijing, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.,Center for Cancer Precision Medicine, Chinese Academy of Medical Sciences < Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Harewood L, Kishore K, Eldridge MD, Wingett S, Pearson D, Schoenfelder S, Collins VP, Fraser P. Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours. Genome Biol 2017; 18:125. [PMID: 28655341 PMCID: PMC5488307 DOI: 10.1186/s13059-017-1253-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/08/2017] [Indexed: 12/02/2022] Open
Abstract
Chromosomal rearrangements occur constitutionally in the general population and somatically in the majority of cancers. Detection of balanced rearrangements, such as reciprocal translocations and inversions, is troublesome, which is particularly detrimental in oncology where rearrangements play diagnostic and prognostic roles. Here we describe the use of Hi-C as a tool for detection of both balanced and unbalanced chromosomal rearrangements in primary human tumour samples, with the potential to define chromosome breakpoints to bp resolution. In addition, we show copy number profiles can also be obtained from the same data, all at a significantly lower cost than standard sequencing approaches.
Collapse
Affiliation(s)
- Louise Harewood
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK. .,Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Cambridge, UK.
| | - Kamal Kishore
- Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Matthew D Eldridge
- Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Steven Wingett
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Danita Pearson
- Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | | - V Peter Collins
- Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
| |
Collapse
|
23
|
Bhargava S, Patil V, Mahalingam K, Somasundaram K. Elucidation of the genetic and epigenetic landscape alterations in RNA binding proteins in glioblastoma. Oncotarget 2017; 8:16650-16668. [PMID: 28035070 PMCID: PMC5369992 DOI: 10.18632/oncotarget.14287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/30/2016] [Indexed: 01/03/2023] Open
Abstract
RNA binding proteins (RBPs) have been implicated in cancer development. An integrated bioinformatics analysis of RBPs (n = 1756) in various datasets (n = 11) revealed several genetic and epigenetically altered events among RBPs in glioblastoma (GBM). We identified 13 mutated and 472 differentially regulated RBPs in GBM samples. Mutations in AHNAK predicted poor prognosis. Copy number variation (CNV), DNA methylation and miRNA targeting contributed to RBP differential regulation. Two sets of differentially regulated RBPs that may be implicated in initial astrocytic transformation and glioma progression were identified. We have also identified a four RBP (NOL3, SUCLG1, HERC5 and AFF3) signature, having a unique expression pattern in glioma stem-like cells (GSCs), to be an independent poor prognostic indicator in GBM. RBP risk score derived from the signature also stratified GBM into low-risk and high-risk groups with significant survival difference. Silencing NOL3, SUCLG1 and HERC5 inhibited GSC maintenance. Gene set enrichment analysis of differentially regulated genes between high-risk and low-risk underscored the importance of inflammation, EMT and hypoxia in high-risk GBM. Thus, we provide a comprehensive overview of genetic and epigenetic regulation of RBPs in glioma development and progression.
Collapse
Affiliation(s)
- Shruti Bhargava
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-560012, India
| | - Vikas Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-560012, India
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore-632014, India
| | - Kulandaivelu Mahalingam
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore-632014, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
24
|
Abstract
Copy number alterations (CNA) are one of the driving mechanisms of glioma tumorigenesis, and are currently used as important biomarkers in the routine setting. Therefore, we performed CNA profiling of 65 astrocytomas of distinct malignant grades (WHO grade I–IV) of Brazilian origin, using array-CGH and microsatellite instability analysis (MSI), and investigated their correlation with TERT and IDH1 mutational status and clinico-pathological features. Furthermore, in silico analysis using the Oncomine database was performed to validate our findings and extend the findings to gene expression level. We found that the number of genomic alterations increases in accordance with glioma grade. In glioblastomas (GBM), the most common alterations were gene amplifications (PDGFRA, KIT, KDR, EGFR, and MET) and deletions (CDKN2A and PTEN). Log-rank analysis correlated EGFR amplification and/or chr7 gain with better survival of the patients. MSI was observed in 11% of GBMs. A total of 69% of GBMs presented TERT mutation, whereas IDH1 mutation was most frequent in diffuse (85.7%) and anaplastic (100%) astrocytomas. The combination of 1p19q deletion and TERT and IDH1 mutational status separated tumor groups that showed distinct age of diagnosis and outcome. In silico validation pointed to less explored genes that may be worthy of future investigation, such as CDK2, DMRTA1, and MTAP. Herein, using an extensive integrated analysis, we indicated potentially important genes, not extensively studied in gliomas, that could be further explored to assess their biological and clinical impact in astrocytomas.
Collapse
|
25
|
Dickinson PJ, York D, Higgins RJ, LeCouteur RA, Joshi N, Bannasch D. Chromosomal Aberrations in Canine Gliomas Define Candidate Genes and Common Pathways in Dogs and Humans. J Neuropathol Exp Neurol 2016; 75:700-10. [PMID: 27251041 DOI: 10.1093/jnen/nlw042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/16/2022] Open
Abstract
Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy.
Collapse
Affiliation(s)
- Peter J Dickinson
- From the Departments of Surgical and Radiological Sciences (PJD, DY, RAL), Pathology, Microbiology and Immunology (RJH), and Population Health & Reproduction (DB), School of Veterinary Medicine, University of California, Davis, and Bioinformatics Core, UC Davis Genome Center (NJ) University of California, Davis, California.
| | - Dan York
- From the Departments of Surgical and Radiological Sciences (PJD, DY, RAL), Pathology, Microbiology and Immunology (RJH), and Population Health & Reproduction (DB), School of Veterinary Medicine, University of California, Davis, and Bioinformatics Core, UC Davis Genome Center (NJ) University of California, Davis, California
| | - Robert J Higgins
- From the Departments of Surgical and Radiological Sciences (PJD, DY, RAL), Pathology, Microbiology and Immunology (RJH), and Population Health & Reproduction (DB), School of Veterinary Medicine, University of California, Davis, and Bioinformatics Core, UC Davis Genome Center (NJ) University of California, Davis, California
| | - Richard A LeCouteur
- From the Departments of Surgical and Radiological Sciences (PJD, DY, RAL), Pathology, Microbiology and Immunology (RJH), and Population Health & Reproduction (DB), School of Veterinary Medicine, University of California, Davis, and Bioinformatics Core, UC Davis Genome Center (NJ) University of California, Davis, California
| | - Nikhil Joshi
- From the Departments of Surgical and Radiological Sciences (PJD, DY, RAL), Pathology, Microbiology and Immunology (RJH), and Population Health & Reproduction (DB), School of Veterinary Medicine, University of California, Davis, and Bioinformatics Core, UC Davis Genome Center (NJ) University of California, Davis, California
| | - Danika Bannasch
- From the Departments of Surgical and Radiological Sciences (PJD, DY, RAL), Pathology, Microbiology and Immunology (RJH), and Population Health & Reproduction (DB), School of Veterinary Medicine, University of California, Davis, and Bioinformatics Core, UC Davis Genome Center (NJ) University of California, Davis, California
| |
Collapse
|
26
|
de Oliveira SFV, Ganzinelli M, Chilà R, Serino L, Maciel ME, Urban CDA, de Lima RS, Cavalli IJ, Generali D, Broggini M, Damia G, Ribeiro EMDSF. Characterization of MTAP Gene Expression in Breast Cancer Patients and Cell Lines. PLoS One 2016; 11:e0145647. [PMID: 26751376 PMCID: PMC4709099 DOI: 10.1371/journal.pone.0145647] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/07/2015] [Indexed: 01/02/2023] Open
Abstract
MTAP is a ubiquitously expressed gene important for adenine and methionine salvage. The gene is located at 9p21, a chromosome region often deleted in breast carcinomas, similar to CDKN2A, a recognized tumor suppressor gene. Several research groups have shown that MTAP acts as a tumor suppressor, and some therapeutic approaches were proposed based on a tumors´ MTAP status. We analyzed MTAP and CDKN2A gene (RT-qPCR) and protein (western-blotting) expression in seven breast cancer cell lines and evaluated their promoter methylation patterns to better characterize the contribution of these genes to breast cancer. Cytotoxicity assays with inhibitors of de novo adenine synthesis (5-FU, AZA and MTX) after MTAP gene knockdown showed an increased sensitivity, mainly to 5-FU. MTAP expression was also evaluated in two groups of samples from breast cancer patients, fresh tumors and paired normal breast tissue, and from formalin-fixed paraffin embedded (FFPE) core breast cancer samples diagnosed as Luminal-A tumors and triple negative breast tumors (TNBC). The difference of MTAP expression between fresh tumors and normal tissues was not statistically significant. However, MTAP expression was significantly higher in Luminal-A breast tumors than in TNBC, suggesting the lack of expression in more aggressive breast tumors and the possibility of using the new approaches based on MTAP status in TNBC.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/drug therapy
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/pathology
- Antineoplastic Agents/pharmacology
- Azacitidine/pharmacology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/drug therapy
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Cell Line, Tumor
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- DNA Methylation
- Estrogen Receptor alpha/deficiency
- Estrogen Receptor alpha/genetics
- Female
- Fluorouracil/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphatic Metastasis
- Methotrexate/pharmacology
- Organ Specificity
- Promoter Regions, Genetic
- Purine-Nucleoside Phosphorylase/antagonists & inhibitors
- Purine-Nucleoside Phosphorylase/genetics
- Purine-Nucleoside Phosphorylase/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor, ErbB-2/deficiency
- Receptor, ErbB-2/genetics
- Receptors, Progesterone/deficiency
- Receptors, Progesterone/genetics
- Signal Transduction
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
| | - Monica Ganzinelli
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche ‘‘Mario Negri”, Milan, Lombardia, Italy
| | - Rosaria Chilà
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche ‘‘Mario Negri”, Milan, Lombardia, Italy
| | - Leandro Serino
- Department of Genetics, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Cícero de Andrade Urban
- Department of Mastology, Breast Unit, Hospital Nossa Senhora das Graças, Curitiba, Paraná, Brazil
| | - Rubens Silveira de Lima
- Department of Mastology, Breast Unit, Hospital Nossa Senhora das Graças, Curitiba, Paraná, Brazil
| | | | - Daniele Generali
- Laboratorio di Oncologia Molecolare Senologica, U. O. Multidisciplinare di Patologia Mammaria, A. O. Istituti Ospitalieri di Cremona, Cremona, Lombardia, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche ‘‘Mario Negri”, Milan, Lombardia, Italy
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche ‘‘Mario Negri”, Milan, Lombardia, Italy
| | | |
Collapse
|
27
|
Li CF, Fang FM, Kung HJ, Chen LT, Wang JW, Tsai JW, Yu SC, Wang YH, Li SH, Huang HY. Downregulated MTAP expression in myxofibrosarcoma: A characterization of inactivating mechanisms, tumor suppressive function, and therapeutic relevance. Oncotarget 2015; 5:11428-41. [PMID: 25426549 PMCID: PMC4294342 DOI: 10.18632/oncotarget.2552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/01/2014] [Indexed: 12/22/2022] Open
Abstract
Myxofibrosarcomas are genetically complex and involve recurrently deleted chromosome 9p, for which we characterized the pathogenically relevant target(s) using genomic profiling. In 12 of the 15 samples, we detected complete or partial losses of 9p. The only aggressiveness-associated, differentially lost region was 9p21.3, spanning the potential inactivated methylthioadenosine phosphorylase (MTAP) that exhibited homozygous (4/15) or hemizygous (3/15) deletions. In independent samples, MTAP gene status was assessed using quantitative- and methylation-specific PCR assays, and immunoexpression was evaluated. We applied MTAP reexpression or knockdown to elucidate the functional roles of MTAP and the therapeutic potential of L-alanosine in MTAP-preserved and MTAP-deficient myxofibrosarcoma cell lines and xenografts. MTAP protein deficiency (37%) was associated with MTAP gene inactivation (P < 0.001) by homozygous deletion or promoter methylation, and independently portended unfavorable metastasis-free survival (P = 0.0318) and disease-specific survival (P = 0.014). Among the MTAP-deficient cases, the homozygous deletion of MTAP predicted adverse outcome. In MTAP-deficient cells, MTAP reexpression inhibited cell migration and invasion, proliferation, and anchorage-independent colony formation and downregulated cyclin D1. This approach also attenuated the tube-forming abilities of human umbilical venous endothelial cells, attributable to the transcriptional repression of MMP-9, and abrogated the susceptibility to L-alanosine. The inhibiting effects of MTAP expression on tumor growth, angiogenesis, and the induction of apoptosis by L-alanosine were validated using MTAP-reexpressing xenografts and reverted using RNA interference in MTAP-preserved cells. In conclusion, homozygous deletion primarily accounts for the adverse prognostic impact of MTAP deficiency and confers the biological aggressiveness and susceptibility to L-alanosine in myxofibrosarcomas.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan. Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan. National Institute of Cancer Research National Health Research Institutes, Tainan, Taiwan. Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu-Min Fang
- Departments of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Tainan, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research National Health Research Institutes, Tainan, Taiwan. Department of Internal Medicine and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jun-Wen Wang
- Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jen-Wei Tsai
- Department of Anatomic Pathology, E-Da Hospital, Kaohsiung, Tawian
| | - Shih Chen Yu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Hui Wang
- Institute of Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
| | - Shau-Hsuan Li
- Department of Internal Medicine, Division of Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsuan-Ying Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Jayaram S, Gupta MK, Shivakumar BM, Ghatge M, Sharma A, Vangala RK, Sirdeshmukh R. Insights from Chromosome-Centric Mapping of Disease-Associated Genes: Chromosome 12 Perspective. J Proteome Res 2015; 14:3432-40. [PMID: 26143930 DOI: 10.1021/acs.jproteome.5b00488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In line with the aims of the Chromosome-based Human Proteome Project and the Biology/Disease-based Human Proteome Project, we have been studying differentially expressed transcripts and proteins in gliomas—the most prevalent primary brain tumors. Here, we present a perspective on important insights from this analysis in terms of their co-expression, co-regulation/de-regulation, and co-localization on chromosome 12 (Chr. 12). We observe the following: (1) Over-expression of genes mapping onto amplicon regions of chromosomes may be considered as a biological validation of mass spectrometry data. (2) Their co-localization further suggests common determinants of co-expression and co-regulation of these clusters. (3) Co-localization of "missing" protein genes of Chr. 12 in close proximity to functionally related genes may help in predicting their functions. (4) Further, integrating differentially expressed gene-protein sets and their ontologies with medical terms associated with clinical phenotypes in a chromosome-centric manner reveals a network of genes, diseases, and pathways—a diseasome network. Thus, chromosomal mapping of disease data sets can help uncover important regulatory and functional links that may offer new insights for biomarker development.
Collapse
Affiliation(s)
- Savita Jayaram
- Institute of Bioinformatics , International Tech Park, Bangalore-560066, India.,Manipal University , Madhav Nagar, Manipal-576104, India
| | - Manoj Kumar Gupta
- Institute of Bioinformatics , International Tech Park, Bangalore-560066, India.,Manipal University , Madhav Nagar, Manipal-576104, India
| | | | - Madankumar Ghatge
- Manipal University , Madhav Nagar, Manipal-576104, India.,Thrombosis Research Institute, Narayana Health , Bangalore-560099, India
| | - Ankit Sharma
- Manipal University , Madhav Nagar, Manipal-576104, India.,Thrombosis Research Institute, Narayana Health , Bangalore-560099, India
| | | | - Ravi Sirdeshmukh
- Institute of Bioinformatics , International Tech Park, Bangalore-560066, India.,Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Foundation, Narayana Health , Bangalore-560099, India
| |
Collapse
|
29
|
Crespo I, Vital AL, Gonzalez-Tablas M, Patino MDC, Otero A, Lopes MC, de Oliveira C, Domingues P, Orfao A, Tabernero MD. Molecular and Genomic Alterations in Glioblastoma Multiforme. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1820-33. [PMID: 25976245 DOI: 10.1016/j.ajpath.2015.02.023] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/16/2015] [Accepted: 02/09/2015] [Indexed: 12/19/2022]
Abstract
In recent years, important advances have been achieved in the understanding of the molecular biology of glioblastoma multiforme (GBM); thus, complex genetic alterations and genomic profiles, which recurrently involve multiple signaling pathways, have been defined, leading to the first molecular/genetic classification of the disease. In this regard, different genetic alterations and genetic pathways appear to distinguish primary (eg, EGFR amplification) versus secondary (eg, IDH1/2 or TP53 mutation) GBM. Such genetic alterations target distinct combinations of the growth factor receptor-ras signaling pathways, as well as the phosphatidylinositol 3-kinase/phosphatase and tensin homolog/AKT, retinoblastoma/cyclin-dependent kinase (CDK) N2A-p16(INK4A), and TP53/mouse double minute (MDM) 2/MDM4/CDKN2A-p14(ARF) pathways, in cells that present features associated with key stages of normal neurogenesis and (normal) central nervous system cell types. This translates into well-defined genomic profiles that have been recently classified by The Cancer Genome Atlas Consortium into four subtypes: classic, mesenchymal, proneural, and neural GBM. Herein, we review the most relevant genetic alterations of primary versus secondary GBM, the specific signaling pathways involved, and the overall genomic profile of this genetically heterogeneous group of malignant tumors.
Collapse
Affiliation(s)
- Ines Crespo
- Centre for Neurosciences and Cell Biology, Faculties of Pharmacy and Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Louisa Vital
- Centre for Neurosciences and Cell Biology, Faculties of Pharmacy and Medicine, University of Coimbra, Coimbra, Portugal
| | - María Gonzalez-Tablas
- Department of Medicine, Centre for Cancer Research (Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer; Centro Superior de Investigaciones Científicas/Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca), University of Salamanca, Salamanca, Spain
| | | | - Alvaro Otero
- Neurosurgery Service, University Hospital of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain
| | - María Celeste Lopes
- Centre for Neurosciences and Cell Biology, Faculties of Pharmacy and Medicine, University of Coimbra, Coimbra, Portugal
| | - Catarina de Oliveira
- Centre for Neurosciences and Cell Biology, Faculties of Pharmacy and Medicine, University of Coimbra, Coimbra, Portugal
| | - Patricia Domingues
- Centre for Neurosciences and Cell Biology, Faculties of Pharmacy and Medicine, University of Coimbra, Coimbra, Portugal; Department of Medicine, Centre for Cancer Research (Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer; Centro Superior de Investigaciones Científicas/Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca), University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine, Centre for Cancer Research (Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer; Centro Superior de Investigaciones Científicas/Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca), University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain
| | - Maria Dolores Tabernero
- Department of Medicine, Centre for Cancer Research (Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer; Centro Superior de Investigaciones Científicas/Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca), University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca, Salamanca, Spain; Institute of Health Science Studies of Castilla and León Research Laboratory, University Hospital of Salamanca, Salamanca, Spain.
| |
Collapse
|
30
|
Favero F, McGranahan N, Salm M, Birkbak NJ, Sanborn JZ, Benz SC, Becq J, Peden JF, Kingsbury Z, Grocok RJ, Humphray S, Bentley D, Spencer-Dene B, Gutteridge A, Brada M, Roger S, Dietrich PY, Forshew T, Gerlinger M, Rowan A, Stamp G, Eklund AC, Szallasi Z, Swanton C. Glioblastoma adaptation traced through decline of an IDH1 clonal driver and macro-evolution of a double-minute chromosome. Ann Oncol 2015; 26:880-887. [PMID: 25732040 PMCID: PMC4405282 DOI: 10.1093/annonc/mdv127] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant brain cancer occurring in adults, and is associated with dismal outcome and few therapeutic options. GBM has been shown to predominantly disrupt three core pathways through somatic aberrations, rendering it ideal for precision medicine approaches. METHODS We describe a 35-year-old female patient with recurrent GBM following surgical removal of the primary tumour, adjuvant treatment with temozolomide and a 3-year disease-free period. Rapid whole-genome sequencing (WGS) of three separate tumour regions at recurrence was carried out and interpreted relative to WGS of two regions of the primary tumour. RESULTS We found extensive mutational and copy-number heterogeneity within the primary tumour. We identified a TP53 mutation and two focal amplifications involving PDGFRA, KIT and CDK4, on chromosomes 4 and 12. A clonal IDH1 R132H mutation in the primary, a known GBM driver event, was detectable at only very low frequency in the recurrent tumour. After sub-clonal diversification, evidence was found for a whole-genome doubling event and a translocation between the amplified regions of PDGFRA, KIT and CDK4, encoded within a double-minute chromosome also incorporating miR26a-2. The WGS analysis uncovered progressive evolution of the double-minute chromosome converging on the KIT/PDGFRA/PI3K/mTOR axis, superseding the IDH1 mutation in dominance in a mutually exclusive manner at recurrence, consequently the patient was treated with imatinib. Despite rapid sequencing and cancer genome-guided therapy against amplified oncogenes, the disease progressed, and the patient died shortly after. CONCLUSION This case sheds light on the dynamic evolution of a GBM tumour, defining the origins of the lethal sub-clone, the macro-evolutionary genomic events dominating the disease at recurrence and the loss of a clonal driver. Even in the era of rapid WGS analysis, cases such as this illustrate the significant hurdles for precision medicine success.
Collapse
Affiliation(s)
- F Favero
- Cancer Research UK London Research Institute, London, United Kingdom; Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - N McGranahan
- Cancer Research UK London Research Institute, London, United Kingdom; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London
| | - M Salm
- Cancer Research UK London Research Institute, London, United Kingdom
| | - N J Birkbak
- Cancer Research UK London Research Institute, London, United Kingdom; University College London Cancer Institute, London, United Kingdom
| | | | | | | | | | | | | | | | | | - B Spencer-Dene
- Cancer Research UK London Research Institute, London, United Kingdom
| | - A Gutteridge
- University College London Cancer Institute, London, United Kingdom
| | - M Brada
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool; Department of Radiation Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom
| | - S Roger
- Department of Oncology, University Hospital Zurich, Zürich
| | - P-Y Dietrich
- Centre of Oncology, University Hospitals of Geneva, Geneva, Switzerland
| | - T Forshew
- University College London Cancer Institute, London, United Kingdom
| | - M Gerlinger
- Cancer Research UK London Research Institute, London, United Kingdom; Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - A Rowan
- Cancer Research UK London Research Institute, London, United Kingdom
| | - G Stamp
- Cancer Research UK London Research Institute, London, United Kingdom
| | - A C Eklund
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Z Szallasi
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark; Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, USA; MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences, 2nd Department of Pathology, Semmelweis University, Budapest,Hungary
| | - C Swanton
- Cancer Research UK London Research Institute, London, United Kingdom; University College London Cancer Institute, London, United Kingdom.
| |
Collapse
|
31
|
Sirdeshmukh R. Indian proteomics efforts and human proteome project. J Proteomics 2015; 127:147-51. [PMID: 25818723 DOI: 10.1016/j.jprot.2015.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/12/2015] [Accepted: 03/14/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED The Draft Maps of Human Proteome published in two independent articles provide a catalogue of proteins encoded in the human genome including missing proteins, based on large scale mass spectrometric analysis. Six months later, a Tissue-based Human Proteome Map was published which includes a study of expression and distribution of human proteins across tissues and cells using specific antibodies. Independently, in an ongoing global effort - the Chromosome centric, and Biology and Disease centric Human Proteome Project (C-HPP and B/D-HPP) initiated by the Human Proteome Organization aims to study in-depth human proteins and their variants in terms of biology and disease in a chromosome centric manner. Under this initiative, a consortium formed among five Asian research teams including India aims to study Chromosome 12 encoded proteins and their disease context. Together, the group has recently published the first series of 3 papers giving the overall vision and the initial contributions. While one of the draft maps of the human proteome is largely contributed by an Indian team, Indian researchers have significant role in the other two initiatives as well. These efforts will be pursued further as more teams join and more disease and biology components get incorporated. BIOLOGICAL SIGNIFICANCE This article focuses on the complexity and challenges of deciphering human proteome and contribution of Indian researchers in the human proteome projects, including the on-going C-HPP. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Ravi Sirdeshmukh
- Institute of Bioinformatics, Bangalore 560066, India; Mazumdar Shaw Center for Translational Research, Bangalore 560099, India.
| |
Collapse
|
32
|
Tang F, Zhang L, Xue G, Hynx D, Wang Y, Cron PD, Hundsrucker C, Hergovich A, Frank S, Hemmings BA, Schmitz-Rohmer D. hMOB3 modulates MST1 apoptotic signaling and supports tumor growth in glioblastoma multiforme. Cancer Res 2014; 74:3779-89. [PMID: 24872389 PMCID: PMC4102567 DOI: 10.1158/0008-5472.can-13-3430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
New therapeutic targets are needed that circumvent inherent therapeutic resistance of glioblastoma multiforme (GBM). Here, we report such a candidate target in the uncharacterized adaptor protein hMOB3, which we show is upregulated in GBM. In a search for its biochemical function, we found that hMOB3 specifically interacts with MST1 kinase in response to apoptotic stimuli and cell-cell contact. Moreover, hMOB3 negatively regulated apoptotic signaling by MST1 in GBM cells by inhibiting the MST1 cleavage-based activation process. Physical interaction between hMOB3 and MST1 was essential for this process. In vivo investigations established that hMOB3 sustains GBM cell growth at high cell density and promotes tumorigenesis. Our results suggest hMOB3 as a candidate therapeutic target for the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Fengyuan Tang
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research;
| | - Lei Zhang
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research
| | - Gongda Xue
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research
| | - Debby Hynx
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research
| | - Yuhua Wang
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research
| | - Peter D Cron
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research
| | - Christian Hundsrucker
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research; Swiss Institute of Bioinformatics, Basel, Switzerland; and
| | | | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University of Basel
| | - Brian A Hemmings
- Authors' Affiliations: Friedrich Miescher Institute for Biomedical Research
| | | |
Collapse
|
33
|
Ding X, Tsang SY, Ng SK, Xue H. Application of Machine Learning to Development of Copy Number Variation-based Prediction of Cancer Risk. GENOMICS INSIGHTS 2014. [PMID: 26203258 PMCID: PMC4504076 DOI: 10.4137/gei.s15002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, recurrent copy number variations (CNVs) from non-tumor blood cell DNAs of Caucasian non-cancer subjects and glioma, myeloma, and colorectal cancer-patients, and Korean non-cancer subjects and hepatocellular carcinoma, gastric cancer, and colorectal cancer patients, were found to reveal for each of the two ethnic cohorts highly significant differences between cancer patients and controls with respect to the number of CN-losses and size-distribution of CN-gains, suggesting the existence of recurrent constitutional CNV-features useful for prediction of predisposition to cancer. Upon identification by machine learning, such CNV-features could extensively discriminate between cancer-patient and control DNAs. When the CNV-features selected from a learning-group of Caucasian or Korean mixed DNAs consisting of both cancer-patient and control DNAs were employed to make predictions on the cancer predisposition of an unseen test group of mixed DNAs, the average prediction accuracy was 93.6% for the Caucasian cohort and 86.5% for the Korean cohort.
Collapse
Affiliation(s)
- Xiaofan Ding
- Applied Genomics Center and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shui-Ying Tsang
- Applied Genomics Center and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Siu-Kin Ng
- Applied Genomics Center and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hong Xue
- Applied Genomics Center and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
34
|
Gupta MK, Jayaram S, Madugundu AK, Chavan S, Advani J, Pandey A, Thongboonkerd V, Sirdeshmukh R. Chromosome-centric Human Proteome Project: Deciphering Proteins Associated with Glioma and Neurodegenerative Disorders on Chromosome 12. J Proteome Res 2014; 13:3178-90. [DOI: 10.1021/pr500023p] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Manoj Kumar Gupta
- Institute
of Bioinformatics, International
Tech Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Savita Jayaram
- Institute
of Bioinformatics, International
Tech Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Anil K. Madugundu
- Institute
of Bioinformatics, International
Tech Park, Bangalore 560066, India
| | - Sandip Chavan
- Institute
of Bioinformatics, International
Tech Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Jayshree Advani
- Institute
of Bioinformatics, International
Tech Park, Bangalore 560066, India
| | - Akhilesh Pandey
- Institute
of Bioinformatics, International
Tech Park, Bangalore 560066, India
- McKusick-Nathans
Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205 United States
| | | | - Ravi Sirdeshmukh
- Institute
of Bioinformatics, International
Tech Park, Bangalore 560066, India
- Mazumdar
Shaw Centre for Translational Research, Narayana Health, Bangalore 560099, India
| |
Collapse
|
35
|
González-González M, Fontanillo C, Abad MM, Gutiérrez ML, Mota I, Bengoechea O, Santos-Briz Á, Blanco O, Fonseca E, Ciudad J, Fuentes M, De Las Rivas J, Alcazar JA, García J, Muñoz-Bellvis L, Orfao A, Sayagués JM. Identification of a characteristic copy number alteration profile by high-resolution single nucleotide polymorphism arrays associated with metastatic sporadic colorectal cancer. Cancer 2014; 120:1948-59. [DOI: 10.1002/cncr.28681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/07/2014] [Accepted: 02/12/2014] [Indexed: 01/16/2023]
Affiliation(s)
- María González-González
- General Cytometry Service-Nucleus; Department of Medicine and Cancer Research Center; Institute of Molecular Biology and Cellular Oncology of the University of Salamanca and Salamanca Institute of Biomedical Research; University of Salamanca; Salamanca Spain
| | - Celia Fontanillo
- Bioinformatics and Functional Genomics Unit; Institute of Molecular Biology and Cellular Oncology/Spanish National Research Council; University of Salamanca; Salamanca Spain
- Celgene Institute for Translational Research Europe (CITRE); Seville Spain
| | - María M. Abad
- Department of Pathology; University Hospital of Salamanca-Salamanca Institute of Biomedical Research; Salamanca Spain
| | - María L. Gutiérrez
- General Cytometry Service-Nucleus; Department of Medicine and Cancer Research Center; Institute of Molecular Biology and Cellular Oncology of the University of Salamanca and Salamanca Institute of Biomedical Research; University of Salamanca; Salamanca Spain
| | - Ines Mota
- General Cytometry Service-Nucleus; Department of Medicine and Cancer Research Center; Institute of Molecular Biology and Cellular Oncology of the University of Salamanca and Salamanca Institute of Biomedical Research; University of Salamanca; Salamanca Spain
| | - Oscar Bengoechea
- Department of Pathology; University Hospital of Salamanca-Salamanca Institute of Biomedical Research; Salamanca Spain
| | - Ángel Santos-Briz
- Department of Pathology; University Hospital of Salamanca-Salamanca Institute of Biomedical Research; Salamanca Spain
| | - Oscar Blanco
- Department of Pathology; University Hospital of Salamanca-Salamanca Institute of Biomedical Research; Salamanca Spain
| | - Emilio Fonseca
- Service of Medical Oncology; University Hospital of Salamanca-Salamanca Institute of Biomedical Research; Salamanca Spain
| | - Juana Ciudad
- General Cytometry Service-Nucleus; Department of Medicine and Cancer Research Center; Institute of Molecular Biology and Cellular Oncology of the University of Salamanca and Salamanca Institute of Biomedical Research; University of Salamanca; Salamanca Spain
| | - Manuel Fuentes
- General Cytometry Service-Nucleus; Department of Medicine and Cancer Research Center; Institute of Molecular Biology and Cellular Oncology of the University of Salamanca and Salamanca Institute of Biomedical Research; University of Salamanca; Salamanca Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Unit; Institute of Molecular Biology and Cellular Oncology/Spanish National Research Council; University of Salamanca; Salamanca Spain
| | - José A. Alcazar
- Department of General and Digestive Surgery; University Hospital of Salamanca-Salamanca Institute of Biomedical Research; Salamanca Spain
| | - Jacinto García
- Department of General and Digestive Surgery; University Hospital of Salamanca-Salamanca Institute of Biomedical Research; Salamanca Spain
| | - Luís Muñoz-Bellvis
- Department of General and Digestive Surgery; University Hospital of Salamanca-Salamanca Institute of Biomedical Research; Salamanca Spain
| | - Alberto Orfao
- General Cytometry Service-Nucleus; Department of Medicine and Cancer Research Center; Institute of Molecular Biology and Cellular Oncology of the University of Salamanca and Salamanca Institute of Biomedical Research; University of Salamanca; Salamanca Spain
| | - José M. Sayagués
- General Cytometry Service-Nucleus; Department of Medicine and Cancer Research Center; Institute of Molecular Biology and Cellular Oncology of the University of Salamanca and Salamanca Institute of Biomedical Research; University of Salamanca; Salamanca Spain
| |
Collapse
|
36
|
Stellzig J, Chariot A, Shostak K, Ismail Göktuna S, Renner F, Acker T, Pagenstecher A, Schmitz ML. Deregulated expression of TANK in glioblastomas triggers pro-tumorigenic ERK1/2 and AKT signaling pathways. Oncogenesis 2013; 2:e79. [PMID: 24217713 PMCID: PMC3849693 DOI: 10.1038/oncsis.2013.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/29/2013] [Accepted: 10/03/2013] [Indexed: 12/21/2022] Open
Abstract
Signal transmission by the noncanonical IkappaB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IKKɛ, requires interaction with adapter proteins such as TRAF associated NF-κB activator (TANK). Although increased expression or dysregulation of both kinases has been described for a variety of human cancers, this study shows that deregulated expression of the TANK protein is frequently occurring in glioblastomas (GBMs). The functional relevance of TANK was analyzed in a panel of GBM-derived cell lines and revealed that knockdown of TANK arrests cells in the S-phase and prohibits tumor cell migration. Deregulated TANK expression affects several signaling pathways controlling cell proliferation and the inflammatory response. Interference with stoichiometrically assembled signaling complexes by overexpression or silencing of TANK prevented constitutive interferon-regulatory factor 3 (IRF3) phosphorylation. Knockdown of TANK frequently prevents constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). TANK-mediated ERK1/2 activation is independent from the canonical MAP kinase or ERK kinase (MEK) 1/2-mediated pathway and utilizes an alternative pathway that uses a TBK1/IKKɛ/Akt signaling axis, thus identifying a novel pathway suitable to block constitutive ERK1/2 activity.
Collapse
Affiliation(s)
- J Stellzig
- Institute of Biochemistry, Justus-Liebig-University, Medical Faculty, Friedrichstraße 24, Gießen, Germany
| | - A Chariot
- Laboratory of Medical Chemistry, GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
- WELBIO, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - K Shostak
- Laboratory of Medical Chemistry, GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - S Ismail Göktuna
- Laboratory of Medical Chemistry, GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - F Renner
- Institute of Biochemistry, Justus-Liebig-University, Medical Faculty, Friedrichstraße 24, Gießen, Germany
| | - T Acker
- Institute of Neuropathology, Justus-Liebig-University, Aulweg 123, Gießen, Germany
| | - A Pagenstecher
- Department of Neuropathology, University of Marburg, Baldingerstraße, Marburg, Germany
| | - M L Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Medical Faculty, Friedrichstraße 24, Gießen, Germany
| |
Collapse
|