1
|
Hill T, Rosales-Stephens HL, Unckless RL. Rapid divergence of the male reproductive proteins in the Drosophila dunni group and implications for postmating incompatibilities between species. G3 (BETHESDA, MD.) 2021; 11:jkab050. [PMID: 33599779 PMCID: PMC8759818 DOI: 10.1093/g3journal/jkab050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
Proteins involved in post-copulatory interactions between males and females are among the fastest evolving genes in many species, usually attributed to their involvement in reproductive conflict. As a result, these proteins are thought to often be involved in the formation of postmating-prezygotic incompatibilities between species. The Drosophila dunni subgroup consists of a dozen recently diverged species found across the Caribbean islands with varying levels of hybrid incompatibility. We performed experimental crosses between species in the dunni group and see some evidence of hybrid incompatibilities. We also find evidence of reduced survival following hybrid mating, likely due to postmating-prezygotic incompatibilities. We assessed rates of evolution between these species genomes and find evidence of rapid evolution and divergence of some reproductive proteins, specifically the seminal fluid proteins. This work suggests the rapid evolution of seminal fluid proteins may be associated with postmating-prezygotic isolation, which acts as a barrier for gene flow between even the most closely related species.
Collapse
Affiliation(s)
- Tom Hill
- The Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | - Robert L Unckless
- The Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
2
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
3
|
Moschilla JA, Tomkins JL, Simmons LW. Identification of seminal proteins related to the inhibition of mate searching in female crickets. Behav Ecol 2020. [DOI: 10.1093/beheco/araa090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
In response to the reduction in fitness associated with sperm competition, males are expected to evolve tactics that hinder female remating. For example, females often display a postmating reduction in their sexual receptivity that has been shown to be mediated by proteins contained in a male’s seminal fluid (sfps). However, although there has been comprehensive research on sfps in genetically well-characterized species, few nonmodel species have been studied in such detail. We initially confirm that female Australian field crickets, Teleogryllus oceanicus, do display a significant reduction in their mate-searching behavior 24 h after mating. This effect was still apparent 3 days after mating but was entirely absent after 1 week. We then attempted to identify the sfps that might play a role in inducing this behavioral response. We identified two proteins, ToSfp022 and ToSfp011, that were associated with the alteration in female postmating behavior. The knockdown of both proteins resulted in mated females that displayed a significant increase in their mate-searching behaviors compared with females mated to males having the full compliment of seminal fluid proteins in their ejaculate. Our results indicate that the female refractory period in T. oceanicus likely reflects a sperm competition avoidance tactic by males, achieved through the action of male seminal fluid proteins.
Collapse
Affiliation(s)
- Joe A Moschilla
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| | - Joseph L Tomkins
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, Australia
| |
Collapse
|
4
|
Heggeseth B, Sim D, Partida L, Maroja LS. Influence of female cuticular hydrocarbon (CHC) profile on male courtship behavior in two hybridizing field crickets Gryllus firmus and Gryllus pennsylvanicus. BMC Evol Biol 2020; 20:21. [PMID: 32019492 PMCID: PMC7001378 DOI: 10.1186/s12862-020-1587-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/27/2020] [Indexed: 11/10/2022] Open
Abstract
Background The hybridizing field crickets, Gryllus firmus and Gryllus pennsylvanicus have several barriers that prevent gene flow between species. The behavioral pre-zygotic mating barrier, where males court conspecifics more intensely than heterospecifics, is important because by acting earlier in the life cycle it has the potential to prevent a larger fraction of hybridization. The mechanism behind such male mate preference is unknown. Here we investigate if the female cuticular hydrocarbon (CHC) profile could be the signal behind male courtship. Results While males of the two species display nearly identical CHC profiles, females have different, albeit overlapping profiles and some females (between 15 and 45%) of both species display a male-like profile distinct from profiles of typical females. We classified CHC females profile into three categories: G. firmus-like (F; including mainly G. firmus females), G. pennsylvanicus-like (P; including mainly G. pennsylvanicus females), and male-like (ML; including females of both species). Gryllus firmus males courted ML and F females more often and faster than they courted P females (p < 0.05). Gryllus pennsylvanicus males were slower to court than G. firmus males, but courted ML females more often (p < 0.05) than their own conspecific P females (no difference between P and F). Both males courted heterospecific ML females more often than other heterospecific females (p < 0.05, significant only for G. firmus males). Conclusions Our results suggest that male mate preference is at least partially informed by female CHC profile and that ML females elicit high courtship behavior in both species. Since ML females exist in both species and are preferred over other heterospecific females, it is likely that this female type is responsible for most hybrid offspring production.
Collapse
Affiliation(s)
- Brianna Heggeseth
- Department of Mathematics and Statistics, Williams College, Williamstown, MA, USA.,Department of Mathematics, Statistics, and Computer Science, Macalester College, St. Paul, MN, USA
| | - Danielle Sim
- Department of Biology, Williams College, Williamstown, MA, USA
| | - Laura Partida
- Department of Biology, Williams College, Williamstown, MA, USA
| | - Luana S Maroja
- Department of Biology, Williams College, Williamstown, MA, USA.
| |
Collapse
|
5
|
Barry SK, Nakamura T, Matsuoka Y, Straub C, Horch HW, Extavour CG. Injecting Gryllus bimaculatus Eggs. J Vis Exp 2019. [PMID: 31498320 DOI: 10.3791/59726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Altering gene function in a developing organism is central to different kinds of experiments. While tremendously powerful genetic tools have been developed in traditional model systems, it is difficult to manipulate genes or messenger RNA (mRNA) in most other organisms. At the same time, evolutionary and comparative approaches rely on an exploration of gene function in many different species, necessitating the development and adaptation of techniques for manipulating expression outside currently genetically tractable species. This protocol describes a method for injecting reagents into cricket eggs to assay the effects of a given manipulation on embryonic or larval development. Instructions for how to collect and inject eggs with beveled needles are described. This relatively straightforward technique is flexible and potentially adaptable to other insects. One can gather and inject dozens of eggs in a single experiment, and survival rates for buffer-only injections improve with practice and can be as high as 80%. This technique will support several types of experimental approaches including injection of pharmacological agents, in vitro capped mRNA to express genes of interest, double-stranded RNA (dsRNA) to achieve RNA interference, use of clustered regularly interspaced short palindromic repeats (CRISPR) in concert with CRISPR-associated protein 9 (Cas9) reagents for genomic modification, and transposable elements to generate transient or stable transgenic lines.
Collapse
Affiliation(s)
| | - Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology
| | - Yuji Matsuoka
- Department of Biological Sciences, National University of Singapore
| | - Christoph Straub
- Department Biology and Department of Neuroscience, Bowdoin College
| | - Hadley W Horch
- Department Biology and Department of Neuroscience, Bowdoin College;
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology and Department of Molecular and Cellular Biology, Harvard University
| |
Collapse
|
6
|
Simmons LW, Lovegrove M. Nongenetic paternal effects via seminal fluid. Evol Lett 2019; 3:403-411. [PMID: 31388449 PMCID: PMC6675144 DOI: 10.1002/evl3.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/11/2019] [Indexed: 11/08/2022] Open
Abstract
Mounting evidence suggests that nongenetic paternal effects on offspring may be widespread among animal taxa, but the mechanisms underlying this form of nongenetic inheritance are not yet fully understood. Here, we show that seminal fluids underlie paternal effects on early offspring survival in an insect, the cricket Teleogryllus oceanicus, and quantify the contribution of this paternal effect to the inheritance of this important fitness trait. We used castrated males within a full-sib half-sib experimental design to show that seminal fluid donors were responsible for variation in the survival of developing embryos to hatching, and in their subsequent survival to adulthood. Increased expression of two seminal fluid protein genes, previously found to be positively associated with sperm quality, was found to be negatively associated with embryo survival. These nongenetic paternal effects hold important implications for the evolution of adaptive maternal responses to sperm competition, and more broadly for the interpretation of sire effects from classic quantitative genetic breeding designs.
Collapse
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary BiologySchool of Biological SciencesThe University of Western AustraliaCrawley6009Australia
| | - Maxine Lovegrove
- Centre for Evolutionary BiologySchool of Biological SciencesThe University of Western AustraliaCrawley6009Australia
| |
Collapse
|
7
|
Wilson KM, Walker SE. Age at mating and male quality influence female patterns of reproductive investment and survival. Ecol Evol 2019; 9:5440-5449. [PMID: 31110692 PMCID: PMC6509372 DOI: 10.1002/ece3.5137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/06/2019] [Accepted: 03/15/2019] [Indexed: 01/28/2023] Open
Abstract
The trade-off between the allocation of resources toward somatic maintenance or reproduction is one of the fundamentals of life history theory and predicts that females invest in offspring at the expense of their longevity or vice versa. Mate quality may also affect life history trade-offs through mechanisms of sexual conflict; however, few studies have examined the interaction between mate quality and age at first mating in reproductive decisions. Using house crickets (Acheta domesticus), this study examines how survival and reproductive trade-offs change based on females' age at first reproduction and exposure to males of varying size. Females were exposed to either a large (presumably high-quality) or small male at an early (young), middle (intermediate), or advanced (old) age, and longevity and reproductive investment were subsequently tracked. Females mated at a young age had the largest number of eggs but the shortest total lifespans while females mated at older ages produced fewer eggs but had longer total lifespans. The trade-off between age at first mating and eggs laid appears to be mediated through higher egg-laying rates and shorter postmating lifespans in females mated later in life. Exposure to small males resulted in shorter lifespans and higher egg-laying rates for all females indicating that male manipulation of females, presumably through spermatophore contents, varies with male size in this species. Together, these data strongly support a trade-off between age at first reproduction and lifespan and support the role of sexual conflict in shaping patterns of reproduction.
Collapse
Affiliation(s)
- Kerianne M. Wilson
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia
| | - Sean E. Walker
- Department of Biological SciencesCalifornia State UniversityFullertonCalifornia
| |
Collapse
|
8
|
Rull J, Tadeo E, Lasa R, Rodríguez CL, Altuzar-Molina A, Aluja M. Experimental hybridization and reproductive isolation between two sympatric species of tephritid fruit flies in the Anastrepha fraterculus species group. INSECT SCIENCE 2018; 25:1045-1055. [PMID: 28586142 DOI: 10.1111/1744-7917.12489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/18/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Among tephritid fruit flies, hybridization has been found to produce local adaptation and speciation, and in the case of pest species, induce behavioral and ecological alterations that can adversely impact efficient pest management. The fraterculus species group within Anastrepha (Diptera: Tephritidae), is a rapidly radiating aggregate, which includes cryptic species complexes, numerous sister species, and several pest species. Molecular studies have highlighted the possibility of introgression between A. fraterculus and A. obliqua. Reproductive isolation has been studied among morphotypes of the A. fraterculus species complex as a tool for species delimitation. Here we examined the existence and strength of prezygotic and postzygotic isolation between sympatric populations of two closely related species within the highly derived fraterculus group (A. fraterculus and A. obliqua), coexisting in nature. Although adults of both species showed a strong tendency for assortative mating, a small proportion of hybrid pairings in both directions were observed. We also observed asymmetric postzygotic isolation, with one hybrid cross displaying a strong reduction in fecundity and F1 egg fertility. Survival was greater for the progeny of homotypic and hybrid crosses in the maternal host. There was a marked female biased sex ratio distortion for both F1 hybrid adults. Hybridization between A. fraterculus and A. obliqua in nature may be difficult but possible; these two species display stronger reproductive isolation than all pairs of species previously examined in the A. fraterculus species complex. Asymmetric postzygotic isolation is suggestive of Wolbachia mediated cytoplasmic incompatibilities that may be exploited in area-wide pest management.
Collapse
Affiliation(s)
- Juan Rull
- PROIMI Biotecnología-CONICET, LIEMEN-División Control Biológico de Plagas, Tucumán, Argentina
| | - Eduardo Tadeo
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Rodrigo Lasa
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Christian L Rodríguez
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Alma Altuzar-Molina
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| | - Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A.C., Xalapa, Veracruz, México
| |
Collapse
|
9
|
Worthington AM, Kelly CD. Females gain survival benefits from immune-boosting ejaculates. Evolution 2016; 70:928-33. [PMID: 26920335 DOI: 10.1111/evo.12890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/12/2016] [Indexed: 01/07/2023]
Abstract
Females in many animal taxa incur significant costs from mating in the form of injury or infection, which can drastically reduce survival. Therefore, immune function during reproduction can be important in determining lifetime fitness. Trade-offs between reproduction and immunity have been extensively studied, yet a growing number of studies demonstrate that mated females have a stronger immune response than virgins. Here, we use the Texas field cricket, Gryllus texensis, to test multiple hypotheses proposed to explain this postmating increase in immune function. Using host-resistance tests, we found that courtship, copulation, and accessory fluids alone do not affect female immunity; rather, only females that acquire intact ejaculates containing testes-derived components exhibit significant increases in survival after exposure to bacterial pathogens. Our data suggest that male-derived components originating from an intact ejaculate and transferred to females during sex are required for the increased immune function characteristic of mated female crickets to occur.
Collapse
Affiliation(s)
- Amy M Worthington
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011.
| | - Clint D Kelly
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Worthington AM, Kelly CD. Direct costs and benefits of multiple mating: Are high female mating rates due to ejaculate replenishment? Behav Processes 2016; 124:115-22. [DOI: 10.1016/j.beproc.2015.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/22/2015] [Indexed: 01/22/2023]
|
11
|
Bonilla ML, Todd C, Erlandson M, Andres J. Combining RNA-seq and proteomic profiling to identify seminal fluid proteins in the migratory grasshopper Melanoplus sanguinipes (F). BMC Genomics 2015; 16:1096. [PMID: 26694822 PMCID: PMC4689059 DOI: 10.1186/s12864-015-2327-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Seminal fluid proteins control many aspects of fertilization and in turn, they play a key role in post-mating sexual selection and possibly reproductive isolation. Because effective proteome profiling relies on the availability of high-quality DNA reference databases, our knowledge of these proteins is still largely limited to model organisms with ample genetic resources. New advances in sequencing technology allow for the rapid characterization of transcriptomes at low cost. By combining high throughput RNA-seq and shotgun proteomic profiling, we have characterized the seminal fluid proteins secreted by the primary male accessory gland of the migratory grasshopper (Melanoplus sanguinipes), one of the main agricultural pests in central North America. RESULTS Using RNA sequencing, we characterized the transcripts of ~ 8,100 genes expressed in the long hyaline tubules (LHT) of the accessory glands. Proteomic profiling identified 353 proteins expressed in the long hyaline tubules (LHT). Of special interest are seminal fluid proteins (SFPs), such as EJAC-SP, ACE and prostaglandin synthetases, which are known to regulate female oviposition in insects. CONCLUSIONS Our study provides new insights into the proteomic components of male ejaculate in Orthopterans, and highlights several important patterns. First, the presence of proteins that lack predicted classical secretory tags in accessory gland proteomes is common in male accessory glands. Second, the products of a few highly expressed genes dominate the accessory gland secretions. Third, accessory gland transcriptomes are enriched for novel transcripts. Fourth, there is conservation of SFPs' functional classes across distantly related taxonomic groups with very different life histories, mating systems and sperm transferring mechanisms. The identified SFPs may serve as targets of future efforts to develop species- specific genetic control strategies.
Collapse
Affiliation(s)
- Martha L Bonilla
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, A.237. Palmira, Valle del Cauca, Colombia.
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N-5E2, Canada.
| | - Christopher Todd
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N-5E2, Canada.
| | - Martin Erlandson
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Pl., Saskatoon, SK, S7N-0X2, Canada.
| | - Jose Andres
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N-5E2, Canada.
| |
Collapse
|
12
|
Maroja LS, Larson EL, Bogdanowicz SM, Harrison RG. Genes with Restricted Introgression in a Field Cricket (Gryllus firmus/Gryllus pennsylvanicus) Hybrid Zone Are Concentrated on the X Chromosome and a Single Autosome. G3 (BETHESDA, MD.) 2015; 5:2219-27. [PMID: 26311650 PMCID: PMC4632042 DOI: 10.1534/g3.115.021246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
Abstract
Characterizing the extent of genomic differentiation between recently diverged lineages provides an important context for understanding the early stages of speciation. When such lineages form discrete hybrid zones, patterns of differential introgression allow direct estimates of which genome regions are likely involved in speciation and local adaptation. Here we use a backcross experimental design to construct a genetic linkage map for the field crickets Gryllus firmus and Gryllus pennsylvanicus, which interact in a well-characterized hybrid zone in eastern North America. We demonstrate that loci with major allele frequency differences between allopatric populations are not randomly distributed across the genome. Instead, most are either X-linked or map to a few small autosomal regions. Furthermore, the subset of those highly differentiated markers that exhibit restricted introgression across the cricket hybrid zone are also concentrated on the X chromosome (39 of 50 loci) and in a single 7-cM region of one autosome. Although the accumulation on the sex chromosome of genes responsible for postzygotic barriers is a well-known phenomenon, less attention has been given to the genomic distribution of genes responsible for prezygotic barriers. We discuss the implications of our results for speciation, both in the context of the role of sex chromosomes and also with respect to the likely causes of heterogeneous genomic divergence. Although we do not yet have direct evidence for the accumulation of ecological, behavioral, or fertilization prezygotic barrier genes on the X chromosome, faster-X evolution could make these barriers more likely to be X-linked.
Collapse
Affiliation(s)
- Luana S Maroja
- Department of Biology, Williams College, Williamstown, Massachusetts 01267
| | - Erica L Larson
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - Steven M Bogdanowicz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853
| | - Richard G Harrison
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
13
|
Worthington AM, Jurenka RA, Kelly CD. Mating for male-derived prostaglandin: a functional explanation for the increased fecundity of mated female crickets? ACTA ACUST UNITED AC 2015; 218:2720-7. [PMID: 26113140 DOI: 10.1242/jeb.121327] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/22/2015] [Indexed: 11/20/2022]
Abstract
Direct benefits are considered to be the driving force of high female mating rates, yet species in which females do not receive material resources from males still experience increased fitness from mating frequently. One hypothesis suggests that substances within the ejaculate may boost survival or offspring production. If these materials are limiting to females, they will require continual renewal via mating and could provide a functional understanding of how high mating rates lead to increased female fitness. Using the Texas field cricket, Gryllus texensis, we investigated the sexual transfer of prostaglandin E2, an important mediator of invertebrate reproduction. We determined that like other gryllid species, males include significant quantities of prostaglandin E2 (PGE2) and its precursor molecule, arachidonic acid (AA), within the spermatophore. These components are passed to females during copulation and then stored within the spermatheca. We then tested the novel hypothesis that PGE2 is ephemerally available after mating and that females must frequently mate to maintain access to this limiting compound. We found that PGE2 within the spermatheca is indeed depleted through time, with only a small amount remaining 1 week after mating, but that its presence can be maintained at high quantities and for prolonged periods of time by remating. Our results support the hypothesis that high female mating rates increase the amount and availability of PGE2 throughout the breeding season, which could explain the positive relationship between female mating rate and fecundity.
Collapse
Affiliation(s)
- Amy M Worthington
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Russell A Jurenka
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Clint D Kelly
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA Département des Sciences Biologiques, Université du Québec à Montréal, CP-8888 Succursale Centre-ville, Montréal, QC, Canada H3C 3P8
| |
Collapse
|
14
|
Larson EL, White TA, Ross CL, Harrison RG. Gene flow and the maintenance of species boundaries. Mol Ecol 2013; 23:1668-78. [DOI: 10.1111/mec.12601] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erica L. Larson
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
- Division of Biological Sciences; University of Montana; Missoula MT 59812 USA
| | - Thomas A. White
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
- CMPG Lab; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 6 3012 Bern Switzerland
| | - Charles L. Ross
- School of Natural Science; Hampshire College; Amherst MA 01002 USA
| | - Richard G. Harrison
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
15
|
Larson EL, Andrés JA, Bogdanowicz SM, Harrison RG. Differential introgression in a mosaic hybrid zone reveals candidate barrier genes. Evolution 2013; 67:3653-61. [PMID: 24299416 DOI: 10.1111/evo.12205] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 06/19/2013] [Indexed: 02/06/2023]
Abstract
Hybrid zones act as genomic sieves. Although globally advantageous alleles will spread throughout the zone and neutral alleles can be freely exchanged between species, introgression will be restricted for genes that contribute to reproductive barriers or local adaptation. Seminal fluid proteins (SFPs) are known to contribute to reproductive barriers in insects and have been proposed as candidate barrier genes in the hybridizing field crickets Gryllus pennsylvanicus and Gryllus firmus. Here, we have used 125 single nucleotide polymorphisms to characterize patterns of differential introgression and to identify genes that may contribute to prezygotic barriers between these species. Using a transcriptome scan of the male cricket accessory gland (the site of SFP synthesis), we identified genes with major allele frequency differences between the species. We then compared patterns of introgression for genes encoding SFPs with patterns for genes expressed in the same tissue that do not encode SFPs. We find no evidence that SFPs have reduced gene exchange across the cricket hybrid zone. However, a number of genes exhibit dramatically reduced introgression, and many of these genes encode proteins with functional roles consistent with known barriers.
Collapse
Affiliation(s)
- Erica L Larson
- Division of Biological Sciences, University of Montana, Missoula, Montana; Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York.
| | | | | | | |
Collapse
|