1
|
Parasites of Three Closely Related Antarctic Fish Species (Teleostei: Nototheniinae) from Elephant Island. Acta Parasitol 2022; 67:218-232. [PMID: 34275092 PMCID: PMC8938359 DOI: 10.1007/s11686-021-00455-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/06/2021] [Indexed: 11/01/2022]
Abstract
BACKGROUND Studies of parasite communities and patterns in the Antarctic are an important knowledge base with the potential to track shifts in ecological relations and study the effects of climate change on host-parasite systems. Endemic Nototheniinae is the dominant fish group found in Antarctic marine habitats. Through their intermediate position within the food web, Nototheniinae link lower to higher trophic levels and thereby also form an important component of parasite life cycles. The study was set out to gain insight into the parasite fauna of Nototheniops larseni, N. nudifrons and Lepidonotothen squamifrons (Nototheniinae) from Elephant Island (Antarctica). METHODS Sampling was conducted at three locations around Elephant Island during the ANT-XXVIII/4 expedition of the research vessel Polarstern. The parasite fauna of three Nototheniine species was analysed, and findings were compared to previous parasitological and ecological research collated from a literature review. RESULTS All host species shared the parasites Neolebouria antarctica (Digenea), Corynosoma bullosum (Acanthocephala) and Pseudoterranova decipiens E (Nematoda). Other parasite taxa were exclusive to one host species in this study. Nototheniops nudifrons was infected by Ascarophis nototheniae (Nematoda), occasional infections of N. larseni with Echinorhynchus petrotschenkoi (Acanthocephala) and L. squamifrons with Elytrophalloides oatesi (Digenea) and larval tetraphyllidean Cestoda were detected. CONCLUSION All examined fish species' parasites were predominantly euryxenous regarding their fish hosts. The infection of Lepidonotothen squamifrons with Lepidapedon garrardi (Digenea) and Nototheniops larseni with Echinorhynchus petrotschenkoi represent new host records. Despite the challenges and limited opportunities for fishing in remote areas, future studies should continue sampling on a more regular basis and include a larger number of fish species and sampling sites within different habitats.
Collapse
|
2
|
Sharifian S, Kamrani E, Saeedi H. Insights toward the future potential distribution of mangrove crabs in the Persian Gulf and the Sea of Oman. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology University of Hormozgan Bandar Abbas Iran
| | - Ehsan Kamrani
- Fishery Department University of Hormozgan Bandar Abbas Iran
| | - Hanieh Saeedi
- Department of Marine Zoology Senckenberg Research Institute and Natural History Museum Frankfurt am Main Germany
- OBIS Data ManagerDeep‐Sea Node Frankfurt am Main Germany
| |
Collapse
|
3
|
Majewski W, Holzmann M, Gooday AJ, Majda A, Mamos T, Pawlowski J. Cenozoic climatic changes drive evolution and dispersal of coastal benthic foraminifera in the Southern Ocean. Sci Rep 2021; 11:19869. [PMID: 34615927 PMCID: PMC8494791 DOI: 10.1038/s41598-021-99155-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Antarctic coastal fauna is characterized by high endemism related to the progressive cooling of Antarctic waters and their isolation by the Antarctic Circumpolar Current. The origin of the Antarctic coastal fauna could involve either colonization from adjoining deep-sea areas or migration through the Drake Passage from sub-Antarctic areas. Here, we tested these hypotheses by comparing the morphology and genetics of benthic foraminifera collected from Antarctica, sub-Antarctic coastal settings in South Georgia, the Falkland Islands and Patagonian fjords. We analyzed four genera (Cassidulina, Globocassidulina, Cassidulinoides, Ehrenbergina) of the family Cassidulinidae that are represented by at least nine species in our samples. Focusing on the genera Globocassidulina and Cassidulinoides, our results showed that the first split between sub-Antarctic and Antarctic lineages took place during the mid-Miocene climate reorganization, probably about 20 to 17 million years ago (Ma). It was followed by a divergence between Antarctic species ~ 10 Ma, probably related to the cooling of deep water and vertical structuring of the water-column, as well as broadening and deepening of the continental shelf. The gene flow across the Drake Passage, as well as between South America and South Georgia, seems to have occurred from the Late Miocene to the Early Pliocene. It appears that climate warming during 7-5 Ma and the migration of the Polar Front breached biogeographic barriers and facilitated inter-species hybridization. The latest radiation coincided with glacial intensification (~ 2 Ma), which accelerated geographic fragmentation of populations, demographic changes, and genetic diversification in Antarctic species. Our results show that the evolution of Antarctic and sub-Antarctic coastal benthic foraminifera was linked to the tectonic and climatic history of the area, but their evolutionary response was not uniform and reflected species-specific ecological adaptations that influenced the dispersal patterns and biogeography of each species in different ways.
Collapse
Affiliation(s)
- Wojciech Majewski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland.
| | - Maria Holzmann
- Department of Genetics and Evolution, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, 1211, Geneve 4, Switzerland
| | - Andrew J Gooday
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| | - Aneta Majda
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland
| | - Jan Pawlowski
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| |
Collapse
|
4
|
Major advance of South Georgia glaciers during the Antarctic Cold Reversal following extensive sub-Antarctic glaciation. Nat Commun 2017; 8:14798. [PMID: 28303885 PMCID: PMC5357866 DOI: 10.1038/ncomms14798] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/01/2017] [Indexed: 01/29/2023] Open
Abstract
The history of glaciations on Southern Hemisphere sub-polar islands is unclear. Debate surrounds the extent and timing of the last glacial advance and termination on sub-Antarctic South Georgia in particular. Here, using sea-floor geophysical data and marine sediment cores, we resolve the record of glaciation offshore of South Georgia through the transition from the Last Glacial Maximum to Holocene. We show a sea-bed landform imprint of a shelf-wide last glacial advance and progressive deglaciation. Renewed glacier resurgence in the fjords between c. 15,170 and 13,340 yr ago coincided with a period of cooler, wetter climate known as the Antarctic Cold Reversal, revealing a cryospheric response to an Antarctic climate pattern extending into the Atlantic sector of the Southern Ocean. We conclude that the last glaciation of South Georgia was extensive, and the sensitivity of its glaciers to climate variability during the last termination more significant than implied by previous studies. The glaciated history of South Georgia is debated, with many suggesting a coastal limit to the island's ice cap during the last glaciation. Here, the authors show extensive ice-cap cover of the continental block during this time and a readvance of glaciers to fjord mouths during the Antarctic Cold Reversal.
Collapse
|
5
|
González-Wevar CA, Rosenfeld S, Segovia NI, Hüne M, Gérard K, Ojeda J, Mansilla A, Brickle P, Díaz A, Poulin E. Genetics, Gene Flow, and Glaciation: The Case of the South American Limpet Nacella mytilina. PLoS One 2016; 11:e0161963. [PMID: 27598461 PMCID: PMC5012656 DOI: 10.1371/journal.pone.0161963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/15/2016] [Indexed: 02/01/2023] Open
Abstract
Glacial episodes of the Quaternary, and particularly the Last Glacial Maximum (LGM) drastically altered the distribution of the Southern-Hemisphere biota, principally at higher latitudes. The irregular coastline of Patagonia expanding for more than 84.000 km constitutes a remarkable area to evaluate the effect of Quaternary landscape and seascape shifts over the demography of near-shore marine benthic organisms. Few studies describing the biogeographic responses of marine species to the LGM have been conducted in Patagonia, but existing data from coastal marine species have demonstrated marked genetic signatures of post-LGM recolonization and expansion. The kelp-dweller limpet Nacella mytilina is broadly distributed along the southern tip of South America and at the Falkland/Malvinas Islands. Considering its distribution, abundance, and narrow bathymetry, N. mytilina represents an appropriate model to infer how historical and contemporary processes affected the distribution of intraspecific genetic diversity and structure along the southern tip of South America. At the same time, it will be possible to determine how life history traits and the ecology of the species are responsible for the current pattern of gene flow and connectivity across the study area. We conducted phylogeographic and demographic inference analyses in N. mytilina from 12 localities along Pacific Patagonia (PP) and one population from the Falkland/Malvinas Islands (FI). Analyses of the mitochondrial gene COI in 300 individuals of N. mytilina revealed low levels of genetic polymorphism and the absence of genetic differentiation along PP. In contrast, FI showed a strong and significant differentiation from Pacific Patagonian populations. Higher levels of genetic diversity were also recorded in the FI population, together with a more expanded genealogy supporting the hypothesis of glacial persistence of the species in these islands. Haplotype genealogy, and mismatch analyses in the FI population recognized an older and more complex demographic history than in PP. Demographic reconstructions along PP suggest a post-LGM expansion process (7.5 ka), also supported by neutrality tests, mismatch distribution and maximum parsimony haplotype genealogies. Migration rate estimations showed evidence of asymmetrical gene flow from PP to FI. The absence of genetic differentiation, the presence of a single dominant haplotype, high estimated migration rates, and marked signal of recent demographic growth, support the hypothesis of rapid post-glacial expansion in N. mytilina along PP. This expansion could have been sustained by larval and rafting-mediated dispersal of adults from northernmost populations following the Cape Horn Current System. Marked genetic differentiation between PP and FI could be explained through differences in their respective glacial histories. During the LGM, Pacific Patagonia (PP) was almost fully covered by the Patagonian Ice Sheet, while sheet coverage in the FI ice was restricted to small cirques and valleys. As previously recorded in the sister-species N. magellanica, the FI rather than represent a classical glacial refugium for N. mytilina, seems to represent a sink area and/or a secondary contact zone. Accordingly, historical and contemporary processes, contrasting glacial histories between the analyzed sectors, as well as life history traits constitute the main factors explaining the current biogeographical patterns of most shallow Patagonian marine benthic organisms.
Collapse
Affiliation(s)
- Claudio A. González-Wevar
- GAIA Antártica – Universidad de Magallanes, Departamento de Recursos Naturales, Bulnes 01890, Punta Arenas, Chile
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile
- Laboratorio de Macroalgas Antárticas y Subantárticas, Universidad de Magallanes, casilla 113-D, Punta Arenas, Chile
| | - Sebastián Rosenfeld
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile
- Laboratorio de Macroalgas Antárticas y Subantárticas, Universidad de Magallanes, casilla 113-D, Punta Arenas, Chile
| | - Nicolás I. Segovia
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile
| | - Mathias Hüne
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile
- Fundación Ictiológica, Providencia – Santiago, Chile
| | - Karin Gérard
- GAIA Antártica – Universidad de Magallanes, Departamento de Recursos Naturales, Bulnes 01890, Punta Arenas, Chile
- Laboratorio de Macroalgas Antárticas y Subantárticas, Universidad de Magallanes, casilla 113-D, Punta Arenas, Chile
| | - Jaime Ojeda
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile
- Laboratorio de Macroalgas Antárticas y Subantárticas, Universidad de Magallanes, casilla 113-D, Punta Arenas, Chile
| | - Andrés Mansilla
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile
- Laboratorio de Macroalgas Antárticas y Subantárticas, Universidad de Magallanes, casilla 113-D, Punta Arenas, Chile
| | - Paul Brickle
- South Atlantic Environmental Research Institute (SAERI), PO Box 609, Stanley Cottage, Stanley, Falkland Islands
| | - Angie Díaz
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Elie Poulin
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile
| |
Collapse
|
6
|
González-Wevar CA, Hüne M, Rosenfeld S, Saucède T, Féral JP, Mansilla A, Poulin E. Patterns of genetic diversity and structure in Antarctic and sub-Antarctic Nacella (Patellogastropoda: Nacellidae) species. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/14888386.2016.1181573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Claudio A. González-Wevar
- GAIA Antártica/Departamento de Recursos Naturales, Universidad de Magallanes, Bulnes 01890, Punta Arenas, Chile
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
| | - Mathias Hüne
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
- Fundación Ictiológica, Pedro de Valdivia 2086, Departamento 406, Providencia, Santiago, Chile
| | - Sebastián Rosenfeld
- GAIA Antártica/Departamento de Recursos Naturales, Universidad de Magallanes, Bulnes 01890, Punta Arenas, Chile
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
| | - Thomas Saucède
- Biogéosciences, Université de Bourgogne, UMR CNRS 6282, Dijon, France
| | - Jean-Pierre Féral
- Institut Méditerrané de Biodiversité et d’Ecologie marine et continentale, Aix Marseille Université-CNR-IRD-Avignon Université, Marseille, France
| | - Andrés Mansilla
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
- Departamento de Recursos Naturales, Universidad de Magallanes, Avenida Bulnes 01890, XII Región de Magallanes y de la Antártica Chilena, Punta Arenas, Chile
| | - Elie Poulin
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
| |
Collapse
|
7
|
Basher Z, Costello MJ. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean. PeerJ 2016; 4:e1713. [PMID: 26925334 PMCID: PMC4768674 DOI: 10.7717/peerj.1713] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/29/2016] [Indexed: 01/22/2023] Open
Abstract
Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future.
Collapse
Affiliation(s)
- Zeenatul Basher
- Institute of Marine Science, Leigh Marine Laboratory, The University of Auckland, Auckland, New Zealand
| | - Mark J. Costello
- Institute of Marine Science, Leigh Marine Laboratory, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Dueñas LF, Tracey DM, Crawford AJ, Wilke T, Alderslade P, Sánchez JA. The Antarctic Circumpolar Current as a diversification trigger for deep-sea octocorals. BMC Evol Biol 2016; 16:2. [PMID: 26727928 PMCID: PMC4700699 DOI: 10.1186/s12862-015-0574-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/19/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Antarctica is surrounded by the Antarctic Circumpolar Current (ACC), the largest and strongest current in the world. Despite its potential importance for shaping biogeographical patterns, the distribution and connectivity of deep-sea populations across the ACC remain poorly understood. In this study we conducted the first assessment of phylogeographical patterns in deep-sea octocorals in the South Pacific and Southern Ocean, specifically a group of closely related bottlebrush octocorals (Primnoidae: Tokoprymno and Thourella), as a test case to study the effect of the ACC on the population structure of brooding species. We assessed the degree to which the ACC constitutes a barrier to gene flow between northern and southern populations and whether the onset of diversification of these corals coincides with the origin of the ACC (Oligocene-Miocene boundary). RESULTS Based on DNA sequences of two nuclear genes from 80 individuals and a combination of phylogeographic model-testing approaches we found a phylogenetic break corresponding to the spatial occurrence of the ACC. We also found significant genetic structure among our four regional populations. However, we uncovered shared haplotypes among certain population pairs, suggesting long-distance, asymmetrical migration. Our divergence time analyses indicated that the separation of amphi-ACC populations took place during the Middle Miocene around 12.6 million years ago, i.e., after the formation of the ACC. CONCLUSION We suggest that the ACC constitutes a semi-permeable barrier to these deep-sea octocorals capable of separating and structuring populations, while allowing short periods of gene flow. The fluctuations in latitudinal positioning of the ACC during the Miocene likely contributed to the diversification of these octocorals. Additionally, we provide evidence that the populations from each of our four sampling regions could actually constitute different species.
Collapse
Affiliation(s)
- Luisa F Dueñas
- Department of Biological Sciences, Universidad de los Andes, A.A. 4976, Bogotá, Colombia.
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany.
| | - Dianne M Tracey
- National Institute of Water and Atmospheric Research-NIWA, Wellington, New Zealand.
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, A.A. 4976, Bogotá, Colombia.
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Panama City, Republic of Panama.
| | - Thomas Wilke
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany.
| | - Phil Alderslade
- CSIRO Marine and Atmospheric Research, PO Box 1538, Hobart, Tasmania, 7001, Australia.
| | - Juan A Sánchez
- Department of Biological Sciences, Universidad de los Andes, A.A. 4976, Bogotá, Colombia.
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
9
|
Kašparová E, Van de Putte AP, Marshall C, Janko K. Lifestyle and Ice: The Relationship between Ecological Specialization and Response to Pleistocene Climate Change. PLoS One 2015; 10:e0138766. [PMID: 26535569 PMCID: PMC4636791 DOI: 10.1371/journal.pone.0138766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
Major climatic changes in the Pleistocene had significant effects on marine organisms and the environments in which they lived. The presence of divergent patterns of demographic history even among phylogenetically closely-related species sharing climatic changes raises questions as to the respective influence of species-specific traits on population structure. In this work we tested whether the lifestyle of Antarctic notothenioid benthic and pelagic fish species from the Southern Ocean influenced the concerted population response to Pleistocene climatic fluctuations. This was done by a comparative analysis of sequence variation at the cyt b and S7 loci in nine newly sequenced and four re-analysed species. We found that all species underwent more or less intensive changes in population size but we also found consistent differences between demographic histories of pelagic and benthic species. Contemporary pelagic populations are significantly more genetically diverse and bear traces of older demographic expansions than less diverse benthic species that show evidence of more recent population expansions. Our findings suggest that the lifestyles of different species have strong influences on their responses to the same environmental events. Our data, in conjunction with previous studies showing a constant diversification tempo of these species during the Pleistocene, support the hypothesis that Pleistocene glaciations had a smaller effect on pelagic species than on benthic species whose survival may have relied upon ephemeral refugia in shallow shelf waters. These findings suggest that the interaction between lifestyle and environmental changes should be considered in genetic analyses.
Collapse
Affiliation(s)
- Eva Kašparová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Kvetna 8, 603 65, Brno, Czech Republic
- * E-mail: (EK); (KJ)
| | - Anton P. Van de Putte
- Laboratory of Biodiversity and Evolutionary Genomics, Katholieke Universiteit Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Craig Marshall
- Department of Biochemistry, and Genetics Otago, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Kvetna 8, 603 65, Brno, Czech Republic
- Centre for Polar Ecology, University of South Bohemia in Ceské Budejovice, Na Zlate stoce 3, 370 05, Ceske Budejovice, Czech Republic
- Life Science Research Centre, Department of Biology and Ecology, Faculty of Natural Sciences, University of Ostrava, Chittussiho 10, 710 00 Silesian Ostrava, Czech Republic
- * E-mail: (EK); (KJ)
| |
Collapse
|
10
|
Dietz L, Arango CP, Dömel JS, Halanych KM, Harder AM, Held C, Mahon AR, Mayer C, Melzer RR, Rouse GW, Weis A, Wilson NG, Leese F. Regional differentiation and extensive hybridization between mitochondrial clades of the Southern Ocean giant sea spider Colossendeis megalonyx. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140424. [PMID: 26587257 PMCID: PMC4632570 DOI: 10.1098/rsos.140424] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/29/2015] [Indexed: 05/13/2023]
Abstract
Assessing the enormous diversity of Southern Ocean benthic species and their evolutionary histories is a central task in the era of global climate change. Based on mitochondrial markers, it was recently suggested that the circumpolar giant sea spider Colossendeis megalonyx comprises a complex of at least six cryptic species with mostly small and non-overlapping distribution ranges. Here, we expand the sampling to include over 500 mitochondrial COI sequences of specimens from around the Antarctic. Using multiple species delimitation approaches, the number of distinct mitochondrial OTUs increased from six to 15-20 with our larger dataset. In contrast to earlier studies, many of these clades show almost circumpolar distributions. Additionally, analysis of the nuclear internal transcribed spacer region for a subset of these specimens showed incongruence between nuclear and mitochondrial results. These mito-nuclear discordances suggest that several of the divergent mitochondrial lineages can hybridize and should not be interpreted as cryptic species. Our results suggest survival of C. megalonyx during Pleistocene glaciations in multiple refugia, some of them probably located on the Antarctic shelf, and emphasize the importance of multi-gene datasets to detect the presence of cryptic species, rather than their inference based on mitochondrial data alone.
Collapse
Affiliation(s)
- Lars Dietz
- Faculty of Biology and Biotechnology, Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| | - Claudia P. Arango
- Natural Environments Program, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia
| | - Jana S. Dömel
- Faculty of Biology and Biotechnology, Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| | | | - Avril M. Harder
- Department of Biology, Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| | - Christoph Held
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Biology, Am Alten Hafen 26, Bremerhaven 25768, Germany
| | - Andrew R. Mahon
- Department of Biology, Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
| | - Christoph Mayer
- Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn 53113, Germany
| | - Roland R. Melzer
- Bavarian State Collection of Zoology—SNSB, Münchhausenstraße 21, Munich 81247, Germany
- Department Biology II, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, Planegg-Martinsried 82152, Germany
- GeoBio-Center, Richard-Wagner-Straße 10, Munich 80333, Germany
| | - Greg W. Rouse
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla 92093-0202, CA, USA
| | - Andrea Weis
- Bavarian State Collection of Zoology—SNSB, Münchhausenstraße 21, Munich 81247, Germany
| | - Nerida G. Wilson
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla 92093-0202, CA, USA
- Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia
| | - Florian Leese
- Faculty of Biology and Biotechnology, Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany
| |
Collapse
|
11
|
Basher Z, Bowden DA, Costello MJ. Diversity and distribution of deep-sea shrimps in the Ross Sea region of Antarctica. PLoS One 2014; 9:e103195. [PMID: 25051333 PMCID: PMC4106907 DOI: 10.1371/journal.pone.0103195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 06/28/2014] [Indexed: 02/05/2023] Open
Abstract
Although decapod crustaceans are widespread in the oceans, only Natantia (shrimps) are common in the Antarctic. Because remoteness, depth and ice cover restrict sampling in the South Ocean, species distribution modelling is a useful tool for evaluating distributions. We used physical specimen and towed camera data to describe the diversity and distribution of shrimps in the Ross Sea region of Antarctica. Eight shrimp species were recorded: Chorismus antarcticus; Notocrangon antarcticus; Nematocarcinus lanceopes; Dendrobranchiata; Pasiphaea scotiae; Pasiphaea cf. ledoyeri; Petalidium sp., and a new species of Lebbeus. For the two most common species, N. antarcticus and N. lanceopes, we used maximum entropy modelling, based on records of 60 specimens and over 1130 observations across 23 sites in depths from 269 m to 3433 m, to predict distributions in relation to environmental variables. Two independent sets of environmental data layers at 0.05° and 0.5° resolution respectively, showed how spatial resolution affected the model. Chorismus antarcticus and N. antarcticus were found only on the continental shelf and upper slopes, while N. lanceopes, Lebbeus n. sp., Dendrobranchiata, Petalidium sp., Pasiphaea cf. ledoyeri, and Pasiphaea scotiae were found on the slopes, seamounts and abyssal plain. The environmental variables that contributed most to models for N. antarcticus were depth, chlorophyll-a concentration, temperature, and salinity, and for N. lanceopes were depth, ice concentration, seabed slope/rugosity, and temperature. The relative ranking, but not the composition of these variables changed in models using different spatial resolutions, and the predicted extent of suitable habitat was smaller in models using the finer-scale environmental layers. Our modelling indicated that shrimps were widespread throughout the Ross Sea region and were thus likely to play important functional role in the ecosystem, and that the spatial resolution of data needs to be considered both in the use of species distribution models.
Collapse
Affiliation(s)
- Zeenatul Basher
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
- * E-mail:
| | - David A. Bowden
- Coasts and Oceans Centre, National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | - Mark J. Costello
- Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Damerau M, Matschiner M, Salzburger W, Hanel R. Population divergences despite long pelagic larval stages: lessons from crocodile icefishes (Channichthyidae). Mol Ecol 2013; 23:284-99. [DOI: 10.1111/mec.12612] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 11/28/2022]
Affiliation(s)
- M. Damerau
- Thünen-Institute of Fisheries Ecology; Palmaille 9 22767 Hamburg Germany
| | - M. Matschiner
- Department of Mathematics and Statistics; Allan Wilson Centre of Molecular Ecology and Evolution; University of Canterbury; Private Bag 4800 Christchurch New Zealand
- Zoological Institute; University of Basel; Vesalgasse 1 4051 Basel Switzerland
| | - W. Salzburger
- Zoological Institute; University of Basel; Vesalgasse 1 4051 Basel Switzerland
| | - R. Hanel
- Thünen-Institute of Fisheries Ecology; Palmaille 9 22767 Hamburg Germany
| |
Collapse
|
13
|
González-Wevar CA, Saucède T, Morley SA, Chown SL, Poulin E. Extinction and recolonization of maritime Antarctica in the limpetNacella concinna(Strebel, 1908) during the last glacial cycle: toward a model of Quaternary biogeography in shallow Antarctic invertebrates. Mol Ecol 2013; 22:5221-36. [DOI: 10.1111/mec.12465] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/14/2013] [Indexed: 11/26/2022]
Affiliation(s)
- C. A. González-Wevar
- Departamento de Ciencias Ecológicas; Instituto de Ecología y Biodiversidad; Facultad de Ciencias; Universidad de Chile; Las Palmeras # 3425, Ñuñoa Santiago Chile
| | - T. Saucède
- Biogéosciences, UMR CNRS 6282; Université de Bourgogne; Dijon 21000 France
| | - S. A. Morley
- British Antarctic Survey; Madingley Road High Cross Cambridge CB3 0ET UK
| | - S. L. Chown
- Head of School Professor of Biological Science; Monash University; Victoria 3800 Australia
| | - E. Poulin
- Departamento de Ciencias Ecológicas; Instituto de Ecología y Biodiversidad; Facultad de Ciencias; Universidad de Chile; Las Palmeras # 3425, Ñuñoa Santiago Chile
| |
Collapse
|
14
|
Dambach J, Raupach MJ, Mayer C, Schwarzer J, Leese F. Isolation and characterization of nine polymorphic microsatellite markers for the deep-sea shrimp Nematocarcinus lanceopes (Crustacea: Decapoda: Caridea). BMC Res Notes 2013; 6:75. [PMID: 23448502 PMCID: PMC3629709 DOI: 10.1186/1756-0500-6-75] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/27/2013] [Indexed: 11/15/2022] Open
Abstract
Background The shrimp Nematocarcinus lanceopes Bate, 1888 is found in the deep sea around Antarctica and sub-Antarctic islands. Previous studies on mitochondrial data and species distribution models provided evidence for a homogenous circum-Antarctic population of N. lanceopes. However, to analyze the fine-scale population genetic structure and to examine influences of abiotic environmental conditions on population composition and genetic diversity, a set of fast evolving nuclear microsatellite markers is required. Findings We report the isolation and characterization of nine polymorphic microsatellite markers from the Antarctic deep-sea shrimp species Nematocarcinus lanceopes (Crustacea: Decapoda: Caridea). Microsatellite markers were screened in 55 individuals from different locations around the Antarctic continent. All markers were polymorphic with 9 to 25 alleles per locus. The observed heterozygosity ranged from 0.545 to 0.927 and the expected heterozygosity from 0.549 to 0.934. Conclusions The reported markers provide a novel tool to study genetic structure and diversity in Nematocarcinus lanceopes populations in the Southern Ocean and monitor effects of ongoing climate change in the region on the populations inhabiting these.
Collapse
|