1
|
Padalko V, Posnik F, Adamczyk M. Mitochondrial Aconitase and Its Contribution to the Pathogenesis of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9950. [PMID: 39337438 PMCID: PMC11431987 DOI: 10.3390/ijms25189950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This survey reviews modern ideas on the structure and functions of mitochondrial and cytosolic aconitase isoenzymes in eukaryotes. Cumulative experimental evidence about mitochondrial aconitases (Aco2) as one of the main targets of reactive oxygen and nitrogen species is generalized. The important role of Aco2 in maintenance of homeostasis of the intracellular iron pool and maintenance of the mitochondrial DNA is discussed. The role of Aco2 in the pathogenesis of some neurodegenerative diseases is highlighted. Inactivation or dysfunction of Aco2 as well as mutations found in the ACO2 gene appear to be significant factors in the development and promotion of various types of neurodegenerative diseases. A restoration of efficient mitochondrial functioning as a source of energy for the cell by targeting Aco2 seems to be one of the promising therapeutic directions to minimize progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Volodymyr Padalko
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- School of Medicine, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| | - Filip Posnik
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Malgorzata Adamczyk
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
2
|
Angelopoulou E, Pyrgelis ES, Ahire C, Suman P, Mishra A, Piperi C. Functional Implications of Protein Arginine Methyltransferases (PRMTs) in Neurodegenerative Diseases. BIOLOGY 2023; 12:1257. [PMID: 37759656 PMCID: PMC10525691 DOI: 10.3390/biology12091257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington's disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
| | - Chetana Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Prachi Suman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Migazzi A, Scaramuzzino C, Anderson EN, Tripathy D, Hernández IH, Grant RA, Roccuzzo M, Tosatto L, Virlogeux A, Zuccato C, Caricasole A, Ratovitski T, Ross CA, Pandey UB, Lucas JJ, Saudou F, Pennuto M, Basso M. Huntingtin-mediated axonal transport requires arginine methylation by PRMT6. Cell Rep 2021; 35:108980. [PMID: 33852844 PMCID: PMC8132453 DOI: 10.1016/j.celrep.2021.108980] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/09/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
The huntingtin (HTT) protein transports various organelles, including vesicles containing neurotrophic factors, from embryonic development throughout life. To better understand how HTT mediates axonal transport and why this function is disrupted in Huntington's disease (HD), we study vesicle-associated HTT and find that it is dimethylated at a highly conserved arginine residue (R118) by the protein arginine methyltransferase 6 (PRMT6). Without R118 methylation, HTT associates less with vesicles, anterograde trafficking is diminished, and neuronal death ensues-very similar to what occurs in HD. Inhibiting PRMT6 in HD cells and neurons exacerbates mutant HTT (mHTT) toxicity and impairs axonal trafficking, whereas overexpressing PRMT6 restores axonal transport and neuronal viability, except in the presence of a methylation-defective variant of mHTT. In HD flies, overexpressing PRMT6 rescues axonal defects and eclosion. Arginine methylation thus regulates HTT-mediated vesicular transport along the axon, and increasing HTT methylation could be of therapeutic interest for HD.
Collapse
Affiliation(s)
- Alice Migazzi
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy; Dulbecco Telethon Institute, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy; Department of Biomedical Sciences (DBS), University of Padova, Padova 35131, Italy
| | - Chiara Scaramuzzino
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble 38000, France
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Debasmita Tripathy
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Ivó H Hernández
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Rogan A Grant
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Michela Roccuzzo
- Advanced Imaging Core Facility, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Laura Tosatto
- Institute of Biophysics, National Research Council (CNR) Trento unit, Trento 38123, Italy
| | - Amandine Virlogeux
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble 38000, France
| | - Chiara Zuccato
- Department of Biosciences, University of Milan, Milan, Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan 20122, Italy
| | | | - Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Udai B Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - José J Lucas
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble 38000, France.
| | - Maria Pennuto
- Dulbecco Telethon Institute, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy; Department of Biomedical Sciences (DBS), University of Padova, Padova 35131, Italy; Veneto Institute of Molecular Medicine (VIMM), via Orus 2, Padova 35129, Italy; Padova Neuroscience Center (PNC), Padova 35131, Italy; Myology Center (CIR-Myo), Padova 35131, Italy.
| | - Manuela Basso
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy.
| |
Collapse
|
4
|
Ghavami A, Olsen M, Kwan M, Beltran J, Shea J, Ramboz S, Duan W, Lavery D, Howland D, Park LC. Transcriptional Assessment of Striatal mRNAs as Valid Biomarkers of Disease Progression in Three Mouse Models of Huntington's Disease. J Huntingtons Dis 2021; 9:13-31. [PMID: 32007959 DOI: 10.3233/jhd-190389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a progressive neurodegenerative disorder that prominently affects the basal ganglia, leading to affective, cognitive, behavioral, and motor decline. The primary site of neuron loss in HD is the striatal part of the basal ganglia, with GABAergic medium size spiny neurons (MSNs) being nearly completely lost in advanced HD. OBJECTIVE Based on the hypothesis that mutant huntingtin (mHTT) protein injures neurons via transcriptional dysregulation, we set out to establish a transcriptional profile of HD disease progression in the well characterized transgenic mouse model, R6/2, and two Knock-in models (KI); zQ175KI (expressing mutant mouse/human chimeric Htt protein) and HdhQ200 HET KI (carrying one allele of expanded mouse CAG repeats). METHODS In this study, we used quantitative PCR (qPCR) to evaluate striatal mRNA levels of markers of neurotransmission, neuroinflammation, and energy metabolism. RESULTS After analyzing and comparing transcripts from pre-symptomatic and symptomatic stages, markers expressed in the basal ganglia MSNs, which are typically involved in maintaining normal neurotransmission, showed a genotype-specific decrease in mRNA expression in a pattern consistent with human studies. In contrast, transcripts associated with neuroinflammation and energy metabolism were mostly unaffected in these animal models of HD. CONCLUSION Our results show that transcripts linked to neurotransmission are significantly reduced and are consistent with disease progression in both zQ175KI and R6/2 transgenic mouse models.
Collapse
Affiliation(s)
| | | | - Mei Kwan
- PsychoGenics Inc., Paramus, NJ, USA
| | | | | | | | - Wenzhen Duan
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Lavery
- CHDI Management/CHDI Foundation, Inc, Princeton, NJ, USA
| | - David Howland
- CHDI Management/CHDI Foundation, Inc, Princeton, NJ, USA
| | - Larry C Park
- CHDI Management/CHDI Foundation, Inc, Princeton, NJ, USA
| |
Collapse
|
5
|
Andrade-Navarro MA, Mühlenberg K, Spruth EJ, Mah N, González-López A, Andreani T, Russ J, Huska MR, Muro EM, Fontaine JF, Amstislavskiy V, Soldatov A, Nietfeld W, Wanker EE, Priller J. RNA Sequencing of Human Peripheral Blood Cells Indicates Upregulation of Immune-Related Genes in Huntington's Disease. Front Neurol 2020; 11:573560. [PMID: 33329316 PMCID: PMC7731869 DOI: 10.3389/fneur.2020.573560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by a trinucleotide repeat expansion in the Huntingtin gene. As disease-modifying therapies for HD are being developed, peripheral blood cells may be used to indicate disease progression and to monitor treatment response. In order to investigate whether gene expression changes can be found in the blood of individuals with HD that distinguish them from healthy controls, we performed transcriptome analysis by next-generation sequencing (RNA-seq). We detected a gene expression signature consistent with dysregulation of immune-related functions and inflammatory response in peripheral blood from HD cases vs. controls, including induction of the interferon response genes, IFITM3, IFI6 and IRF7. Our results suggest that it is possible to detect gene expression changes in blood samples from individuals with HD, which may reflect the immune pathology associated with the disease.
Collapse
Affiliation(s)
- Miguel A Andrade-Navarro
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katja Mühlenberg
- Neuroproteomics, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Eike J Spruth
- Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nancy Mah
- Charité-Universitätsmedizin Berlin, Virchow-Klinikum, Berlin-Brandenburger Centrum für Regenerative Therapien, Berlin, Germany
| | - Adrián González-López
- Klinik f. Anästhesiologie m.S. operative Intensivmedizin, Virchow Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tommaso Andreani
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenny Russ
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Matthew R Huska
- Department for Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Enrique M Muro
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jean-Fred Fontaine
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Alexei Soldatov
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | | | - Erich E Wanker
- Neuroproteomics, Max-Delbrück Center for Molecular Medicine, Berlin, Germany.,German Centre for Neurodegenerative Diseases, Berlin Institute of Health, Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Neurodegenerative Diseases, Berlin Institute of Health, Berlin, Germany.,Centre for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Brandes MS, Gray NE. NRF2 as a Therapeutic Target in Neurodegenerative Diseases. ASN Neuro 2020; 12:1759091419899782. [PMID: 31964153 PMCID: PMC6977098 DOI: 10.1177/1759091419899782] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Increased reactive oxygen species production and oxidative stress have been implicated in the pathogenesis of numerous neurodegenerative conditions including among others Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Friedrich’s ataxia, multiple sclerosis, and stroke. The endogenous antioxidant response pathway protects cells from oxidative stress by increasing the expression of cytoprotective enzymes and is regulated by the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2). In addition to regulating the expression of antioxidant genes, NRF2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. This is because mitochondrial dysfunction and neuroinflammation are features of many neurodegenerative diseases as well NRF2 has emerged as a promising therapeutic target. Here, we review evidence for a beneficial role of NRF2 in neurodegenerative conditions and the potential of specific NRF2 activators as therapeutic agents.
Collapse
Affiliation(s)
- Mikah S. Brandes
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
7
|
Zadel M, Maver A, Kovanda A, Peterlin B. Transcriptomic Biomarkers for Huntington's Disease: Are Gene Expression Signatures in Whole Blood Reliable Biomarkers? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:283-294. [PMID: 29652574 DOI: 10.1089/omi.2017.0206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Huntington's disease (HD) is a severe neurodegenerative disorder manifesting as progressive impairment of motor function, cognitive decline, psychiatric symptoms, and immunological and endocrine dysfunction. We explored the consistency of blood transcriptomic biomarkers in HD based on a novel Slovene patient cohort and expert review of previous studies. HumanHT-12 v4 BeadChip microarrays were performed on the whole blood samples of a cohort of 23 HD mutation carriers and 23 controls to identify differentially expressed (DE) transcripts. In addition, we performed an expert review of DE transcripts identified in comparable HD studies from whole blood, to identify any consistent signature of HD. In the Slovene cohort, we identified 740 DE transcripts (p < 0.01 and a false discovery rate (FDR) of <0.1) of which 414 were downregulated and 326 were upregulated. Pathway analyses of DE transcripts showed enrichment for pathways involved in systemic, rather than neural processes in HD. With an expert review of comparable studies, we have further identified 15 DE transcripts shared by 3 studies. We suggest transcriptomic changes in blood reflect systemic changes in HD pathogenesis, rather than being a direct result of the neuropathological processes in the central nervous system during HD progression, and thus, have limited value as disease biomarkers.
Collapse
Affiliation(s)
- Maja Zadel
- 1 Community Health Centre Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- 2 Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Anja Kovanda
- 2 Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Borut Peterlin
- 2 Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
8
|
Mollica PA, Zamponi M, Reid JA, Sharma DK, White AE, Ogle RC, Bruno RD, Sachs PC. Epigenetic alterations mediate iPSC-induced normalization of DNA repair gene expression and TNR stability in Huntington's disease cells. J Cell Sci 2018; 131:jcs.215343. [PMID: 29898922 DOI: 10.1242/jcs.215343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a rare autosomal dominant neurodegenerative disorder caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat (TNR) expansion within the HTT gene. The mechanisms underlying HD-associated cellular dysfunction in pluripotency and neurodevelopment are poorly understood. We had previously identified downregulation of selected DNA repair genes in HD fibroblasts relative to wild-type fibroblasts, as a result of promoter hypermethylation. Here, we tested the hypothesis that hypomethylation during cellular reprogramming to the induced pluripotent stem cell (iPSC) state leads to upregulation of DNA repair genes and stabilization of TNRs in HD cells. We sought to determine how the HD TNR region is affected by global epigenetic changes through cellular reprogramming and early neurodifferentiation. We find that early stage HD-affected neural stem cells (HD-NSCs) contain increased levels of global 5-hydroxymethylation (5-hmC) and normalized DNA repair gene expression. We confirm TNR stability is induced in iPSCs, and maintained in HD-NSCs. We also identify that upregulation of 5-hmC increases ten-eleven translocation 1 and 2 (TET1/2) protein levels, and show their knockdown leads to a corresponding decrease in the expression of select DNA repair genes. We further confirm decreased expression of TET1/2-regulating miR-29 family members in HD-NSCs. Our findings demonstrate that mechanisms associated with pluripotency induction lead to a recovery in the expression of select DNA repair gene and stabilize pathogenic TNRs in HD.
Collapse
Affiliation(s)
- Peter A Mollica
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA.,Molecular Diagnostics Laboratory, Sentara Norfolk General Hospital, Norfolk, VA 23507, USA
| | - Martina Zamponi
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA.,Biomedical Engineering Institute, Old Dominion University, Norfolk, VA 23529, USA
| | - John A Reid
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA.,Biomedical Engineering Institute, Old Dominion University, Norfolk, VA 23529, USA
| | - Deepak K Sharma
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Alyson E White
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Roy C Ogle
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Robert D Bruno
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Patrick C Sachs
- Department of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
9
|
Kakurina GV, Kolegova ES, Kondakova IV. Adenylyl Cyclase-Associated Protein 1: Structure, Regulation, and Participation in Cellular Processes. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29534668 DOI: 10.1134/s0006297918010066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review summarizes information available to date about the structural organization, regulation of functional activity of adenylyl cyclase-associated protein 1 (CAP1), and its participation in cellular processes. Numerous data are generalized on the role of CAP1 in the regulation of actin cytoskeleton and its interactions with many actin-binding proteins. Attention is drawn to the similarity of the structure of CAP1 and its contribution to the remodeling of actin filaments in prokaryotes and eukaryotes, as well as to the difference in the interaction of CAP1 with adenylyl cyclase in these cells. In addition, we discuss the participation of CAP1 in various pathological processes.
Collapse
Affiliation(s)
- G V Kakurina
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
| | | | | |
Collapse
|
10
|
Chang KH, Wu YR, Chen CM. Down-regulation of miR-9* in the peripheral leukocytes of Huntington's disease patients. Orphanet J Rare Dis 2017; 12:185. [PMID: 29258536 PMCID: PMC5737985 DOI: 10.1186/s13023-017-0742-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022] Open
Abstract
Background Huntington’s disease (HD), caused by expansion of a polyglutamine tract within HUNTINGTIN (HTT) protein, is an autosomal dominant neurodegenerative disease associated with a progressive neurodegeneration of striatum and cerebral cortex. Although a few studies have identified substantial microRNA (miRNA) alterations in central nervous tissues from HD patients, it will be more accessible to employ these molecular changes in peripheral tissues as biomarkers for HD. Methods We examined the expression levels of 13 miRNAs (miR-1, mirR-9, miR-9*, miR-10b, miR-29a, miR-29b, miR-124a, miR-132, miR-155, miR-196a, miR-196b, miR-330 and miR-615), 10 of which previously demonstrated alterations and 3 of which are potential regulators of differentially-expressed genes in brains of HD patients, in the peripheral leukocytes of 36 HD patients, 8 pre-symptomatic HD carriers and 28 healthy controls. Results We found expression levels of miR-9* was significantly lower in HD patients compared with those in healthy controls, while other miRNAs did not show significant difference between these two groups. However, there was no significant correlation between Unified Huntington’s Disease Rating Scales (UHDRS) and levels of miR-9* in peripheral leukocytes of HD patients. Conclusion Our findings indicate the potential of miR-9* in peripheral leukocyte as a signature of neurodegeneration in HD patients.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Altered Aconitase 2 Activity in Huntington's Disease Peripheral Blood Cells and Mouse Model Striatum. Int J Mol Sci 2017; 18:ijms18112480. [PMID: 29160844 PMCID: PMC5713446 DOI: 10.3390/ijms18112480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 11/22/2022] Open
Abstract
Huntington’s disease (HD) is caused by an unstable cytosine adenine guanine (CAG) trinucleotide repeat expansion encoding a polyglutamine tract in the huntingtin protein. Previously, we identified several up- and down-regulated protein molecules in the striatum of the Hdh(CAG)150 knock-in mice at 16 months of age, a mouse model which is modeling the early human HD stage. Among those molecules, aconitase 2 (Aco2) located in the mitochondrial matrix is involved in the energy generation and susceptible to increased oxidative stress that would lead to inactivation of Aco2 activity. In this study, we demonstrate decreased Aco2 protein level and activity in the brain of both Hdh(CAG)150 and R6/2 mice. Aco2 activity was decreased in striatum of Hdh(CAG)150 mice at 16 months of age as well as R6/2 mice at 7 to 13 weeks of age. Aco2 activity in the striatum of R6/2 mice could be restored by the anti-oxidant, N-acetyl-l-cysteine, supporting that decreased Aco2 activity in HD is probably caused by increased oxidative damage. Decreased Aco2 activity was further found in the peripheral blood mononuclear cells (PBMC) of both HD patients and pre-symptomatic HD mutation (PreHD) carriers, while the decreased Aco2 protein level of PBMC was only present in HD patients. Aco2 activity correlated significantly with motor score, independence scale, and functional capacity of the Unified Huntington’s Disease Rating Scale as well as disease duration. Our study provides a potential biomarker to assess the disease status of HD patients and PreHD carriers.
Collapse
|
12
|
Abstract
Redox homeostasis is crucial for proper cellular functions, including receptor tyrosine kinase signaling, protein folding, and xenobiotic detoxification. Under basal conditions, there is a balance between oxidants and antioxidants. This balance facilitates the ability of oxidants, such as reactive oxygen species, to play critical regulatory functions through a direct modification of a small number of amino acids (e.g. cysteine) on signaling proteins. These signaling functions leverage tight spatial, amplitude, and temporal control of oxidant concentrations. However, when oxidants overwhelm the antioxidant capacity, they lead to a harmful condition of oxidative stress. Oxidative stress has long been held to be one of the key players in disease progression for Huntington's disease (HD). In this review, we will critically review this evidence, drawing some intermediate conclusions, and ultimately provide a framework for thinking about the role of oxidative stress in the pathophysiology of HD.
Collapse
Affiliation(s)
- Amit Kumar
- Burke Medical Research Institute, White Plains, NY, USA
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA
- Department of Neurology, Weill Medical College of Cornell University, New York, NY, USA
| | - Rajiv R. Ratan
- Burke Medical Research Institute, White Plains, NY, USA
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA
- Department of Neurology, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
13
|
Kunkanjanawan T, Carter RL, Prucha MS, Yang J, Parnpai R, Chan AWS. miR-196a Ameliorates Cytotoxicity and Cellular Phenotype in Transgenic Huntington's Disease Monkey Neural Cells. PLoS One 2016; 11:e0162788. [PMID: 27631085 PMCID: PMC5025087 DOI: 10.1371/journal.pone.0162788] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 08/29/2016] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) tract that leads to motor, cognitive and psychiatric impairment. Currently there is no cure for HD. A transgenic HD nonhuman primate (HD-NHP) model was developed with progressive development of clinical and pathological features similar to human HD, which suggested the potential preclinical application of the HD-NHP model. Elevated expression of miR-196a was observed in both HD-NHP and human HD brains. Cytotoxicity and apoptosis were ameliorated by the overexpression of miR-196a in HD-NHP neural progenitor cells (HD-NPCs) and differentiated neural cells (HD-NCs). The expression of apoptosis related gene was also down regulated. Mitochondrial morphology and activity were improved as indicated by mitotracker staining and the upregulation of CBP and PGC-1α in HD-NPCs overexpressing miR-196a. Here we demonstrated the amelioration of HD cellular phenotypes in HD-NPCs and HD-NCs overexpressing miR-196a. Our results also suggested the regulatory role of miR-196a in HD pathogenesis that may hold the key for understanding molecular regulation in HD and developing novel therapeutics.
Collapse
Affiliation(s)
- Tanut Kunkanjanawan
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Richard L. Carter
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
| | - Melinda S. Prucha
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
| | - Jinjing Yang
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anthony W. S. Chan
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
| |
Collapse
|
14
|
A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease. J Neurol 2016; 263:1390-400. [DOI: 10.1007/s00415-016-8145-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
15
|
Exploring Genetic Factors Involved in Huntington Disease Age of Onset: E2F2 as a New Potential Modifier Gene. PLoS One 2015; 10:e0131573. [PMID: 26148071 PMCID: PMC4493078 DOI: 10.1371/journal.pone.0131573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/03/2015] [Indexed: 01/09/2023] Open
Abstract
Age of onset (AO) of Huntington disease (HD) is mainly determined by the length of the CAG repeat expansion (CAGexp) in exon 1 of the HTT gene. Additional genetic variation has been suggested to contribute to AO, although the mechanism by which it could affect AO is presently unknown. The aim of this study is to explore the contribution of candidate genetic factors to HD AO in order to gain insight into the pathogenic mechanisms underlying this disorder. For that purpose, two AO definitions were used: the earliest age with unequivocal signs of HD (earliest AO or eAO), and the first motor symptoms age (motor AO or mAO). Multiple linear regression analyses were performed between genetic variation within 20 candidate genes and eAO or mAO, using DNA and clinical information of 253 HD patients from REGISTRY project. Gene expression analyses were carried out by RT-qPCR with an independent sample of 35 HD patients from Basque Country Hospitals. We found suggestive association signals between HD eAO and/or mAO and genetic variation within the E2F2, ATF7IP, GRIN2A, GRIN2B, LINC01559, HIP1 and GRIK2 genes. Among them, the most significant was the association between eAO and rs2742976, mapping to the promoter region of E2F2 transcription factor. Furthermore, rs2742976 T allele patient carriers exhibited significantly lower lymphocyte E2F2 gene expression, suggesting a possible implication of E2F2-dependent transcriptional activity in HD pathogenesis. Thus, E2F2 emerges as a new potential HD AO modifier factor.
Collapse
|
16
|
Evaluating the SERCA2 and VEGF mRNAs as Potential Molecular Biomarkers of the Onset and Progression in Huntington's Disease. PLoS One 2015; 10:e0125259. [PMID: 25915065 PMCID: PMC4411078 DOI: 10.1371/journal.pone.0125259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/20/2015] [Indexed: 01/19/2023] Open
Abstract
Abnormalities of intracellular Ca2+ homeostasis and signalling as well as the down-regulation of neurotrophic factors in several areas of the central nervous system and in peripheral tissues are hallmarks of Huntington’s disease (HD). As there is no therapy for this hereditary, neurodegenerative fatal disease, further effort should be made to slow the progression of neurodegeneration in patients through the definition of early therapeutic interventions. For this purpose, molecular biomarker(s) for monitoring disease onset and/or progression and response to treatment need to be identified. In the attempt to contribute to the research of peripheral candidate biomarkers in HD, we adopted a multiplex real-time PCR approach to analyse the mRNA level of targeted genes involved in the control of cellular calcium homeostasis and in neuroprotection. For this purpose we recruited a total of 110 subjects possessing the HD mutation at different clinical stages of the disease and 54 sex- and age-matched controls. This study provides evidence of reduced transcript levels of sarco-endoplasmic reticulum-associated ATP2A2 calcium pump (SERCA2) and vascular endothelial growth factor (VEGF) in peripheral blood mononuclear cells (PBMCs) of manifest and pre-manifest HD subjects. Our results provide a potentially new candidate molecular biomarker for monitoring the progression of this disease and contribute to understanding some early events that might have a role in triggering cellular dysfunctions in HD.
Collapse
|
17
|
Chang KH, Wu YR, Chen YC, Chen CM. Plasma inflammatory biomarkers for Huntington's disease patients and mouse model. Brain Behav Immun 2015; 44:121-7. [PMID: 25266150 DOI: 10.1016/j.bbi.2014.09.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 12/19/2022] Open
Abstract
Huntington's disease (HD), caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein, presents with a predominant degeneration of neurons in the striatum and cortex. Lines of evidence have observed neuroinflammation, particularly microglial activation, is involved in the pathogenesis of HD. Given that HTT is also expressed in peripheral inflammatory cells, it is possible that inflammatory changes detected in peripheral plasma may be biologically relevant and parallel the neuroinflammatory process of HD patients. By examining the expression levels of 13 microglia-derived inflammatory markers in the plasma of 5 PreHD carriers, 15 HD patients and 16 healthy controls, we found plasma levels of IL-6, MMP-9, VEGF and TGF-β1 were significantly increased in HD patients when compared with the controls, while plasma level of IL-18 were significantly reduced in HD patients compared with controls. Plasma level of IL-6 was reversely correlated with the UHDRS independence scale and functional capacity. To understand the temporal correlation between these inflammatory markers and HD progression, their levels were further tested in plasma from R6/2 mouse HD model at different ages. In rotarod test, R6/2 HD mice started to manifest HD phenotype at 7.5 weeks of age. Higher plasma VEGF levels of R6/2 mice than those of age-matched wild-type (WT) littermates were noted from 7 (presymptomatic stage) to 13 weeks of age (late symptomatic stage). The plasma IL-6 levels of R6/2 mice were higher than those of the WT littermates from 9 (early symptomatic stage) to 13 weeks of age. R6/2 mice demonstrated higher MMP-9 and TGF-β1 levels than their WT littermates from 11 (middle symptomatic stage) to 13 weeks of age. In contrast, the plasma IL-18 level was lower than those in WT littermates since 11 weeks of age. These altered expressions of inflammatory markers may serve as the potential biomarkers for HD onset and progression. Specific inhibition/activation of these inflammatory markers may be the targets of HD drug development.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
18
|
Marchina E, Misasi S, Bozzato A, Ferraboli S, Agosti C, Rozzini L, Borsani G, Barlati S, Padovani A. Gene expression profile in fibroblasts of Huntington's disease patients and controls. J Neurol Sci 2013; 337:42-6. [PMID: 24296361 DOI: 10.1016/j.jns.2013.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/19/2013] [Accepted: 11/11/2013] [Indexed: 01/08/2023]
Abstract
Huntington's disease is an inherited disorder caused by expanded stretch of consecutive trinucleotides (cytosine-adenosine-guanine, CAG) within the first exon of the huntingtin (HTT) gene on chromosome 4 (p16.3). The mutated huntingtin (mHTT) gains toxic function, probably through mechanisms that involve aberrant interactions in several pathways, causing cytotoxicity. Pathophysiology of disease involves several tissues; indeed it has been shown that there is a broad toxic effect of mHTT in the peripheral tissue of patients with HD, not only in the central nervous system. In this study we compared gene expression profiles (GEP) of HD fibroblasts and matched controls using microarray technology. We used RT-PCR to test the consistency of the microarray data and we found four genes up-regulated in HD patients with respect to control individuals. The genes appear to be involved in different pathways that have been shown to be perturbed even in HD models and patients. Although our study is preliminary and has to be extended to a larger cohort of HD patients and controls, nevertheless it shows that gene expression profiles seem to be altered in the fibroblasts of HD patients. Validation of the differential expressions at the protein level is required to ascertain if this cell type can be considered a suitable model for the identification of HD biomarkers.
Collapse
Affiliation(s)
- Eleonora Marchina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Silvia Misasi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Bozzato
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sergio Ferraboli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Agosti
- Division of Neurology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Luca Rozzini
- Division of Neurology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Giuseppe Borsani
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sergio Barlati
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Division of Neurology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
19
|
Silva AC, Almeida S, Laço M, Duarte AI, Domingues J, Oliveira CR, Januário C, Rego AC. Mitochondrial respiratory chain complex activity and bioenergetic alterations in human platelets derived from pre-symptomatic and symptomatic Huntington's disease carriers. Mitochondrion 2013; 13:801-9. [PMID: 23707479 DOI: 10.1016/j.mito.2013.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/17/2013] [Accepted: 05/07/2013] [Indexed: 01/14/2023]
Abstract
Mitochondrial dysfunction has been implicated in Huntington's disease (HD) pathogenesis. We analyzed the activity of mitochondrial complexes (Cx) I-IV, protein levels of selected Cx subunits and adenine nucleotides in platelet mitochondria from pre-symptomatic versus symptomatic HD human carriers and age-matched control individuals. Mitochondrial platelets exhibited reduced activity of citrate synthase in pre-symptomatic and Cx-I in pre-symptomatic and symptomatic HD carriers. Positive correlation between Cx activity and protein subunits was observed for Cx-I in symptomatic HD patient's mitochondria. Moreover, AMP increased in mitochondria from pre-symptomatic HD carriers. Results highlight mitochondrial changes occurring before the onset of HD clinical symptoms.
Collapse
Affiliation(s)
- Ana C Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|