1
|
Johnson K, Delaney JC, Guillard T, Reffuveille F, Varin-Simon J, Li K, Wollacott A, Frapy E, Mong S, Tissire H, Viswanathan K, Touti F, Babcock GJ, Shriver Z, Pentelute BL, Plante O, Skurnik D. Development of an antibody fused with an antimicrobial peptide targeting Pseudomonas aeruginosa: A new approach to prevent and treat bacterial infections. PLoS Pathog 2023; 19:e1011612. [PMID: 37676873 PMCID: PMC10508631 DOI: 10.1371/journal.ppat.1011612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/19/2023] [Accepted: 08/12/2023] [Indexed: 09/09/2023] Open
Abstract
The increase in emerging drug resistant Gram-negative bacterial infections is a global concern. In addition, there is growing recognition that compromising the microbiota through the use of broad-spectrum antibiotics can impact long term patient outcomes. Therefore, there is the need to develop new bactericidal strategies to combat Gram-negative infections that would address these specific issues. In this study, we report and characterize one such approach, an antibody-drug conjugate (ADC) that combines (i) targeting the surface of a specific pathogenic organism through a monoclonal antibody with (ii) the high killing activity of an antimicrobial peptide. We focused on a major pathogenic Gram-negative bacterium associated with antibacterial resistance: Pseudomonas aeruginosa. To target this organism, we designed an ADC by fusing an antimicrobial peptide to the C-terminal end of the VH and/or VL-chain of a monoclonal antibody, VSX, that targets the core of P. aeruginosa lipopolysaccharide. This ADC demonstrates appropriately minimal levels of toxicity against mammalian cells, rapidly kills P. aeruginosa strains, and protects mice from P. aeruginosa lung infection when administered therapeutically. Furthermore, we found that the ADC was synergistic with several classes of antibiotics. This approach described in this study might result in a broadly useful strategy for targeting specific pathogenic microorganisms without further augmenting antibiotic resistance.
Collapse
Affiliation(s)
- Kenneth Johnson
- Visterra, Inc., Waltham, Massachusetts, United States of America
| | - James C. Delaney
- Visterra, Inc., Waltham, Massachusetts, United States of America
| | - Thomas Guillard
- Inserm UMR-S 1250 P3 Cell, Université de Reims-Champagne-Ardenne, Reims, France
| | - Fany Reffuveille
- Inserm UMR-S 1250 P3 Cell, Université de Reims-Champagne-Ardenne, Reims, France
| | | | - Kai Li
- Visterra, Inc., Waltham, Massachusetts, United States of America
| | - Andrew Wollacott
- Visterra, Inc., Waltham, Massachusetts, United States of America
| | - Eric Frapy
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France
| | - Surin Mong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Hamid Tissire
- Visterra, Inc., Waltham, Massachusetts, United States of America
| | | | - Faycal Touti
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | - Zachary Shriver
- Visterra, Inc., Waltham, Massachusetts, United States of America
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Obadiah Plante
- Visterra, Inc., Waltham, Massachusetts, United States of America
| | - David Skurnik
- CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France; Faculté de Médecine, University of Paris City, Paris, France
- Department of Clinical Microbiology, Fédération Hospitalo-Universitaire Prématurité (FHU PREMA), Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris City, Paris, France
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Burns K, Dorfmueller HC, Wren BW, Mawas F, Shaw HA. Progress towards a glycoconjugate vaccine against Group A Streptococcus. NPJ Vaccines 2023; 8:48. [PMID: 36977677 PMCID: PMC10043865 DOI: 10.1038/s41541-023-00639-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
The Group A Carbohydrate (GAC) is a defining feature of Group A Streptococcus (Strep A) or Streptococcus pyogenes. It is a conserved and simple polysaccharide, comprising a rhamnose backbone and GlcNAc side chains, further decorated with glycerol phosphate on approximately 40% GlcNAc residues. Its conservation, surface exposure and antigenicity have made it an interesting focus on Strep A vaccine design. Glycoconjugates containing this conserved carbohydrate should be a key approach towards the successful mission to build a universal Strep A vaccine candidate. In this review, a brief introduction to GAC, the main carbohydrate component of Strep A bacteria, and a variety of published carrier proteins and conjugation technologies are discussed. Components and technologies should be chosen carefully for building affordable Strep A vaccine candidates, particularly for low- and middle-income countries (LMICs). Towards this, novel technologies are discussed, such as the prospective use of bioconjugation with PglB for rhamnose polymer conjugation and generalised modules for membrane antigens (GMMA), particularly as low-cost solutions to vaccine production. Rational design of "double-hit" conjugates encompassing species specific glycan and protein components would be beneficial and production of a conserved vaccine to target Strep A colonisation without invoking an autoimmune response would be ideal.
Collapse
Affiliation(s)
- Keira Burns
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, Dow Street, Dundee, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Fatme Mawas
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK
| | - Helen A Shaw
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK.
| |
Collapse
|
3
|
Holz E, Darwish M, Tesar DB, Shatz-Binder W. A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics 2023; 15:600. [PMID: 36839922 PMCID: PMC9959917 DOI: 10.3390/pharmaceutics15020600] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Over the past few decades, the complexity of molecular entities being advanced for therapeutic purposes has continued to evolve. A main propellent fueling innovation is the perpetual mandate within the pharmaceutical industry to meet the needs of novel disease areas and/or delivery challenges. As new mechanisms of action are uncovered, and as our understanding of existing mechanisms grows, the properties that are required and/or leveraged to enable therapeutic development continue to expand. One rapidly evolving area of interest is that of chemically enhanced peptide and protein therapeutics. While a variety of conjugate molecules such as antibody-drug conjugates, peptide/protein-PEG conjugates, and protein conjugate vaccines are already well established, others, such as antibody-oligonucleotide conjugates and peptide/protein conjugates using non-PEG polymers, are newer to clinical development. This review will evaluate the current development landscape of protein-based chemical conjugates with special attention to considerations such as modulation of pharmacokinetics, safety/tolerability, and entry into difficult to access targets, as well as bioavailability. Furthermore, for the purpose of this review, the types of molecules discussed are divided into two categories: (1) therapeutics that are enhanced by protein or peptide bioconjugation, and (2) protein and peptide therapeutics that require chemical modifications. Overall, the breadth of novel peptide- or protein-based therapeutics moving through the pipeline each year supports a path forward for the pursuit of even more complex therapeutic strategies.
Collapse
Affiliation(s)
- Emily Holz
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Martine Darwish
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Devin B. Tesar
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Whitney Shatz-Binder
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
4
|
van der Put RM, Metz B, Pieters RJ. Carriers and Antigens: New Developments in Glycoconjugate Vaccines. Vaccines (Basel) 2023; 11:vaccines11020219. [PMID: 36851097 PMCID: PMC9962112 DOI: 10.3390/vaccines11020219] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Glycoconjugate vaccines have proven their worth in the protection and prevention of infectious diseases. The introduction of the Haemophilus influenzae type b vaccine is the prime example, followed by other glycoconjugate vaccines. Glycoconjugate vaccines consist of two components: the carrier protein and the carbohydrate antigen. Current carrier proteins are tetanus toxoid, diphtheria toxoid, CRM197, Haemophilus protein D and the outer membrane protein complex of serogroup B meningococcus. Carbohydrate antigens have been produced mainly by extraction and purification from the original host. However, current efforts show great advances in the development of synthetically produced oligosaccharides and bioconjugation. This review evaluates the advances of glycoconjugate vaccines in the last five years. We focus on developments regarding both new carriers and antigens. Innovative developments regarding carriers are outer membrane vesicles, glycoengineered proteins, new carrier proteins, virus-like particles, protein nanocages and peptides. With regard to conjugated antigens, we describe recent developments in the field of antimicrobial resistance (AMR) and ESKAPE pathogens.
Collapse
Affiliation(s)
- Robert M.F. van der Put
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
- Correspondence:
| | - Bernard Metz
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
5
|
Kailasan S, Kant R, Noonan-Shueh M, Kanipakala T, Liao G, Shulenin S, Leung DW, Alm RA, Adhikari RP, Amarasinghe GK, Gross ML, Aman MJ. Antigenic landscapes on Staphylococcus aureus pore-forming toxins reveal insights into specificity and cross-neutralization. MAbs 2022; 14:2083467. [PMID: 35730685 PMCID: PMC9225675 DOI: 10.1080/19420862.2022.2083467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus carries an exceptional repertoire of virulence factors that aid in immune evasion. Previous single-target approaches for S. aureus-specific vaccines and monoclonal antibodies (mAbs) have failed in clinical trials due to the multitude of virulence factors released during infection. Emergence of antibiotic-resistant strains demands a multi-target approach involving neutralization of different, non-overlapping pathogenic factors. Of the several pore-forming toxins that contribute to S. aureus pathogenesis, efforts have largely focused on mAbs that neutralize α-hemolysin (Hla) and target the receptor-binding site. Here, we isolated two anti-Hla and three anti-Panton-Valentine Leukocidin (LukSF-PV) mAbs, and used a combination of hydrogen deuterium exchange mass spectrometry (HDX-MS) and alanine scanning mutagenesis to delineate and validate the toxins’ epitope landscape. Our studies identified two novel, neutralizing epitopes targeted by 2B6 and CAN6 on Hla that provided protection from hemolytic activity in vitro and showed synergy in rodent pneumonia model against lethal challenge. Of the anti-LukF mAbs, SA02 and SA131 showed specific neutralization activity to LukSF-PV while SA185 showed cross-neutralization activity to LukSF-PV, γ-hemolysin HlgAB, and leukotoxin ED. We further compared these antigen-specific mAbs to two broadly neutralizing mAbs, H5 (targets Hla, LukSF-PV, HlgAB, HlgCB, and LukED) and SA185 (targeting LukSF-PV, HlgAB, and LukED), and identified molecular level markers for broad-spectrum reactivity among the pore-forming toxins by HDX-MS. To further underscore the need to target the cross-reactive epitopes on leukocidins for the development of broad-spectrum therapies, we annotated Hla sequences isolated from patients in multiple countries for genomic variations within the perspective of our defined epitopes.
Collapse
Affiliation(s)
| | - Ravi Kant
- Department of Chemistry, Washington University in St. Louis, St. Louis, USA
| | | | | | - Grant Liao
- Integrated BioTherapeutics, Rockville, USA
| | | | - Daisy W Leung
- Department of Medicine, Washington University in St. Louis, St. Louis, USA
| | - Richard A Alm
- Boston University School of Law, Boston University, Boston, USA
| | | | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, USA
| | | |
Collapse
|
6
|
Rational Design of a Glycoconjugate Vaccine against Group A Streptococcus. Int J Mol Sci 2020; 21:ijms21228558. [PMID: 33202815 PMCID: PMC7696035 DOI: 10.3390/ijms21228558] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
No commercial vaccine is yet available against Group A Streptococcus (GAS), major cause of pharyngitis and impetigo, with a high frequency of serious sequelae in low- and middle-income countries. Group A Carbohydrate (GAC), conjugated to an appropriate carrier protein, has been proposed as an attractive vaccine candidate. Here, we explored the possibility to use GAS Streptolysin O (SLO), SpyCEP and SpyAD protein antigens with dual role of antigen and carrier, to enhance the efficacy of the final vaccine and reduce its complexity. All protein antigens resulted good carrier for GAC, inducing similar anti-GAC IgG response to the more traditional CRM197 conjugate in mice. However, conjugation to the polysaccharide had a negative impact on the anti-protein responses, especially in terms of functionality as evaluated by an IL-8 cleavage assay for SpyCEP and a hemolysis assay for SLO. After selecting CRM197 as carrier, optimal conditions for its conjugation to GAC were identified through a Design of Experiment approach, improving process robustness and yield This work supports the development of a vaccine against GAS and shows how novel statistical tools and recent advancements in the field of conjugation can lead to improved design of glycoconjugate vaccines.
Collapse
|
7
|
Gening ML, Pier GB, Nifantiev NE. Broadly protective semi-synthetic glycoconjugate vaccine against pathogens capable of producing poly-β-(1→6)-N-acetyl-d-glucosamine exopolysaccharide. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:13-21. [PMID: 33388124 DOI: 10.1016/j.ddtec.2020.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 11/15/2022]
Abstract
Poly-β-(1→6)-N-acetylglucosamine (PNAG) was first discovered as a major component of biofilms formed by Staphylococcus aureus and some other staphylococci but later this exopolysaccharide was also found to be produced by pathogens of various nature. This common antigen is considered as a promising target for construction of a broadly protective vaccine. Extensive studies of PNAG, its de-N-acetylated derivative (dPNAG, containing around 15% of residual N-acetates) and their conjugates with Tetanus Toxoid (TT) revealed the crucial role of de-N-acetylated glucosamine units for the induction of protective immunity. Conjugates of synthetic penta- (5GlcNH2) and nona-β-(1→6)-d-glucosamines (9GlcNH2) were tested in vitro and in different animal models and proved to be effective in passive and active protection against different microbial pathogens. Presently conjugate 5GlcNH2-TT is being produced under GMP conditions and undergoes safety and effectiveness evaluation in humans and economically important animals. Current review summarizes all stages of this long-termed study.
Collapse
Affiliation(s)
- Marina L Gening
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA.
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
8
|
Cohen ND, Cywes-Bentley C, Kahn SM, Bordin AI, Bray JM, Wehmeyer SG, Pier GB. Vaccination of yearling horses against poly-N-acetyl glucosamine fails to protect against infection with Streptococcus equi subspecies equi. PLoS One 2020; 15:e0240479. [PMID: 33057397 PMCID: PMC7561144 DOI: 10.1371/journal.pone.0240479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/27/2020] [Indexed: 12/04/2022] Open
Abstract
Strangles is a common disease of horses with worldwide distribution caused by the bacterium Streptococcus equi subspecies equi (SEE). Although vaccines against strangles are available commercially, these products have limitations in safety and efficacy. The microbial surface antigen β 1→6 poly-N-acetylglucosamine (PNAG) is expressed by SEE. Here we show that intramuscular (IM) injection alone or a combination of IM plus intranasal (IN) immunization generated antibodies to PNAG that functioned to deposit complement and mediate opsonophagocytic killing of SEE ex vivo. However, immunization strategies targeting PNAG either by either IM only injection or a combination of IM and IN immunizations failed to protect yearling horses against infection following contact with infected horses in an experimental setting. We speculate that a protective vaccine against strangles will require additional components, such as those targeting SEE enzymes that degrade or inactivate equine IgG.
Collapse
Affiliation(s)
- Noah D. Cohen
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
- * E-mail: (NDC); (GBP)
| | - Colette Cywes-Bentley
- Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, United States of America
| | - Susanne M. Kahn
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Angela I. Bordin
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Jocelyne M. Bray
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - S. Garrett Wehmeyer
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Gerald B. Pier
- Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, United States of America
- * E-mail: (NDC); (GBP)
| |
Collapse
|
9
|
Romero-Saavedra F, Laverde D, Kalfopoulou E, Martini C, Torelli R, Martinez-Matamoros D, Sanguinetti M, Huebner J. Conjugation of Different Immunogenic Enterococcal Vaccine Target Antigens Leads to Extended Strain Coverage. J Infect Dis 2020; 220:1589-1598. [PMID: 31289829 PMCID: PMC6782101 DOI: 10.1093/infdis/jiz357] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022] Open
Abstract
Enterococci have emerged as important nosocomial pathogens due to their resistance to the most commonly used antibiotics. Alternative treatments or prevention options are aimed at polysaccharides and surface-related proteins that play important roles in pathogenesis. Previously, we have shown that 2 Enterococcus faecium proteins, the secreted antigen A and the peptidyl-prolyl cis-trans isomerase, as well as the Enterococcus faecalis polysaccharide diheteroglycan, are able to induce opsonic and cross-protective antibodies. Here, we evaluate the use of glycoconjugates consisting of these proteins and an enterococcal polysaccharide to develop a vaccine with broader strain coverage. Diheteroglycan was conjugated to these 2 enterococcal proteins. Rabbit sera raised against these glycoconjugates showed Immunoglobulin G titers against the corresponding conjugate, as well as against the respective protein and carbohydrate antigens. Effective opsonophagocytic killing for the 2 sera was observed against different E. faecalis and E. faecium strains. Enzyme-linked immunosorbent assays against whole bacterial cells showed immune recognition of 22 enterococcal strains by the sera. Moreover, the sera conferred protection against E. faecalis and E. faecium strains in a mouse infection model. Our results suggest that these glycoconjugates are promising candidates for vaccine formulations with a broader coverage against these nosocomial pathogens and that the evaluated proteins are potential carrier proteins.
Collapse
Affiliation(s)
- F Romero-Saavedra
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig Maximillian's University, Munich, Germany
| | - D Laverde
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig Maximillian's University, Munich, Germany
| | - E Kalfopoulou
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig Maximillian's University, Munich, Germany
| | - C Martini
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - R Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - D Martinez-Matamoros
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), Universidade da Coruña, A Coruña, Spain
| | - M Sanguinetti
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - J Huebner
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig Maximillian's University, Munich, Germany
| |
Collapse
|
10
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
11
|
Hofmans D, Khodaparast L, Khodaparast L, Vanstreels E, Shahrooei M, Van Eldere J, Van Mellaert L. Ses proteins as possible targets for vaccine development against Staphylococcus epidermidis infections. J Infect 2018; 77:119-130. [DOI: 10.1016/j.jinf.2018.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/15/2022]
|
12
|
Micoli F, Adamo R, Costantino P. Protein Carriers for Glycoconjugate Vaccines: History, Selection Criteria, Characterization and New Trends. Molecules 2018; 23:E1451. [PMID: 29914046 PMCID: PMC6100388 DOI: 10.3390/molecules23061451] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
Currently licensed glycoconjugate vaccines are composed of a carbohydrate moiety covalently linked to a protein carrier. Polysaccharides are T-cell independent antigens able to directly stimulate B cells to produce antibodies. Disease burden caused by polysaccharide-encapsulated bacteria is highest in the first year of life, where plain polysaccharides are not generally immunogenic, limiting their use as vaccines. This limitation has been overcome by covalent coupling carbohydrate antigens to proteins that provide T cell epitopes. In addition to the protein carriers currently used in licensed glycoconjugate vaccines, there is a search for new protein carriers driven by several considerations: (i) concerns that pre-exposure or co-exposure to a given carrier can lead to immune interference and reduction of the anti-carbohydrate immune response; (ii) increasing interest to explore the dual role of proteins as carrier and protective antigen; and (iii) new ways to present carbohydrates antigens to the immune system. Protein carriers can be directly coupled to activated glycans or derivatized to introduce functional groups for subsequent conjugation. Proteins can be genetically modified to pre-determine the site of glycans attachment by insertion of unnatural amino acids bearing specific functional groups, or glycosylation consensus sequences for in vivo expression of the glycoconjugate. A large portion of the new protein carriers under investigation are recombinant ones, but more complex systems such as Outer Membrane Vesicles and other nanoparticles are being investigated. Selection criteria for new protein carriers are based on several aspects including safety, manufacturability, stability, reactivity toward conjugation, and preclinical evidence of immunogenicity of corresponding glycoconjugates. Characterization panels of protein carriers include tests before conjugation, after derivatization when applicable, and after conjugation. Glycoconjugate vaccines based on non-covalent association of carrier systems to carbohydrates are being investigated with promising results in animal models. The ability of these systems to convert T-independent carbohydrate antigens into T-dependent ones, in comparison to traditional glycoconjugates, needs to be assessed in humans.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy.
| | | | | |
Collapse
|
13
|
Evaluation of the humoral immune response to a multicomponent recombinant vaccine against S. aureus in healthy pregnant heifers. Vet J 2018; 235:47-53. [DOI: 10.1016/j.tvjl.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 11/19/2022]
|
14
|
Speziale P, Rindi S, Pietrocola G. Antibody-Based Agents in the Management of Antibiotic-Resistant Staphylococcus aureus Diseases. Microorganisms 2018. [PMID: 29533985 PMCID: PMC5874639 DOI: 10.3390/microorganisms6010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that can cause a wide spectrum of diseases, including sepsis, pneumonia, arthritis, and endocarditis. Ineffective treatment of a number of staphylococcal infections with antibiotics is due to the development and spread of antibiotic-resistant strains following decades of antibiotic usage. This has generated renewed interest within the scientific community in alternative therapeutic agents, such as anti-S. aureus antibodies. Although the role of antibodies in the management of S. aureus diseases is controversial, the success of this pathogen in neutralizing humoral immunity clearly indicates that antibodies offer the host extensive protection. In this review, we report an update on efforts to develop antibody-based agents, particularly monoclonal antibodies, and their therapeutic potential in the passive immunization approach to the treatment and prevention of S. aureus infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
- Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy.
| | - Simonetta Rindi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | | |
Collapse
|
15
|
Hennessey JP, Costantino P, Talaga P, Beurret M, Ravenscroft N, Alderson MR, Zablackis E, Prasad AK, Frasch C. Lessons Learned and Future Challenges in the Design and Manufacture of Glycoconjugate Vaccines. CARBOHYDRATE-BASED VACCINES: FROM CONCEPT TO CLINIC 2018. [DOI: 10.1021/bk-2018-1290.ch013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
| | | | - Philippe Talaga
- Department of Analytical Research and Development, Sanofi Pasteur, Marcy l’Etoile 69280, France
| | - Michel Beurret
- Janssen Vaccines & Prevention B.V., Leiden, 2301 CA, The Netherlands
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Earl Zablackis
- Analytical Process Technology, Sanofi Pasteur, Swiftwater, Pennsylvania 18370, United States
| | - A. Krishna Prasad
- Pfizer Vaccines Research and Development, Pearl River, New York 10965, United States
| | - Carl Frasch
- Consultant, Martinsburg, West Virginia 25402, United States
| |
Collapse
|
16
|
Karauzum H, Haudenschild CC, Moore IN, Mahmoudieh M, Barber DL, Datta SK. Lethal CD4 T Cell Responses Induced by Vaccination Against Staphylococcus aureus Bacteremia. J Infect Dis 2017; 215:1231-1239. [PMID: 28329242 DOI: 10.1093/infdis/jix096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022] Open
Abstract
Multiple candidate vaccines against Staphylococcus aureus infections have failed in clinical trials. Analysis of a recent prematurely halted vaccine trial revealed increased mortality rates among vaccine recipients in whom postsurgical S. aureus infection developed, emphasizing the potential for induction of detrimental immune responses and the need to better understand the requirements for protective immunity against S. aureus. These failures of single-antigen vaccines have prompted ongoing development of multicomponent vaccines to target the multitude of S. aureus virulence factors. In the current study, we used lethally irradiated S. aureus as a model multicomponent vaccine and showed that vaccination of mice decreased survival in a bacteremia challenge model. These deleterious effects were due to a CD4 T-cell-dependent interferon γ response and could be prevented by inhibiting development of this response during vaccination. Our results identify the potential for vaccination to induce pathological immune responses, and they have implications for recent vaccine failures and the design of future staphylococcal vaccines.
Collapse
Affiliation(s)
- Hatice Karauzum
- Bacterial Pathogenesis Unit, LCID, NIAID, NIH, Bethesda, Maryland, United States of America
| | | | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mahta Mahmoudieh
- Bacterial Pathogenesis Unit, LCID, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Daniel L Barber
- T-Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Sandip K Datta
- Bacterial Pathogenesis Unit, LCID, NIAID, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
17
|
Cheng BL, Nielsen TB, Pantapalangkoor P, Zhao F, Lee JC, Montgomery CP, Luna B, Spellberg B, Daum RS. Evaluation of serotypes 5 and 8 capsular polysaccharides in protection against Staphylococcus aureus in murine models of infection. Hum Vaccin Immunother 2017; 13:1609-1614. [PMID: 28422567 DOI: 10.1080/21645515.2017.1304334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is the leading cause of nosocomial and community-acquired infections, including soft tissue and skin infections and bacteremia. However, efforts to develop an effective vaccine against S. aureus infections have not been successful. We evaluated serotypes 5 and 8 capsule polysaccharides (CP) CRM197 conjugates as vaccine candidates in murine models of bacteremia, lethal sepsis, and skin infection. The conjugate vaccines elicited a good antibody response, and active immunization of CP5-CRM or CP8-CRM conjugates protected against staphylococcal bacteremia. In the skin infection model, CP8-CRM but not CP5-CRM protected against dermonecrosis, and CP8-CRM immunization significantly decreased the bacterial burden in the lesion. However, neither CP5-CRM nor CP8-CRM protected against mortality in the lethal sepsis model. The results indicate the capsular vaccines elicit protection against some, but not all, aspects of staphylococcal infection.
Collapse
Affiliation(s)
- Brian L Cheng
- a Department of Microbiology , University of Chicago , Chicago , IL , USA
| | - Travis B Nielsen
- b Departments of Medicine and Molecular Microbiology and Immunology , Keck School of Medicine, University of Southern California , Los Angeles , CA , USA
| | - Paul Pantapalangkoor
- b Departments of Medicine and Molecular Microbiology and Immunology , Keck School of Medicine, University of Southern California , Los Angeles , CA , USA
| | - Fan Zhao
- c Department of Pediatrics , University of Chicago , Chicago , IL , USA
| | - Jean C Lee
- d Division of Infectious Diseases, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | | | - Brian Luna
- b Departments of Medicine and Molecular Microbiology and Immunology , Keck School of Medicine, University of Southern California , Los Angeles , CA , USA
| | - Brad Spellberg
- b Departments of Medicine and Molecular Microbiology and Immunology , Keck School of Medicine, University of Southern California , Los Angeles , CA , USA
| | - Robert S Daum
- c Department of Pediatrics , University of Chicago , Chicago , IL , USA
| |
Collapse
|
18
|
Khatun F, Stephenson RJ, Toth I. An Overview of Structural Features of Antibacterial Glycoconjugate Vaccines That Influence Their Immunogenicity. Chemistry 2017; 23:4233-4254. [PMID: 28097690 DOI: 10.1002/chem.201603599] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 12/13/2022]
Abstract
Bacterial cell-surface-derived or mimicked carbohydrate moieties that act as protective antigens are used in the development of antibacterial glycoconjugate vaccines. The carbohydrate antigen must have a minimum length or size to maintain the conformational structure of the antigenic epitope(s). The presence or absence of O-acetate, phosphate, glycerol phosphate and pyruvate ketal plays a vital role in defining the immunogenicity of the carbohydrate antigen. The nature of the carrier protein, spacer and conjugation pattern used to develop the glycoconjugate vaccine also defines its overall spatial orientation which in turn affects its avidity and selectivity of interaction with the desired target(s). In addition, the ratio of carbohydrate to protein in glycoconjugate vaccines also makes an important contribution in determining the optimum immunological response. This Review article presents the importance of these variables in the development of antibacterial glycoconjugate vaccines and their effects on immune efficacy.
Collapse
Affiliation(s)
- Farjana Khatun
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,School of Pharmacy, Woolloongabba, The University of Queensland, QLD, Australia.,Institute for Molecular Bioscience, St. Lucia, The University of Queensland, QLD, Australia
| |
Collapse
|
19
|
Keener AB, Thurlow LT, Kang S, Spidale NA, Clarke SH, Cunnion KM, Tisch R, Richardson AR, Vilen BJ. Staphylococcus aureus Protein A Disrupts Immunity Mediated by Long-Lived Plasma Cells. THE JOURNAL OF IMMUNOLOGY 2016; 198:1263-1273. [PMID: 28031339 DOI: 10.4049/jimmunol.1600093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 11/28/2016] [Indexed: 01/09/2023]
Abstract
Infection with Staphylococcus aureus does not induce long-lived protective immunity for reasons that are not completely understood. Human and murine vaccine studies support a role for Abs in protecting against recurring infections, but S. aureus modulates the B cell response through expression of staphylococcus protein A (SpA), a surface protein that drives polyclonal B cell expansion and induces cell death in the absence of costimulation. In this murine study, we show that SpA altered the fate of plasmablasts and plasma cells (PCs) by enhancing the short-lived extrafollicular response and reducing the pool of bone marrow (BM)-resident long-lived PCs. The absence of long-lived PCs was associated with a rapid decline in Ag-specific class-switched Ab. In contrast, when previously inoculated mice were challenged with an isogenic SpA-deficient S. aureus mutant, cells proliferated in the BM survival niches and sustained long-term Ab titers. The effects of SpA on PC fate were limited to the secondary response, because Ab levels and the formation of B cell memory occurred normally during the primary response in mice inoculated with wild-type or SpA-deficient S. aureus mutant. Thus, failure to establish long-term protective Ab titers against S. aureus was not a consequence of diminished formation of B cell memory; instead, SpA reduced the proliferative capacity of PCs that entered the BM, diminishing the number of cells in the long-lived pool.
Collapse
Affiliation(s)
- Amanda B Keener
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Lance T Thurlow
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15260
| | - SunAh Kang
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nicholas A Spidale
- Department of Pathology, Massachusetts Medical School, Worcester, MA 01655
| | - Stephen H Clarke
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kenji M Cunnion
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507; and.,Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Roland Tisch
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Anthony R Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15260
| | - Barbara J Vilen
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
| |
Collapse
|
20
|
Skurnik D, Cywes-Bentley C, Pier GB. The exceptionally broad-based potential of active and passive vaccination targeting the conserved microbial surface polysaccharide PNAG. Expert Rev Vaccines 2016; 15:1041-53. [PMID: 26918288 PMCID: PMC4985264 DOI: 10.1586/14760584.2016.1159135] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/24/2016] [Indexed: 11/08/2022]
Abstract
A challenging component of vaccine development is the large serologic diversity of protective antigens. Remarkably, there is a conserved surface/capsular polysaccharide, one of the most effective vaccine targets, expressed by a large number of bacterial, fungal and eukaryotic pathogens: poly-N-acetyl glucosamine (PNAG). Natural antibodies to PNAG are poorly effective at mediating in vitro microbial killing or in vivo protection. Removing most of the acetate substituents to produce a deacetylated glycoform, or using synthetic oligosaccharides of poly-β-1-6-linked glucosamine conjugated to carrier proteins, results in vaccines that elicit high levels of broad-based immunity. A fully human monoclonal antibody is highly active in laboratory and preclinical studies and has been successfully tested in a phase-I setting. Both the synthetic oligosaccharide conjugate vaccine and MAb will be further tested in humans starting in 2016; but, even if effective against only a fraction of the PNAG-producing pathogens, a major advance in vaccine-preventable diseases will occur.
Collapse
Affiliation(s)
- David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA 02115, Phone: 617-525-2269; FAX: 617-525-2510
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA 02115, Phone: 617-525-2269; FAX: 617-525-2510
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA 02115, Phone: 617-525-2269; FAX: 617-525-2510
| |
Collapse
|
21
|
Tontini M, Romano MR, Proietti D, Balducci E, Micoli F, Balocchi C, Santini L, Masignani V, Berti F, Costantino P. Preclinical studies on new proteins as carrier for glycoconjugate vaccines. Vaccine 2016; 34:4235-4242. [PMID: 27317455 DOI: 10.1016/j.vaccine.2016.06.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 01/12/2023]
Abstract
Glycoconjugate vaccines are made of carbohydrate antigens covalently bound to a carrier protein to enhance their immunogenicity. Among the different carrier proteins tested in preclinical and clinical studies, five have been used so far for licensed vaccines: Diphtheria and Tetanus toxoids, the non-toxic mutant of diphtheria toxin CRM197, the outer membrane protein complex of Neisseria meningitidis serogroup B and the Protein D derived from non-typeable Haemophilus influenzae. Availability of novel carriers might help to overcome immune interference in multi-valent vaccines containing several polysaccharide-conjugate antigens, and also to develop vaccines which target both protein as well saccharide epitopes of the same pathogen. Accordingly we have conducted a study to identify new potential carrier proteins. Twenty-eight proteins, derived from different bacteria, were conjugated to the model polysaccharide Laminarin and tested in mice for their ability in inducing antibodies against the carbohydrate antigen and eight of them were subsequently tested as carrier for serogroup meningococcal C oligosaccharides. Four out of these eight were able to elicit in mice satisfactory anti meningococcal serogroup C titers. Based on immunological evaluation, the Streptococcus pneumoniae protein spr96/2021 was successfully evaluated as carrier for serogroups A, C, W, Y and X meningococcal capsular saccharides.
Collapse
Affiliation(s)
- M Tontini
- GSK Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | - M R Romano
- GSK Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | - D Proietti
- GSK Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | - E Balducci
- GSK Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | - F Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | - C Balocchi
- GSK Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | - L Santini
- GSK Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | - V Masignani
- GSK Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | - F Berti
- GSK Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | - P Costantino
- GSK Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
22
|
Diversity of Virulence Factors Associated with West Australian Methicillin-Sensitive Staphylococcus aureus Isolates of Human Origin. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8651918. [PMID: 27247944 PMCID: PMC4876210 DOI: 10.1155/2016/8651918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/01/2015] [Accepted: 07/12/2015] [Indexed: 11/23/2022]
Abstract
An extensive array of virulence factors associated with S. aureus has contributed significantly to its success as a major nosocomial pathogen in hospitals and community causing variety of infections in affected patients. Virulence factors include immune evading capsular polysaccharides, poly-N-acetyl glucosamine, and teichoic acid in addition to damaging toxins including hemolytic toxins, enterotoxins, cytotoxins, exfoliative toxin, and microbial surface components recognizing adhesive matrix molecules (MSCRAMM). In this investigation, 31 West Australian S. aureus isolates of human origin and 6 controls were analyzed for relative distribution of virulence-associated genes using PCR and/or an immunoassay kit and MSCRAMM by PCR-based typing. Genes encoding MSCRAMM, namely, Spa, ClfA, ClfB, SdrE, SdrD, IsdA, and IsdB, were detected in >90% of isolates. Gene encoding α-toxin was detected in >90% of isolates whereas genes encoding β-toxin and SEG were detectable in 50–60% of isolates. Genes encoding toxin proteins, namely, SEA, SEB, SEC, SED, SEE, SEH, SEI, SEJ, TSST, PVL, ETA, and ETB, were detectable in >50% of isolates. Use of RAPD-PCR for determining the virulence factor-based genetic relatedness among the isolates revealed five cluster groups confirming genetic diversity among the MSSA isolates, with the greatest majority of the clinical S. aureus (84%) isolates clustering in group IIIa.
Collapse
|
23
|
Gogoi-Tiwari J, Waryah CB, Eto KY, Tau M, Wells K, Costantino P, Tiwari HK, Isloor S, Hegde N, Mukkur T. Relative distribution of virulence-associated factors among Australian bovine Staphylococcus aureus isolates: Potential relevance to development of an effective bovine mastitis vaccine. Virulence 2016; 6:419-23. [PMID: 26103596 DOI: 10.1080/21505594.2015.1043508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jully Gogoi-Tiwari
- a School of Biomedical Sciences; Faculty of Health Sciences; Curtin Health Innovation Research Institute; CHIRI Biosciences Research Precinct; Curtin University ; Perth , Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Waryah CB, Gogoi-Tiwari J, Wells K, Mukkur T. An immunological assay for identification of potential biofilm-associated antigens of Staphylococcus aureus. Folia Microbiol (Praha) 2016; 61:473-478. [PMID: 27106696 DOI: 10.1007/s12223-016-0459-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/14/2016] [Indexed: 01/08/2023]
Abstract
Attachment of bacterial pathogens to the niche tissue in the host is the first step in biofilm formation leading to colonization and establishment of infection in the host. While the most common method used for determining the potential role of a bacterial antigen in biofilm formation has been demonstration of loss of this property using specific knockout mutants, it is an expensive and a laborious procedure. This study describes an alternative immunological assay for identification of attachment antigens of Staphylococcus aureus, potentially important in the development of an effective vaccine against infections caused by this pathogen. The method is based upon the concept of inhibition of attachment of S. aureus to PEGs coated with virulence antigen-specific antibodies. Antibodies used for validation of this assay were specific for ClfA, FnBPA, SdrD, PNAG and α-toxin, accredited biofilm-associated antigens of S. aureus.
Collapse
Affiliation(s)
- Charlene Babra Waryah
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Western Australia, Australia.,Department of Medicine, Albert Einstein College of Medicine, Bronx, 10461, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Jully Gogoi-Tiwari
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Western Australia, Australia
| | - Kelsi Wells
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Western Australia, Australia
| | - Trilochan Mukkur
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Western Australia, Australia.
| |
Collapse
|
25
|
Gogoi-Tiwari J, Williams V, Waryah CB, Mathavan S, Tiwari HK, Costantino P, Mukkur T. Intramammary Immunization of Pregnant Mice with Staphylococcal Protein A Reduces the Post-Challenge Mammary Gland Bacterial Load but Not Pathology. PLoS One 2016; 11:e0148383. [PMID: 26862761 PMCID: PMC4749186 DOI: 10.1371/journal.pone.0148383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022] Open
Abstract
Protein A, encoded by the spa gene, is one of the major immune evading MSCRAMM of S. aureus, demonstrated to be prevalent in a significant percentage of clinical bovine mastitis isolates in Australia. Given its’ reported significance in biofilm formation and the superior performance of S. aureus biofilm versus planktonic vaccine in the mouse mastitis model, it was of interest to determine the immunogenicity and protective potential of Protein A as a potential vaccine candidate against bovine mastitis using the mouse mastitis model. Pregnant Balb/c mice were immunised with Protein A emulsified in an alum-based adjuvant by subcutaneous (s/c) or intramammary (i/mam) routes. While humoral immune response of mice post-immunization were determined using indirect ELISA, cell-mediated immune response was assessed by estimation of interferon-gamma (IFN-γ) produced by protein A-stimulated splenocyte supernatants. Protective potential of Protein A against experimental mastitis was determined by challenge of immunized versus sham-vaccinated mice by i/mam route, based upon manifestation of clinical symptoms, total bacterial load and histopathological damage to mammary glands. Significantly (p<0.05) higher levels of IgG1 isotype were produced in mice immunized by the s/c route. In contrast, significantly higher levels of the antibody isotype IgG2a were produced in mice immunized by the i/mam route (p<0.05). There was significant reduction (p<0.05) in bacterial loads of the mammary glands of mice immunized by Protein A regardless of the route of immunization, with medium level of clinical symptoms observed up to day 3 post-challenge. However, Protein A vaccine failed to protect immunized mice post-challenge with biofilm producing encapsulated S. aureus via i/mam route, regardless of the route of immunization, as measured by the level of mammary tissue damage. It was concluded that, Protein A in its’ native state was apparently not a suitable candidate for inclusion in a cell-free vaccine formulation against mastitis.
Collapse
Affiliation(s)
- Jully Gogoi-Tiwari
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, 6102, Australia
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, 796014, India
| | - Vincent Williams
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, 6102, Australia
| | - Charlene Babra Waryah
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, 6102, Australia
- Department of Medicine and Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, United States of America
| | - Sangeetha Mathavan
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, 6102, Australia
| | - Harish Kumar Tiwari
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia, 6150, Australia
| | - Paul Costantino
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, 6102, Australia
| | - Trilochan Mukkur
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, 6102, Australia
- * E-mail:
| |
Collapse
|
26
|
Karauzum H, Datta SK. Adaptive Immunity Against Staphylococcus aureus. Curr Top Microbiol Immunol 2016; 409:419-439. [PMID: 26919865 DOI: 10.1007/82_2016_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A complex interplay between host and bacterial factors allows Staphylococcus aureus to occupy its niche as a human commensal and a major human pathogen. The role of neutrophils as a critical component of the innate immune response against S. aureus, particularly for control of systemic infection, has been established in both animal models and in humans with acquired and congenital neutrophil dysfunction. The role of the adaptive immune system is less clear. Although deficiencies in adaptive immunity do not result in the marked susceptibility to S. aureus infection that neutrophil dysfunction imparts, emerging evidence suggests both T cell- and B cell-mediated adaptive immunity can influence host susceptibility and control of S. aureus. The contribution of adaptive immunity depends on the context and site of infection and can be either beneficial or detrimental to the host. Furthermore, S. aureus has evolved mechanisms to manipulate adaptive immune responses to its advantage. In this chapter, we will review the evidence for the role of adaptive immunity during S. aureus infections. Further elucidation of this role will be important to understand how it influences susceptibility to infection and to appropriately design vaccines that elicit adaptive immune responses to protect against subsequent infections.
Collapse
Affiliation(s)
- Hatice Karauzum
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Sandip K Datta
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
27
|
Sause WE, Buckley PT, Strohl WR, Lynch AS, Torres VJ. Antibody-Based Biologics and Their Promise to Combat Staphylococcus aureus Infections. Trends Pharmacol Sci 2015; 37:231-241. [PMID: 26719219 DOI: 10.1016/j.tips.2015.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
Abstract
The growing incidence of serious infections mediated by methicillin-resistant Staphylococcus aureus (MRSA) strains poses a significant risk to public health. This risk is exacerbated by a prolonged void in the discovery and development of truly novel antibiotics and the absence of a vaccine. These gaps have created renewed interest in the use of biologics in the prevention and treatment of serious staphylococcal infections. In this review, we focus on efforts towards the discovery and development of antibody-based biologic agents and their potential as clinical agents in the management of serious S. aureus infections. Recent promising data for monoclonal antibodies (mAbs) targeting anthrax and Ebola highlight the potential of antibody-based biologics as therapeutic agents for serious infections.
Collapse
Affiliation(s)
- William E Sause
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Peter T Buckley
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - William R Strohl
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - A Simon Lynch
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
28
|
Adhikari RP, Kort T, Shulenin S, Kanipakala T, Ganjbaksh N, Roghmann MC, Holtsberg FW, Aman MJ. Antibodies to S. aureus LukS-PV Attenuated Subunit Vaccine Neutralize a Broad Spectrum of Canonical and Non-Canonical Bicomponent Leukotoxin Pairs. PLoS One 2015; 10:e0137874. [PMID: 26367030 PMCID: PMC4569305 DOI: 10.1371/journal.pone.0137874] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/22/2015] [Indexed: 11/18/2022] Open
Abstract
S. aureus vaccine development has proven particularly difficult. The conventional approach to achieve sterile immunity through opsonophagocytic killing has been largely unsuccessful. S. aureus is highly toxigenic and a great body of evidence suggests that a successful future vaccine for this organism should target extracellular toxins which are responsible for host tissue destruction and immunosuppression. Major staphylococcal toxins are alpha toxin (a single subunit hemolysin) along with a group of bicomponent pore-forming toxins (BCPFT), namely Panton-Valentine leukocidin (PVL), gamma hemolysins (HlgCB and AB), LukAB and LukED. In our previous report, an attenuated mutant of LukS-PV (PVL- S subunit) named as “LukS-mut9” elicited high immunogenic response as well as provided a significant protection in a mouse sepsis model. Recent discovery of PVL receptors shows that mice lack receptors for this toxin, thus the reported protection of mice with the PVL vaccine may relate to cross protective responses against other homologous toxins. This manuscript addresses this issue by demonstrating that polyclonal antibody generated by LukS-mut9 can neutralize other canonical and non-canonical leukotoxin pairs. In this report, we also demonstrated that several potent toxins can be created by non-canonical pairing of subunits. Out of 5 pairs of canonical and 8 pairs of non-canonical toxins tested, anti-LukS-mut9 polyclonal antibodies neutralized all except for LukAB. We also studied the potential hemolytic activities of canonical and noncanonical pairs among biocomponent toxins and discovered that a novel non-canonical pair consisting of HlgA and LukD is a highly toxic combination. This pair can lyse RBC from different species including human blood far better than alpha hemolysin. Moreover, to follow-up our last report, we explored the correlation between the levels of pre-existing antibodies to new sets of leukotoxins subunits and clinical outcomes in adult patients with S. aureus bacteremia. We found that there is an inversed correlation between the antibody titer to sepsis for leukotoxins LukS-mut9, LukF-PV, HlgC, LukE and LukAB, suggesting the risk of sepsis was significantly lower in the patients with higher antibody titer against those toxins.
Collapse
Affiliation(s)
- Rajan P. Adhikari
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
- * E-mail:
| | - Thomas Kort
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| | - Sergey Shulenin
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| | | | - Nader Ganjbaksh
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| | - Mary-Claire Roghmann
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- VA Maryland Health Care System, Baltimore, Maryland, United States of America
| | | | - M. Javad Aman
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| |
Collapse
|
29
|
Protection of mice against Staphylococcus aureus infection by a recombinant protein ClfA-IsdB-Hlg as a vaccine candidate. Med Microbiol Immunol 2015; 205:47-55. [PMID: 26155981 DOI: 10.1007/s00430-015-0425-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
Staphylococcus aureus is one of the most important causes of nosocomial infections. An effective vaccine to prevent S. aureus infections is urgently required due to the dramatic increase in the number of antibiotic-resistant strains. In this report, we evaluated a newly recombinant protein composed of selected antigenic regions of clumping factor A (ClfA), iron surface determinant B (IsdB) and gamma hemolysin B (HlgB) of S. aureus and sequence coding for hydrophobic linkers between three domains. The recombinant gene was constructed in pET-28a (+) and expressed in Escherichia coli BL21. In addition, sequence coding for a His(6)-tag was added followed by a hybrid procedure of nickel chelate protein purification. Immunization of BALB/c mice with the recombinant protein ClfA-IsdB-Hlg evoked antigen-specific antibodies that could opsonize S. aureus cells, enhancing in vitro phagocytosis by macrophages. Vaccination with the recombinant protein also reduced the bacterial load recovered from mice spleen samples and increased survival following the intraperitoneal challenge with pathogenic S. aureus compared to the control mice. Our results showed that the recombinant protein ClfA-IsdB-Hlg is a promising vaccine candidate for the prevention of S. aureus bacteremia infections.
Collapse
|
30
|
Pozzi C, Lofano G, Mancini F, Soldaini E, Speziale P, De Gregorio E, Rappuoli R, Bertholet S, Grandi G, Bagnoli F. Phagocyte subsets and lymphocyte clonal deletion behind ineffective immune response to Staphylococcus aureus. FEMS Microbiol Rev 2015; 39:750-63. [PMID: 25994610 DOI: 10.1093/femsre/fuv024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 01/14/2023] Open
Abstract
Lack of known mechanisms of protection against Staphylococcus aureus in humans is hindering development of efficacious vaccines. Preclinical as well as clinical data suggest that antibodies play an important role against S. aureus. For instance, certain hypogammaglobulinaemic patients are at increased risk of staphylococcal infections. However, development of effective humoral response may be dampened by converging immune-evasion mechanisms of S. aureus. We hypothesize that B-cell proliferation induced by staphylococcal protein A (SpA) and continuous antigen exposure, without the proper T-cell help and cytokine stimuli, leads to antigen-activated B-cell deletion and anergy. Recent findings suggest an important role of type I neutrophils (PMN-I) and conventionally activated macrophages (M1) against S. aureus, while alternatively activated macrophages (M2) favour biofilm persistence and sepsis. In addition, neutrophil-macrophage cooperation promotes extravasation and activation of neutrophils as well as clearance of bacteria ensnared in neutrophil extracellular traps. Activation of these processes is modulated by cytokines and T cells. Indeed, low CD4(+) T-cell counts represent an important risk factor for skin infections and bacteraemia in patients. Altogether, these observations could lead to the identification of predictive correlates of protection and ways for shifting the balance of the response to the benefit of the host through vaccination.
Collapse
Affiliation(s)
- Clarissa Pozzi
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Giuseppe Lofano
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Mancini
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | | | - Pietro Speziale
- Department of Molecular Medicine, Institute of Biochemistry, 27100 Pavia, Italy
| | - Ennio De Gregorio
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Rino Rappuoli
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Sylvie Bertholet
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Guido Grandi
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Fabio Bagnoli
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
31
|
Comparative Exoproteomics and Host Inflammatory Response in Staphylococcus aureus Skin and Soft Tissue Infections, Bacteremia, and Subclinical Colonization. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:593-603. [PMID: 25809633 DOI: 10.1128/cvi.00493-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/21/2015] [Indexed: 11/20/2022]
Abstract
The exoproteome of Staphylococcus aureus contains enzymes and virulence factors that are important for host adaptation. We investigated the exoprotein profiles and cytokine/chemokine responses obtained in three different S. aureus-host interaction scenarios by using two-dimensional gel electrophoresis (2-DGE) and two-dimensional immunoblotting (2D-IB) combined with tandem mass spectrometry (MS/MS) and cytometric bead array techniques. The scenarios included S. aureus bacteremia, skin and soft tissue infections (SSTIs), and healthy carriage. By the 2-DGE approach, 12 exoproteins (the chaperone protein DnaK, a phosphoglycerate kinase [Pgk], the chaperone GroEL, a multisensor hybrid histidine kinase, a 3-methyl-2-oxobutanoate hydroxymethyltransferase [PanB], cysteine synthase A, an N-acetyltransferase, four isoforms of elongation factor Tu [EF-Tu], and one signature protein spot that could not be reliably identified by MS/MS) were found to be consistently present in more than 50% of the bacteremia isolates, while none of the SSTI or healthy-carrier isolates showed any of these proteins. By the 2D-IB approach, we also identified five antigens (methionine aminopeptidase [MetAPs], exotoxin 15 [Set15], a peptidoglycan hydrolase [LytM], an alkyl hydroperoxide reductase [AhpC], and a haptoglobin-binding heme uptake protein [HarA]) specific for SSTI cases. Cytokine and chemokine production varied during the course of different infection types and carriage. Monokine induced by gamma interferon (MIG) was more highly stimulated in bacteremia patients than in SSTI patients and healthy carriers, especially during the acute phase of infection. MIG could therefore be further explored as a potential biomarker of bacteremia. In conclusion, 12 exoproteins from bacteremia isolates, MIG production, and five antigenic proteins identified during SSTIs should be further investigated for potential use as diagnostic markers.
Collapse
|
32
|
Targeting surface protein SasX by active and passive vaccination to reduce Staphylococcus aureus colonization and infection. Infect Immun 2015; 83:2168-74. [PMID: 25776748 DOI: 10.1128/iai.02951-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/07/2015] [Indexed: 11/20/2022] Open
Abstract
SasX is a recently described surface protein of Staphylococcus aureus that is linked to the epidemic success of hospital-associated methicillin-resistant clones, in particular in Asia. It enhances nasal colonization and virulence in skin and lung infection models. Here, we evaluated the potential of SasX as a vaccine component in passive and active immunization efforts using mouse infection models. We found that SasX induced a specific immune response predominantly based on IgG1 antibodies. Active immunization with recombinant SasX or passive immunization with rabbit polyclonal anti-SasX IgG significantly decreased the size of lesions caused by S. aureus in a skin infection model. Furthermore, active immunization reduced acute lung injury in a lung infection model. Moreover, active or passive immunization significantly reduced S. aureus colonization in a nasal colonization model. Finally, anti-SasX IgG enhanced the susceptibility of S. aureus to killing by human neutrophils. We conclude that SasX is a potential target for therapeutics or vaccines designed to moderate colonization and infection by sasX-positive epidemic strains of S. aureus.
Collapse
|
33
|
Antibodies to Staphylococcus aureus serotype 8 capsular polysaccharide react with and protect against serotype 5 and 8 isolates. Infect Immun 2014; 82:5049-55. [PMID: 25245803 DOI: 10.1128/iai.02373-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Most Staphylococcus aureus isolates produce either a serotype 5 (CP5) or 8 (CP8) capsular polysaccharide, and the CP antigens are targets for vaccine development. Since CP5 and CP8 have similar trisaccharide repeating units, it is important to identify an epitope shared by both CP5 and CP8. To characterize cross-reactivity between CP5 and CP8, the immunogenicity of CP5 and CP8 conjugate vaccines in mice and rabbits was evaluated by serological assays. Immune sera were also tested for functional activity by in vitro opsonophagocytic-killing assays and a murine bacteremia model. Antibodies to the CP5-cross-reactive material 197 (CRM197) conjugate vaccine bound only to purified CP5. In contrast, antibodies to the CP8-CRM conjugate vaccine reacted with CP8 and (to a lesser extent) CP5. De-O-acetylation of CP5 increased its reactivity with CP8 antibodies. Moreover, CP8 antibodies bound to Pseudomonas aeruginosa O11 lipopolysaccharide, which has a trisaccharide repeating unit similar to that of the S. aureus CPs. CP8-CRM antibodies mediated in vitro opsonophagocytic killing of S. aureus expressing CP5 or CP8, whereas CP5-CRM antibodies were serotype specific. Passive immunization with antiserum to CP5-CRM or CP8-CRM protected mice against bacteremia induced by a serotype 5 S. aureus isolate, suggesting that CP8-CRM elicits antibodies cross-reactive to CP5. The identification of epitopes shared by CP5 and CP8 may inform the rational design of a vaccine to protect against infections caused by CP5- or CP8-producing strains of S. aureus.
Collapse
|
34
|
Waryah CB, Gogoi-Tiwari J, Wells K, Costantino P, Al-Salami H, Sunagar R, Isloor S, Hegde N, Richmond P, Mukkur T. Serological versus molecular typing of surface-associated immune evading polysaccharide antigens-based phenotypes of Staphylococcus aureus. J Med Microbiol 2014; 63:1427-1431. [PMID: 25142964 DOI: 10.1099/jmm.0.077024-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to compare the performance of serological versus molecular typing methods to detect capsular polysaccharide (CP) and surface-associated polysaccharide antigen 336 phenotypes of Staphylococcus aureus isolates. Molecular typing of CP types 1, 5 and 8 was carried out using PCR, whereas serological typing of CP1, 2, 5, 8 and antigen 336 was carried out by slide agglutination using specific antisera. By genotyping, 14/31 strains were CP8 positive, 12/31 strains were CP5 and the remaining 6/31 isolates were non-typable (NT). One isolate was positive for both CP5 and CP8 by PCR, but was confirmed as CP8 type serologically. Detection of CP2 and type 336 by PCR was not possible because specific primers were either not available or non-specific. Using serotyping, 14/31 strains were CP8 positive, 11/31 CP5 positive and 2/31 positive for antigen 336. The remaining four S. aureus isolates were serologically NT. However, three of four NT and two 336-positive S. aureus isolates were encapsulated as determined by light microscopy after capsular staining. This discovery was surprising and warrants further investigations on the identification and characterization of additional capsular phenotypes prevalent among S. aureus clinical isolates. It was concluded that serological typing was a better method than molecular typing for use in epidemiological investigations based upon the distribution of surface-associated polysaccharide antigens-based phenotypes.
Collapse
Affiliation(s)
- Charlene B Waryah
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Jully Gogoi-Tiwari
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Kelsi Wells
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Paul Costantino
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Hani Al-Salami
- School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Raju Sunagar
- Department of Veterinary Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru 560024, Karnataka, India
| | - Shrikrishna Isloor
- Department of Veterinary Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru 560024, Karnataka, India
| | - Nagendra Hegde
- Ella Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Hyderabad 500078, Andhra Pradesh, India
| | - Peter Richmond
- School of Paediatrics and Child Health, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Trilochan Mukkur
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| |
Collapse
|
35
|
Abstract
Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.
Collapse
Affiliation(s)
- Bryan J. Berube
- Department of Microbiology, The University of Chicago, 920 E. 58th Street Chicago, IL 60637, USA; E-Mail:
| | - Juliane Bubeck Wardenburg
- Department of Microbiology, The University of Chicago, 920 E. 58th Street Chicago, IL 60637, USA; E-Mail:
- Department of Pediatrics, The University of Chicago, 5721 S. Maryland Ave. Chicago, IL 60637, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-773-834-9763; Fax: +1-773-834-8150
| |
Collapse
|
36
|
Abstract
In the Second Conference on Controversies in Vaccination in Adults, leading vaccine experts among manufacturers, physicians, microbiologists, virologists, immunologists and public health specialists came together to discuss recent approaches, developments and strategies in vaccination against worldwide pressing epidemic and endemic infectious diseases (pneumococcal, staphylococcal, influenza, papillomavirus-associated tumors, varicella-zoster, AIDS and tuberculosis), and noninfectious epidemics (atherosclerosis and smoking) outlining arguments surrounding the progress of vaccines.
Collapse
Affiliation(s)
- Hans W Doerr
- Institute for Medical Virology, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Kurokawa K, Jung DJ, An JH, Fuchs K, Jeon YJ, Kim NH, Li X, Tateishi K, Park JA, Xia G, Matsushita M, Takahashi K, Park HJ, Peschel A, Lee BL. Glycoepitopes of staphylococcal wall teichoic acid govern complement-mediated opsonophagocytosis via human serum antibody and mannose-binding lectin. J Biol Chem 2013; 288:30956-68. [PMID: 24045948 DOI: 10.1074/jbc.m113.509893] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum antibodies and mannose-binding lectin (MBL) are important host defense factors for host adaptive and innate immunity, respectively. Antibodies and MBL also initiate the classical and lectin complement pathways, respectively, leading to opsonophagocytosis. We have shown previously that Staphylococcus aureus wall teichoic acid (WTA), a cell wall glycopolymer consisting of ribitol phosphate substituted with α- or β-O-N-acetyl-d-glucosamine (GlcNAc) and d-alanine, is recognized by MBL and serum anti-WTA IgG. However, the exact antigenic determinants to which anti-WTA antibodies or MBL bind have not been determined. To answer this question, several S. aureus mutants, such as α-GlcNAc glycosyltransferase-deficient S. aureus ΔtarM, β-GlcNAc glycosyltransferase-deficient ΔtarS, and ΔtarMS double mutant cells, were prepared from a laboratory and a community-associated methicillin-resistant S. aureus strain. Here, we describe the unexpected finding that β-GlcNAc WTA-deficient ΔtarS mutant cells (which have intact α-GlcNAc) escape from anti-WTA antibody-mediated opsonophagocytosis, whereas α-GlcNAc WTA-deficient ΔtarM mutant cells (which have intact β-GlcNAc) are efficiently engulfed by human leukocytes via anti-WTA IgG. Likewise, MBL binding in S. aureus cells was lost in the ΔtarMS double mutant but not in either single mutant. When we determined the serum concentrations of the anti-α- or anti-β-GlcNAc-specific WTA IgGs, anti-β-GlcNAc WTA-IgG was dominant in pooled human IgG fractions and in the intact sera of healthy adults and infants. These data demonstrate the importance of the WTA sugar conformation for human innate and adaptive immunity against S. aureus infection.
Collapse
Affiliation(s)
- Kenji Kurokawa
- From the National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Pusan 609-735, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Developing a universal vaccine for S. aureus is a top priority but to date we have only had failures in human clinical trials. Given the plethora of bacterial virulence factors, broad range of the health of humans at-risk for infections, lack of any information regarding immune effectors mediating protection for any manifestation of S. aureus infection and overall competence of this organism as a colonizer, commensal and pathogen, we may just simply have to accept the fact that we will not get a universal vaccine. Antigenic variation is a major challenge for some vaccine targets and for many conserved targets the organism can easily decrease or even eliminate expression to avoid immune effectors without compromise to infectivity and ability to cause disease. Studies of human immune responses similarly have been unable to identify any clear mediators of immunity and data from such studies can only eliminate those found not to be associated with protection or that might serve as a marker for individuals with a higher level of resistance to infection. Animal studies are not predictive of success in humans and unlikely will be except in hindsight if and when we develop an efficacious vaccine. Successful vaccines for other bacteria based on capsular polysaccharides have not worked to date for S. aureus, and laboratory studies combining antibody to the major capsular serotypes and the other S. aureus surface polysaccharide, poly-N-acetyl glucosamine, unexpectedly showed interference not augmentation of immunity. Potential pathways toward vaccine development do exist but for the foreseeable future will be based on empiric approaches derived from laboratory-based in vitro and animal tests and not on inducing a known immune effector that predicts human resistance to infection.
Collapse
Affiliation(s)
- Gerald B Pier
- Division of Infectious Diseases; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston, MA USA
| |
Collapse
|
39
|
Cywes-Bentley C, Skurnik D, Zaidi T, Roux D, DeOliveira RB, Garrett WS, Lu X, O’Malley J, Kinzel K, Zaidi T, Rey A, Perrin C, Fichorova RN, Kayatani AKK, Maira-Litràn T, Gening ML, Tsvetkov YE, Nifantiev NE, Bakaletz LO, Pelton SI, Golenbock DT, Pier GB. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. Proc Natl Acad Sci U S A 2013; 110:E2209-18. [PMID: 23716675 PMCID: PMC3683766 DOI: 10.1073/pnas.1303573110] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology.
Collapse
Affiliation(s)
- Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Tanweer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Rosane B. DeOliveira
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Wendy S. Garrett
- Departments of Immunology and Infectious Diseases, Genetics and Complex Diseases, Dana–Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115
| | - Xi Lu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Jennifer O’Malley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Kathryn Kinzel
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Tauqeer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Astrid Rey
- Sanofi Research and Development, Therapeutic Strategic Unit, Infectious Disease, 31270 Toulouse, France
| | - Christophe Perrin
- Sanofi Research and Development, Therapeutic Strategic Unit, Infectious Disease, 31270 Toulouse, France
| | - Raina N. Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - Alexander K. K. Kayatani
- Vaccine Branch, Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Tomas Maira-Litràn
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Marina L. Gening
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Lauren O. Bakaletz
- The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Stephen I. Pelton
- Department of Pediatric Infectious Diseases, Boston University Medical Center, Boston, MA 02118
| | - Douglas T. Golenbock
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| |
Collapse
|
40
|
Weaver LG, Singh Y, Blanchfield JT, Burn PL. A simple iterative method for the synthesis of β-(1→6)-glucosamine oligosaccharides. Carbohydr Res 2013; 371:68-76. [DOI: 10.1016/j.carres.2013.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
|
41
|
Factores de virulencia de Staphylococcus aureus asociados con infecciones mamarias en bovinos: relevancia y rol como agentes inmunógenos. Rev Argent Microbiol 2013; 45:119-30. [DOI: 10.1016/s0325-7541(13)70011-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|