1
|
Saputra F, Hu SY, Kishida M. Exposure to nitrate and nitrite disrupts cardiovascular development through estrogen receptor in zebrafish embryos and larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024:10.1007/s10695-024-01381-y. [PMID: 39026114 DOI: 10.1007/s10695-024-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Increasing nitrate concentration on surface and groundwater due to anthropogenic activities is an environmental concern. In this study, Tg(fli1: EGFP) zebrafish embryos were exposed to nitrate (NO3-) and nitrite (NO2-), and their cardiovascular development were investigated. Exposure to 10 mg/L NO3-N and 1 and 10 mg/L NO2-N decreased heart rate at 48-96-h post-fertilization (hpf), ventricular volume, and red blood cell flow rate at 96 hpf. Similar concentrations increased the number of embryos and larvae with pericardial edema and missing intersegmental and parachordal vessels in the caudal region at 48-96 hpf. Addition of ICI 182,720 (ICI) reversed the effects of nitrate and nitrite, suggesting estrogen receptors (ER) are involved. 10 mg/L NO3-N and 1 mg/L NO2-N decreased cardiovascular-related genes, gata4,5,6, hand2, nkx2.5, nkx2.7, tbx2a, tbx2b, and fgf1a. Gene expressions of ovarian aromatase and brain aromatase (cyp19a1a and cyp19a1b, respectively) decreased in the exposed groups, whereas ERs (esr1, esr2a, and esr2b) and nitric oxide synthase 2a (nos2a) increased. The effects on gene expression were also reversed by addition of ICI. Taken together, nitrate and nitrite disrupt cardiovascular system through ER in developing zebrafish, implying that environmental nitrate and nitrite contamination may be harmful to aquatic organisms.
Collapse
Affiliation(s)
- Febriyansyah Saputra
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Mitsuyo Kishida
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
2
|
Fine-tune regulation of carboxypeptidase N1 controls vascular patterning during zebrafish development. Sci Rep 2017; 7:1852. [PMID: 28500283 PMCID: PMC5431830 DOI: 10.1038/s41598-017-01976-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/05/2017] [Indexed: 12/19/2022] Open
Abstract
Vascular development is regulated by complicated signals and molecules in vertebrates. In this study, we characterized a novel function of carboxypeptidase N1 (Cpn1) in the vasculature. We show that cpn1 mRNA is expressed in developing vessels. The knockdown of cpn1 by morpholino injection impairs the growth of intersegmental vessels (ISV) and caudal vein plexus (CVP), suggesting the role of cpn1 in vascular development. We showed that vascular defects are not caused by cell death but are due to the impairment of migration and proliferation. Consistent with vascular growth defects, loss of cpn1 affects the expression of the vascular markers flt4, mrc1, flk, stabilin, and ephrinb2. Furthermore, the overexpression of cpn1 impaired the growth of ISV and CVP, but the remodeling expression of vascular markers was different from the knockdown of cpn1, indicating the differential regulation mechanisms in cpn1-overexpressing embryos. We examine the interaction between cpn1 and multiple signals and observed that cpn1 is regulated by Notch/VEGF signals for ISV growth and likely regulates BMP signals for CVP patterning. In conclusion, we demonstrate that cpn1 has a critical role in the vascular development of zebrafish. We also reveal a fine-tune regulation of cpn1 that controls vascular patterning mediated by multiple signals.
Collapse
|
3
|
Theodore LN, Hagedorn EJ, Cortes M, Natsuhara K, Liu SY, Perlin JR, Yang S, Daily ML, Zon LI, North TE. Distinct Roles for Matrix Metalloproteinases 2 and 9 in Embryonic Hematopoietic Stem Cell Emergence, Migration, and Niche Colonization. Stem Cell Reports 2017; 8:1226-1241. [PMID: 28416284 PMCID: PMC5425629 DOI: 10.1016/j.stemcr.2017.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 01/06/2023] Open
Abstract
Hematopoietic stem/progenitor cells (HSPCs) are formed during ontogeny from hemogenic endothelium in the ventral wall of the dorsal aorta (VDA). Critically, the cellular mechanism(s) allowing HSPC egress and migration to secondary niches are incompletely understood. Matrix metalloproteinases (MMPs) are inflammation-responsive proteins that regulate extracellular matrix (ECM) remodeling, cellular interactions, and signaling. Here, inhibition of vascular-associated Mmp2 function caused accumulation of fibronectin-rich ECM, retention of runx1/cmyb+ HSPCs in the VDA, and delayed caudal hematopoietic tissue (CHT) colonization; these defects were absent in fibronectin mutants, indicating that Mmp2 facilitates endothelial-to-hematopoietic transition via ECM remodeling. In contrast, Mmp9 was dispensable for HSPC budding, being instead required for proper colonization of secondary niches. Significantly, these migration defects were mimicked by overexpression and blocked by knockdown of C-X-C motif chemokine-12 (cxcl12), suggesting that Mmp9 controls CHT homeostasis through chemokine regulation. Our findings indicate Mmp2 and Mmp9 play distinct but complementary roles in developmental HSPC production and migration.
Collapse
Affiliation(s)
- Lindsay N Theodore
- Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Elliott J Hagedorn
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mauricio Cortes
- Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Kelsey Natsuhara
- Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Sarah Y Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Julie R Perlin
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Song Yang
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Madeleine L Daily
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I Zon
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Trista E North
- Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan Circle, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Ghantous CM, Kobeissy FH, Soudani N, Rahman FA, Al-Hariri M, Itani HA, Sabra R, Zeidan A. Mechanical stretch-induced vascular hypertrophy occurs through modulation of leptin synthesis-mediated ROS formation and GATA-4 nuclear translocation. Front Pharmacol 2015; 6:240. [PMID: 26557089 PMCID: PMC4615939 DOI: 10.3389/fphar.2015.00240] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022] Open
Abstract
Background: Obesity and hypertension are associated with increased leptin production contributing to cardiovascular remodeling. Mechanisms involving mechanical stretch-induced leptin production and the cross talk between signaling pathways leading to vascular remodeling have not been fully elucidated. Methods and Results: Rat portal vein (RPV) organ culture was used to investigate the effect of mechanical stretch on leptin protein expression in vascular smooth muscle cells (VSMCs). Moreover, the involvement of reactive oxygen species (ROS), the RhoA/ROCK pathway, actin cytoskeleton dynamics and the transcriptional factor GATA-4 activation in mechanical stretch-induced vascular remodeling were investigated. Stretching the RPV for 1 or 24 h significantly increased leptin protein level and ROS formation in VSMCs, which was prevented by 1 h pretreatment with the ROCK inhibitor Y-27632 and the actin cytoskeleton depolymerization agent cytochalasin D. Moreover, Western blotting and immunohistochemistry revealed that mechanical stretch or treatment with 3.1 nmol/L leptin for 24 h significantly increased actin polymerization, as reflected by an increase in the F-actin to G-actin ratio. Increases in blood vessels’ wet weight and [3H]-leucine incorporation following a 24 h treatment with conditioned media from cultured stretched RPVs indicated RPV hypertrophy. This effect was prevented by 1 h pretreatment with anti-leptin antibody, indicating leptin’s crucial role in promoting VSMC hypertrophy. As an index of GATA-4 activation, GATA-4 nuclear translocation was assessed by immunohistochemistry method. Pretreating VSMC with leptin for 1 h significantly activated GATA-4 nuclear translocation, which was potently attenuated by the NADPH oxidase inhibitor apocynin, Y-27632, and cytochalasin D. Conclusion: Our results demonstrate that ROS formation, RhoA/ROCK pathway, and GATA-4 activation play a pivotal role in mechanical stretch-induced leptin synthesis leading to VSMC remodeling.
Collapse
Affiliation(s)
- Crystal M Ghantous
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, American University of Beirut , Beirut, Lebanon
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut , Beirut, Lebanon
| | - Nadia Soudani
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, American University of Beirut , Beirut, Lebanon
| | - Farah A Rahman
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, American University of Beirut , Beirut, Lebanon
| | - Mustafa Al-Hariri
- Department of Biochemistry and Molecular Genetics, American University of Beirut , Beirut, Lebanon
| | - Hana A Itani
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine , Nashville, TN, USA
| | - Ramzi Sabra
- Department of Pharmacology and Toxicology, American University of Beirut , Beirut, Lebanon
| | - Asad Zeidan
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, American University of Beirut , Beirut, Lebanon
| |
Collapse
|
5
|
Angiogenesis in zebrafish. Semin Cell Dev Biol 2014; 31:106-14. [DOI: 10.1016/j.semcdb.2014.04.037] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/24/2014] [Accepted: 04/30/2014] [Indexed: 12/21/2022]
|
6
|
Mao S, Huang S. The signaling pathway of stromal cell-derived factor-1 and its role in kidney diseases. J Recept Signal Transduct Res 2013; 34:85-91. [PMID: 24303939 DOI: 10.3109/10799893.2013.865746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1) regulates the trafficking of progenitor cell (PGC) during embryonic development, cell chemotaxis, and postnatal homing into injury sites. SDF-1 also regulates cell growth, survival, adhesion and angiogenesis. However, in different tissues/cells, the role of SDF-1 is different, such as that it is increased in most of the tumors and associated with cancer metastasis, whereas it is essential for the development of vasculature. For kidney diseases, its role remains controversial. Signaling pathways might be very important in the pathogenesis of kidney diseases. We performed this review to provide a relatively complete signaling pathway flowchart for SDF-1 to the investigators who were interested in the role of SDF-1 in the pathogenesis of kidney diseases. Here, we reviewed the signal transduction pathway of SDF-1 and its role in the pathogenesis of kidney diseases.
Collapse
Affiliation(s)
- Song Mao
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University , Nanjing , China
| | | |
Collapse
|
7
|
Gupta V, Gemberling M, Karra R, Rosenfeld GE, Evans T, Poss KD. An injury-responsive gata4 program shapes the zebrafish cardiac ventricle. Curr Biol 2013; 23:1221-7. [PMID: 23791730 DOI: 10.1016/j.cub.2013.05.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/02/2013] [Accepted: 05/14/2013] [Indexed: 01/14/2023]
Abstract
A common principle of tissue regeneration is the reactivation of previously employed developmental programs. During zebrafish heart regeneration, cardiomyocytes in the cortical layer of the ventricle induce the transcription factor gene gata4 and proliferate to restore lost muscle. A dynamic cellular mechanism initially creates this cortical muscle in juvenile zebrafish, where a small number of internal cardiomyocytes breach the ventricular wall and expand upon its surface. Here, we find that emergent juvenile cortical cardiomyocytes induce expression of gata4 in a manner similar to during regeneration. Clonal analysis indicates that these cardiomyocytes make biased contributions to build the ventricular wall, whereas gata4(+) cardiomyocytes have little or no proliferation hierarchy during regeneration. Experimental microinjuries or conditions of rapid organismal growth stimulate production of ectopic gata4(+) cortical muscle, implicating biomechanical stress in morphogenesis of this tissue and revealing clonal plasticity. Induced transgenic inhibition defined an essential role for Gata4 activity in morphogenesis of the cortical layer and the preservation of normal cardiac function in growing juveniles, and again in adults during heart regeneration. Our experiments uncover an injury-responsive program that prevents heart failure in juveniles by fortifying the ventricular wall, one that is reiterated in adults to promote regeneration after cardiac damage.
Collapse
Affiliation(s)
- Vikas Gupta
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|