1
|
De Padova J, Anderson NK, Halbauer R, Preininger D, Fuxjager MJ. Acute hypoxia exposure rapidly triggers behavioral changes linked to cutaneous gas exchange in Lake Titicaca frogs. Behav Processes 2024; 219:105047. [PMID: 38762053 DOI: 10.1016/j.beproc.2024.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/07/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Ventilation is critical to animal life-it ensures that individuals move air/water across their respiratory surface, and thus it sustains gas exchange with the environment. Many species have evolved highly specialized (if not unusual) ventilatory mechanisms, including the use of behavior to facilitate different aspects of breathing. However, these behavioral traits are often only described anecdotally, and the ecological conditions that elicit them are typically unclear. We study one such "ventilation behavior" in Lake Titicaca frogs (Telmatobius culeus). These frogs inhabit high-altitude (i.e., low oxygen) lakes in the Andean Mountains of South America, and they have become textbook examples of cutaneous gas exchange, which is essentially breathing that occurs across the skin. Accordingly, this species has evolved large, baggy skin-folds that dangle from the body to increase the surface area for ventilation. We show that individuals exposed to acute hypoxic conditions that mirror what free-living individuals likely encounter quickly (within minutes) decrease their activity levels, and thus become very still. If oxygen levels continue to decline, the frogs soon begin to perform push-up behaviors that presumably break the low-oxygen boundary layer around skin-folds to increase the conductance of the water/skin gas exchange pathway. Altogether, we suspect that individuals rapidly adjust aspects of their behavior in response to seemingly sudden changes to the oxygen environment as a mechanism to fine tune cutaneous respiration.
Collapse
Affiliation(s)
- Jordan De Padova
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Nigel K Anderson
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | | | - Doris Preininger
- Vienna Zoo, Vienna, Austria; Department of Evolutionary Biology, University of Vienna, Austria
| | - Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
2
|
Behavioural and physiological responses to experimental temperature changes in a long-billed and long-legged bird: a role for relative appendage size? Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-022-03280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Maintaining homeothermy may be a major challenge when species are confronted with ambient temperatures beyond their thermoneutral zone. Bird species occupying open landscapes are inherently exposed to acute heat loss and heat gain, which force them to adopt a suite of behavioural and physiological strategies to maintain homeothermy. Both types of responses could be influenced by their relative bill and leg sizes, but experimental data are lacking. Here, we evaluated how variation in body postural adjustments, panting, and locomotor activity in the dunlin Calidris alpina can be explained by experimental ambient temperature and relative bill and leg sizes. Additionally, we estimated resting metabolic rate and evaporative water loss to assess potential links between both physiological traits and relative bill and leg sizes. Temperatures below the thermoneutral zone were counteracted by enhancing metabolic heat production through increased locomotor activity, while body postural adjustments were used less than expected. Within the thermoneutral zone, back rest (tucking the bill under body feathers) and unipedal (standing on one leg) were preferred by dunlins, probably as being more comfortable for resting. At temperatures above the thermoneutral zone, dunlins were inactive and increased the time of bill exposure and wet-sitting and ultimately panting when challenged with temperatures above 37 °C. Interestingly, above the thermoneutral zone, but below their body temperature, birds with relatively longer bills and legs spent more time exposing them, probably to increase dry heat transfer into the environment. Our findings also highlighted the importance of the availability of wet substrates for minimising heat stress in wetland species.
Significance statement
Recent correlational field studies found support for a relationship between relative bill and leg sizes and thermoregulatory behaviour in birds inhabiting open landscapes. However, experimental data are lacking, and the mechanisms underlying this relationship remain poorly understood. Here, we performed an experiment to model behavioural and physiological responses to ambient temperature change and relative bill and leg sizes in the dunlin Calidris alpina, a long-billed and long-legged shorebird. Additionally, we also examined potential links among metabolic rates, evaporative water loss and relative appendage sizes. Our findings showed a strong experimental relationship between behavioural and physiological responses and ambient temperature, as well as a link between appendage size and resting body postures. Our findings also have a conservation message by highlighting that the type of substrate available for roosting is important for minimising heat stress in wetland species.
Collapse
|
3
|
Abstract
AbstractThe received wisdom on how activity affects energy expenditure is that the more activity is undertaken, the more calories will have been burned by the end of the day. Yet traditional hunter-gatherers, who lead physically hard lives, burn no more calories each day than Western populations living in labor-saving environments. Indeed, there is now a wealth of data, both for humans and other animals, demonstrating that long-term lifestyle changes involving increases in exercise or other physical activities do not result in commensurate increases in daily energy expenditure (DEE). This is because humans and other animals exhibit a degree of energy compensation at the organismal level, ameliorating some of the increases in DEE that would occur from the increased activity by decreasing the energy expended on other biological processes. And energy compensation can be sizable, reaching many hundreds of calories in humans. But the processes that are downregulated in the long-term to achieve energy compensation are far from clear, particularly in humans-we do not know how energy compensation is achieved. My review here of the literature on relevant exercise intervention studies, for both humans and other species, indicates conflict regarding the role, if any, of basal metabolic rate (BMR) or low-level activity such as fidgeting play, particularly once changes in body composition are factored out. In situations where BMR and low-level activity are not major components of energy compensation, what then drives it? I discuss how changes in mitochondrial efficiency and changes in circadian fluctuations in BMR may contribute to our understanding of energy management. Currently unexplored, these mechanisms and others may provide important insights into the mystery of how energy compensation is achieved.
Collapse
|
4
|
Singh M, Lim AJ, Muir WI, Groves PJ. Comparison of performance and carcass composition of a novel slow-growing crossbred broiler with fast-growing broiler for chicken meat in Australia. Poult Sci 2020; 100:100966. [PMID: 33652532 PMCID: PMC7936175 DOI: 10.1016/j.psj.2020.12.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Slow-growing broilers offer differentiation in the chicken meat market for consumers who have distinct preferences based on perceived higher welfare indices and willingness to pay a higher price for the product. Although breeding for slow-growing broilers is relatively advanced in Europe and the United States, it is limited in Australia. Crossbreeding is one of the approaches taken to developing slow-growing broiler strains. Thus, the aim of this study was to compare performance, immune response, leg health, carcass characteristics, and meat quality of a novel crossbred slow-growing broiler breed (SGB) with the conventional, fast-growing Cobb 500 broiler (CB) to assess their suitability as an alternative for chicken meat production in Australia. A total of 236 one-day-old broiler chicks (116 SGB and 120 fast-growing CB) were reared on standard commercial diet in an intensive production system. Birds and feed were weighed on a weekly basis and feed intake and feed conversion ratio calculated. At 21 d of age, a 2% suspension of sheep red blood cells was injected subcutaneously into 8 broilers of each breed to compare their antibody response. Birds from both breeds were grown to a final live weight of 2.0–2.2 kg, before a latency-to-lie (LTL) test, carcass analysis and apparent metabolizable energy (AME) assay were performed. The SGB reached the target weight at 55 d of age compared with 32 d in CB. However, SGB stood for longer during LTL, had higher thigh, drumstick, and wing yields (as a percentage of carcass weight) as well as darker and redder meat in comparison with the CB. The CB had better feed conversion efficiency, higher antibody (IgM) production, higher AME, heavier breast yield, and lower meat drip loss than the SGB. Although fast-growing CB outperformed the SGB for traditional performance parameters, the crossbred in this study was comparable with other slow-growing broiler breeds and strains across different countries and is thus a suitable candidate for a slow-growing alternative in Australia.
Collapse
Affiliation(s)
- M Singh
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia.
| | - A J Lim
- School of Life and Environmental Science, The University of Sydney, Camden, NSW 2570, Australia
| | - W I Muir
- School of Life and Environmental Science, The University of Sydney, Camden, NSW 2570, Australia
| | - P J Groves
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia; Birling Avian Laboratories, Bringelly, NSW 2556, Australia
| |
Collapse
|
5
|
Ryeland J, Weston MA, Symonds MRE. The importance of wetland margin microhabitat mosaics; the case of shorebirds and thermoregulation. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julia Ryeland
- Deakin University Geelong Vic. Australia
- Centre for Integrative Ecology School of Life and Environmental Sciences Faculty of Science, Engineering and the Built Environment Melbourne Burwood Campus Melbourne Vic. Australia
| | - Michael A. Weston
- Deakin University Geelong Vic. Australia
- Centre for Integrative Ecology School of Life and Environmental Sciences Faculty of Science, Engineering and the Built Environment Melbourne Burwood Campus Melbourne Vic. Australia
| | - Matthew R. E. Symonds
- Deakin University Geelong Vic. Australia
- Centre for Integrative Ecology School of Life and Environmental Sciences Faculty of Science, Engineering and the Built Environment Melbourne Burwood Campus Melbourne Vic. Australia
| |
Collapse
|
6
|
Tickle PG, Codd JR. Thermoregulation in rapid growing broiler chickens is compromised by constraints on radiative and convective cooling performance. J Therm Biol 2019; 79:8-14. [DOI: 10.1016/j.jtherbio.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/29/2018] [Accepted: 11/12/2018] [Indexed: 11/26/2022]
|
7
|
Pavlovic G, Weston MA, Symonds MRE. Morphology and geography predict the use of heat conservation behaviours across birds. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabrielle Pavlovic
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Burwood Victoria Australia
| | - Michael A. Weston
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Burwood Victoria Australia
| | - Matthew R. E. Symonds
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Burwood Victoria Australia
| |
Collapse
|
8
|
Halsey LG. Keeping Slim When Food Is Abundant: What Energy Mechanisms Could Be at Play? Trends Ecol Evol 2018; 33:745-753. [PMID: 30241777 DOI: 10.1016/j.tree.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 01/13/2023]
Abstract
The obesity epidemic in humans is juxtaposed by observations of passerine birds exhibiting fine-scale body mass regulation. The ecology literature is replete with research into why these animals regulate body weight, citing tradeoffs between competing pressures such as emaciation and predation. Yet studies on the underlying mechanisms of mass regulation in these animals are scarce. Maintaining or decreasing weight could obviously be achieved by limiting food intake. However, there are numerous reasons why an animal may not control ingestion, at least precisely. This Opinion article investigates the plausibility of possible behavioural and physiological mechanisms to adaptively maintain or decrease body mass in birds and other animals. Candidate behavioural mechanisms include exercising and fidgeting, while physiological mechanisms could include reducing digestive efficiency or mitochondrial efficiency.
Collapse
|
9
|
Motion analysis of non-model organisms using a hierarchical model: Influence of setup enclosure dimensions on gait parameters of Swinhoe's striped squirrels as a test case. ZOOLOGY 2018; 129:35-44. [PMID: 30170746 DOI: 10.1016/j.zool.2018.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 11/23/2022]
Abstract
In in-vivo motion analyses, data from a limited number of subjects and trials is used as proxy for locomotion properties of entire populations, yet the inherent hierarchy of the individual and population level is usually not accounted for. Despite the increasing availability of hierarchical model frameworks for statistical analyses, they have not been applied extensively to comparative motion analysis. As a case study for the use of hierarchical models, we analyzed locomotor parameters of four Swinhoe's striped squirrels. The small-bodied arboreal mammals exhibit brief bouts of rapid asymmetric gaits. Spatio-temporal parameters on runways with experimentally varied dimensions of the setup enclosure were compared to test for their potentially confounding effects. We applied principal component analysis to evaluate changes to the overall locomotor pattern. A common, non-hierarchical, pooled statistical analysis of the data revealed significant differences in some of the parameters depending on enclosure dimensions. In contrast, we used a hierarchical Bayesian generalized linear model (GLM) that considers subject specific differences and population effects to compare the effect of enclosure dimensions on the measured parameters and the principal components. None of the population effects were confirmed by the hierarchical GLM. The confounding effect of a single subject that deviates in its locomotor behavior is potentially bigger than the influence of the experimental variation in enclosure dimensions. Our findings justify the common practice of researchers to intuitively select an enclosure with dimensions assumed as "non-constraining". Hierarchical models can easily be designed to cope with limited sample size and bias introduced by deviating behavior of individuals. When limited data is available-a typical restriction of in-vivo motion analyses of non-model organisms-density distributions of the Bayesian GLM used here remain reliable and the hierarchical structure of the model optimally exploits all available information. We provide code to be adjusted to other research questions.
Collapse
|
10
|
Tickle PG, Hutchinson JR, Codd JR. Energy allocation and behaviour in the growing broiler chicken. Sci Rep 2018; 8:4562. [PMID: 29540782 PMCID: PMC5852157 DOI: 10.1038/s41598-018-22604-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/15/2018] [Indexed: 01/16/2023] Open
Abstract
Broiler chickens are increasingly at the forefront of global meat production but the consequences of fast growth and selection for an increase in body mass on bird health are an ongoing concern for industry and consumers. To better understand the implications of selection we evaluated energetics and behaviour over the 6-week hatch-to-slaughter developmental period in a commercial broiler. The effect of posture on resting metabolic rate becomes increasingly significant as broilers grow, as standing became more energetically expensive than sitting. The proportion of overall metabolic rate accounted for by locomotor behaviour decreased over development, corresponding to declining activity levels, mean and peak walking speeds. These data are consistent with the inference that broilers allocate energy to activity within a constrained metabolic budget and that there is a reducing metabolic scope for exercise throughout their development. Comparison with similarly sized galliforms reveals that locomotion is relatively energetically expensive in broilers.
Collapse
Affiliation(s)
- Peter G Tickle
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - John R Hutchinson
- Department of Comparative Biomedical Sciences, Structure and Motion Laboratory, Royal Veterinary College, London, UK
| | - Jonathan R Codd
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
York JM, Scadeng M, McCracken KG, Milsom WK. Respiratory mechanics and morphology of Tibetan and Andean high-altitude geese with divergent life histories. ACTA ACUST UNITED AC 2018; 221:jeb.170738. [PMID: 29180602 DOI: 10.1242/jeb.170738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
Abstract
High-altitude bar-headed geese (Anser indicus) and Andean geese (Chloephaga melanoptera) have been shown to preferentially increase tidal volume over breathing frequency when increasing ventilation during exposure to hypoxia. Increasing tidal volume is a more effective breathing strategy but is also thought to be more mechanically and metabolically expensive. We asked whether there might be differences in the mechanics or morphology of the respiratory systems of high-altitude transient bar-headed geese and high-altitude resident Andean geese that could minimize the cost of breathing more deeply. We compared these two species with a low-altitude migratory species, the barnacle goose (Branta leucopsis). We ventilated anesthetized birds to measure mechanical properties of the respiratory system and used CT scans to quantify respiratory morphology. We found that the respiratory system of Andean geese was disproportionately larger than that of the other two species, allowing use of a deeper breathing strategy for the same energetic cost. The relative size of the respiratory system, especially the caudal air sacs, of bar-headed geese was also larger than that of barnacle geese. However, when normalized to respiratory system size, the mechanical cost of breathing did not differ significantly among these three species, indicating that deeper breathing is enabled by morphological but not mechanical differences between species. The metabolic cost of breathing was estimated to be <1% of basal metabolic rate at rest in normoxia. Because of differences in the magnitude of the ventilatory response, the cost of breathing was estimated to increase 7- to 10-fold in bar-headed and barnacle geese in severe hypoxia, but less than 1-fold in Andean geese exposed to the same low atmospheric PO2.
Collapse
Affiliation(s)
- Julia M York
- University of British Columbia, Department of Zoology, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | - Miriam Scadeng
- University of California San Diego, Department of Radiology, Center for Functional MRI, 9500 Gilman Drive 0677, La Jolla, CA, USA 92093
| | - Kevin G McCracken
- University of Miami, Department of Biology, Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, and Human Genetics and Genomics - Miller School of Medicine, Coral Gables, FL, 33146, USA
| | - William K Milsom
- University of British Columbia, Department of Zoology, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
12
|
Yorzinski JL, Lam J, Schultz R, Davis M. Thermoregulatory postures limit antipredator responses in peafowl. Biol Open 2018; 7:7/1/bio031005. [PMID: 29305466 PMCID: PMC5829511 DOI: 10.1242/bio.031005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many animals inhabit environments where they experience temperature fluctuations. One way in which animals can adjust to these temperature changes is through behavioral thermoregulation. However, we know little about the thermal benefits of postural changes and the costs they may incur. In this study, we examined the thermoregulatory role of two postures, the head-tuck and leg-tuck posture, in peafowl (Pavo cristatus) and evaluated whether the head-tuck posture imposes a predation cost. The heads and legs of peafowl are significantly warmer when the birds exhibit these postures, demonstrating that these postures serve an important thermoregulatory role. In addition, the birds are slower to respond to an approaching threat when they display the head-tuck posture, suggesting that a thermoregulatory posture can limit antipredator behavior. Summary: The head-tuck and leg-tuck postures of peafowl help conserve heat but can impair antipredator responses.
Collapse
Affiliation(s)
- Jessica L Yorzinski
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843-2258, USA
| | - Jennifer Lam
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Rachel Schultz
- Department of Animal Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Melissa Davis
- Department of Animal Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
York JM, Chua BA, Ivy CM, Alza L, Cheek R, Scott GR, McCracken KG, Frappell PB, Dawson NJ, Laguë SL, Milsom WK. Respiratory mechanics of eleven avian species resident at high and low altitude. J Exp Biol 2017; 220:1079-1089. [DOI: 10.1242/jeb.151191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/26/2016] [Indexed: 01/07/2023]
Abstract
ABSTRACT
The metabolic cost of breathing at rest has never been successfully measured in birds, but has been hypothesized to be higher than in mammals of a similar size because of the rocking motion of the avian sternum being encumbered by the pectoral flight muscles. To measure the cost and work of breathing, and to investigate whether species resident at high altitude exhibit morphological or mechanical changes that alter the work of breathing, we studied 11 species of waterfowl: five from high altitudes (>3000 m) in Perú, and six from low altitudes in Oregon, USA. Birds were anesthetized and mechanically ventilated in sternal recumbency with known tidal volumes and breathing frequencies. The work done by the ventilator was measured, and these values were applied to the combinations of tidal volumes and breathing frequencies used by the birds to breathe at rest. We found the respiratory system of high-altitude species to be of a similar size, but consistently more compliant than that of low-altitude sister taxa, although this did not translate to a significantly reduced work of breathing. The metabolic cost of breathing was estimated to be between 1 and 3% of basal metabolic rate, as low or lower than estimates for other groups of tetrapods.
Collapse
Affiliation(s)
- Julia M. York
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | - Beverly A. Chua
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | - Catherine M. Ivy
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 3K1
| | - Luis Alza
- Department of Biology and Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Coral Gables, FL 33146, USA
- Division of Ornithology, Centro de Ornitología y Biodiversidad - CORBIDI, Lima 33, Peru
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Rebecca Cheek
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Graham R. Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 3K1
| | - Kevin G. McCracken
- Department of Biology and Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Coral Gables, FL 33146, USA
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Peter B. Frappell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Neal J. Dawson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 3K1
- Department of Biology and Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Coral Gables, FL 33146, USA
| | - Sabine L. Laguë
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | - William K. Milsom
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
14
|
Tickle PG, Paxton H, Rankin JW, Hutchinson JR, Codd JR. Anatomical and biomechanical traits of broiler chickens across ontogeny. Part I. Anatomy of the musculoskeletal respiratory apparatus and changes in organ size. PeerJ 2014; 2:e432. [PMID: 25071981 PMCID: PMC4103091 DOI: 10.7717/peerj.432] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/28/2014] [Indexed: 11/20/2022] Open
Abstract
Genetic selection for improved meat yields, digestive efficiency and growth rates have transformed the biology of broiler chickens. Modern birds undergo a 50-fold multiplication in body mass in just six weeks, from hatching to slaughter weight. However, this selection for rapid growth and improvements in broiler productivity is also widely thought to be associated with increased welfare problems as many birds suffer from leg, circulatory and respiratory diseases. To understand growth-related changes in musculoskeletal and organ morphology and respiratory skeletal development over the standard six-week rearing period, we present data from post-hatch cadaveric commercial broiler chickens aged 0, 2, 4 and 6 weeks. The heart, lungs and intestines decreased in size for hatch to slaughter weight when considered as a proportion of body mass. Proportional liver size increased in the two weeks after hatch but decreased between 2 and 6 weeks. Breast muscle mass on the other hand displayed strong positive allometry, increasing in mass faster than the increase in body mass. Contrastingly, less rapid isometric growth was found in the external oblique muscle, a major respiratory muscle that moves the sternum dorsally during expiration. Considered together with the relatively slow ossification of elements of the respiratory skeleton, it seems that rapid growth of the breast muscles might compromise the efficacy of the respiratory apparatus. Furthermore, the relative reduction in size of the major organs indicates that selective breeding in meat-producing birds has unintended consequences that may bias these birds toward compromised welfare and could limit further improvements in meat-production and feed efficiency.
Collapse
Affiliation(s)
- Peter G Tickle
- Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Heather Paxton
- Structure & Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London , Hatfield, Hertfordshire , UK
| | - Jeffery W Rankin
- Structure & Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London , Hatfield, Hertfordshire , UK
| | - John R Hutchinson
- Structure & Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London , Hatfield, Hertfordshire , UK
| | - Jonathan R Codd
- Faculty of Life Sciences, University of Manchester , Manchester , UK
| |
Collapse
|
15
|
Tickle PG, Lean SC, Rose KAR, Wadugodapitiya AP, Codd JR. The influence of load carrying on the energetics and kinematics of terrestrial locomotion in a diving bird. Biol Open 2013; 2:1239-44. [PMID: 24244861 PMCID: PMC3828771 DOI: 10.1242/bio.20135538] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/09/2013] [Indexed: 11/20/2022] Open
Abstract
The application of artificial loads to mammals and birds has been used to provide insight into the mechanics and energetic cost of terrestrial locomotion. However, only two species of bird have previously been used in loading experiments, the cursorial guinea fowl (Numida meleagris) and the locomotor-generalist barnacle goose (Branta leucopsis). Here, using respirometry and treadmill locomotion, we investigate the energetic cost of carrying trunk loads in a diving bird, the tufted duck (Aythya fuligula). Attachment of back loads equivalent to 10% and 20% of body mass increased the metabolic rate during locomotion (7.94% and 15.92%, respectively) while sternal loads of 5% and 10% had a greater proportional effect than the back loads (metabolic rate increased by 7.19% and 13.99%, respectively). No effect on locomotor kinematics was detected during any load carrying experiments. These results concur with previous reports of load carrying economy in birds, in that there is a less than proportional relationship between increasing load and metabolic rate (found previously in guinea fowl), while application of sternal loads causes an approximate doubling of metabolic rate compared to back loads (reported in an earlier study of barnacle geese). The increase in cost when carrying sternal loads may result from having to move this extra mass dorso-ventrally during respiration. Disparity in load carrying economy between species may arise from anatomical and physiological adaptations to different forms of locomotion, such as the varying uncinate process morphology and hindlimb tendon development in goose, guinea fowl and duck.
Collapse
Affiliation(s)
- Peter G Tickle
- Faculty of Life Sciences, University of Manchester , Manchester M13 9PT , UK
| | | | | | | | | |
Collapse
|