1
|
Zhao K, Zhao P, Wang S, Xia Y, Zhang G. FoldPAthreader: predicting protein folding pathway using a novel folding force field model derived from known protein universe. Genome Biol 2024; 25:152. [PMID: 38862984 PMCID: PMC11167914 DOI: 10.1186/s13059-024-03291-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Protein folding has become a tractable problem with the significant advances in deep learning-driven protein structure prediction. Here we propose FoldPAthreader, a protein folding pathway prediction method that uses a novel folding force field model by exploring the intrinsic relationship between protein evolution and folding from the known protein universe. Further, the folding force field is used to guide Monte Carlo conformational sampling, driving the protein chain fold into its native state by exploring potential intermediates. On 30 example targets, FoldPAthreader successfully predicts 70% of the proteins whose folding pathway is consistent with biological experimental data.
Collapse
Affiliation(s)
- Kailong Zhao
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Pengxin Zhao
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Suhui Wang
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Yuhao Xia
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China.
| |
Collapse
|
2
|
Bahena-Ceron R, Teixeira C, Ponce JRJ, Wolff P, Couzon F, François P, Klaholz BP, Vandenesch F, Romby P, Moreau K, Marzi S. RlmQ: a newly discovered rRNA modification enzyme bridging RNA modification and virulence traits in Staphylococcus aureus. RNA (NEW YORK, N.Y.) 2024; 30:200-212. [PMID: 38164596 PMCID: PMC10870370 DOI: 10.1261/rna.079850.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
rRNA modifications play crucial roles in fine-tuning the delicate balance between translation speed and accuracy, yet the underlying mechanisms remain elusive. Comparative analyses of the rRNA modifications in taxonomically distant bacteria could help define their general, as well as species-specific, roles. In this study, we identified a new methyltransferase, RlmQ, in Staphylococcus aureus responsible for the Gram-positive specific m7G2601, which is not modified in Escherichia coli (G2574). We also demonstrate the absence of methylation on C1989, equivalent to E. coli C1962, which is methylated at position 5 by the Gram-negative specific RlmI methyltransferase, a paralog of RlmQ. Both modifications (S. aureus m7G2601 and E. coli m5C1962) are situated within the same tRNA accommodation corridor, hinting at a potential shared function in translation. Inactivation of S. aureus rlmQ causes the loss of methylation at G2601 and significantly impacts growth, cytotoxicity, and biofilm formation. These findings unravel the intricate connections between rRNA modifications, translation, and virulence in pathogenic Gram-positive bacteria.
Collapse
Affiliation(s)
- Roberto Bahena-Ceron
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| | - Chloé Teixeira
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Jose R Jaramillo Ponce
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| | - Philippe Wolff
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| | - Florence Couzon
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Pauline François
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Bruno P Klaholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, IGBMC, 67400 Illkirch, France
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U964, 67400 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des agents infectieux, Hospices Civils de Lyon, 69004 Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, 69317 Lyon, France
| | - Pascale Romby
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| |
Collapse
|
3
|
Luan Y, Tang Z, He Y, Xie Z. Intra-Domain Residue Coevolution in Transcription Factors Contributes to DNA Binding Specificity. Microbiol Spectr 2023; 11:e0365122. [PMID: 36943132 PMCID: PMC10100741 DOI: 10.1128/spectrum.03651-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
Understanding the basis of the DNA-binding specificity of transcription factors (TFs) has been of long-standing interest. Despite extensive efforts to map millions of putative TF binding sequences, identifying the critical determinants for DNA binding specificity remains a major challenge. The coevolution of residues in proteins occurs due to a shared evolutionary history. However, it is unclear how coevolving residues in TFs contribute to DNA binding specificity. Here, we systematically collected publicly available data sets from multiple large-scale high-throughput TF-DNA interaction screening experiments for the major TF families with large numbers of TF members. These families included the Homeobox, HLH, bZIP_1, Ets, HMG_box, ZF-C4, and Zn_clus TFs. We detected TF subclass-determining sites (TSDSs) and showed that the TSDSs were more likely to coevolve with other TSDSs than with non-TSDSs, particularly for the Homeobox, HLH, Ets, bZIP_1, and HMG_box TF families. By in silico modeling, we showed that mutation of the highly coevolving residues could significantly reduce the stability of the TF-DNA complex. The distant residues from the DNA interface also contributed to TF-DNA binding activity. Overall, our study gave evidence that coevolved residues relate to transcriptional regulation and provided insights into the potential application of engineered DNA-binding domains and proteins. IMPORTANCE While unraveling DNA-binding specificity of TFs is the key to understanding the basis and molecular mechanism of gene expression regulation, identifying the critical determinants that contribute to DNA binding specificity remains a major challenge. In this study, we provided evidence showing that coevolving residues in TF domains contributed to DNA binding specificity. We demonstrated that the TSDSs were more likely to coevolve with other TSDSs than with non-TSDSs. Mutation of the coevolving residue pairs (CRPs) could significantly reduce the stability of THE TF-DNA complex, and even the distant residues from the DNA interface contribute to TF-DNA binding activity. Collectively, our study expands our knowledge of the interactions among coevolved residues in TFs, tertiary contacting, and functional importance in refined transcriptional regulation. Understanding the impact of coevolving residues in TFs will help understand the details of transcription of gene regulation and advance the application of engineered DNA-binding domains and protein.
Collapse
Affiliation(s)
- Yizhao Luan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zehua Tang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yao He
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Oteri F, Sarti E, Nadalin F, Carbone A. iBIS2Analyzer: a web server for a phylogeny-driven coevolution analysis of protein families. Nucleic Acids Res 2022; 50:W412-W419. [PMID: 35670671 PMCID: PMC9252744 DOI: 10.1093/nar/gkac481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
Residue coevolution within and between proteins is used as a marker of physical interaction and/or residue functional cooperation. Pairs or groups of coevolving residues are extracted from multiple sequence alignments based on a variety of computational approaches. However, coevolution signals emerging in subsets of sequences might be lost if the full alignment is considered. iBIS2Analyzer is a web server dedicated to a phylogeny-driven coevolution analysis of protein families with different evolutionary pressure. It is based on the iterative version, iBIS2, of the coevolution analysis method BIS, Blocks in Sequences. iBIS2 is designed to iteratively select and analyse subtrees in phylogenetic trees, possibly large and comprising thousands of sequences. With iBIS2Analyzer, openly accessible at http://ibis2analyzer.lcqb.upmc.fr/, the user visualizes, compares and inspects clusters of coevolving residues by mapping them onto sequences, alignments or structures of choice, greatly simplifying downstream analysis steps. A rich and interactive graphic interface facilitates the biological interpretation of the results.
Collapse
Affiliation(s)
- Francesco Oteri
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Edoardo Sarti
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Francesca Nadalin
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| |
Collapse
|
5
|
Tamura T, Torii S, Kajiwara K, Anzai I, Fujioka Y, Noda K, Taguwa S, Morioka Y, Suzuki R, Fauzyah Y, Ono C, Ohba Y, Okada M, Fukuhara T, Matsuura Y. Secretory glycoprotein NS1 plays a crucial role in the particle formation of flaviviruses. PLoS Pathog 2022; 18:e1010593. [PMID: 35658055 PMCID: PMC9200304 DOI: 10.1371/journal.ppat.1010593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/15/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
Abstract
Flaviviruses, which are globally distributed and cause a spectrum of potentially severe illnesses, pose a major threat to public health. Although Flaviviridae viruses, including flaviviruses, possess similar genome structures, only the flaviviruses encode the non-structural protein NS1, which resides in the endoplasmic reticulum (ER) and is secreted from cells after oligomerization. The ER-resident NS1 is known to be involved in viral genome replication, but the essential roles of secretory NS1 in the virus life cycle are not fully understood. Here we characterized the roles of secretory NS1 in the particle formation of flaviviruses. We first identified an amino acid residue essential for the NS1 secretion but not for viral genome replication by using protein-protein interaction network analyses and mutagenesis scanning. By using the recombinant flaviviruses carrying the identified NS1 mutation, we clarified that the mutant flaviviruses employed viral genome replication. We then constructed a recombinant NS1 with the identified mutation and demonstrated by physicochemical assays that the mutant NS1 was unable to form a proper oligomer or associate with liposomes. Finally, we showed that the functions of NS1 that were lost by the identified mutation could be compensated for by the in trans-expression of Erns of pestiviruses and host exchangeable apolipoproteins, which participate in the infectious particle formation of pestiviruses and hepaciviruses in the family Flaviviridae, respectively. Collectively, our study suggests that secretory NS1 plays a role in the particle formation of flaviviruses through its interaction with the lipid membrane. It is difficult to characterize the function of NS1 in the post-genome replication stages in the virus life cycle of flaviviruses. Here, by means of protein-protein interaction network analyses and mutagenesis scanning, we identified a unique mutation in NS1 by which the protein loses its secretory capacity while retaining its genome replication activity. Physicochemical assays using the mutant NS1 revealed that oligomerization of NS1 is responsible for the lipid association and secretion of NS1. In addition, we established a complementation assay that can evaluate the particle formation of Flaviviridae viruses. By using recombinant flaviviruses possessing the identified mutation in NS1, we clarified that NS1 is involved in particle formation. Our findings reveal that the flavivirus NS1 has at least two roles in the virus life cycles—namely, a role in infectious particle formation and a role in viral genome replication.
Collapse
Affiliation(s)
- Tomokazu Tamura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shiho Torii
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Itsuki Anzai
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Hokkaido, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Sapporo, Hokkaido, Japan
| | - Kisho Noda
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shuhei Taguwa
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Yuhei Morioka
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuzy Fauzyah
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Hokkaido, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Sapporo, Hokkaido, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail: (TF); (YoM)
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- * E-mail: (TF); (YoM)
| |
Collapse
|
6
|
Parakkunnel R, Bhojaraja Naik K, Susmita C, Girimalla V, Bhaskar KU, Sripathy KV, Shantharaja CS, Aravindan S, Kumar S, Lakhanpaul S, Bhat KV. Evolution and co-evolution: insights into the divergence of plant heat shock factor genes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1029-1047. [PMID: 35722513 PMCID: PMC9203654 DOI: 10.1007/s12298-022-01183-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 05/03/2023]
Abstract
The Heat Shock Factor (Hsf) genes are widely distributed across the plant kingdom regulating the plant response to various abiotic stresses. In addition to natural selection, breeding and accelerated selection changed the structure and function of Hsf genes. 1076 Hsf genes from 30 genera from primitive algae to the most advanced plant species and major crop plants were used for phylogenetic analysis. The interspecific divergence was studied with 11 members of genus Oryza while intraspecific divergence was studied with sesame pan-genome adapted to diverse ecological niches. B2 genes in eudicots and monocots originated separately while A1 gave rise to the recently evolved Class-C genes and land colonization happened with evolution of A1 genes. An increase in the number of lineages in the Oryza clade with the evolution of AA genome indicated independent domestication and positive selection was observed in > 53% of loci whereas the highly conserved homologues were under purifying selection. The paralogous genes under positive selection exhibited more domain changes for diversified function and increased fitness. A significant co-evolving cluster involving amino acids Phenylalanine, Lysine and Valine played crucial role in maintaining hydrophobic core along with highly conserved Tryptophan residues. A mutation of Glutamic acid to Glutamine was observed in A8 genes of Lamiales affecting protein solvency. Breeding resulted in accumulation of mutations reducing the hydrophobicity of proteins and a further reduction in protein aggregation. This study identify genome duplications, non-neutral selection and co-evolving residues as causing drastic changes in the conserved domain of Hsf proteins. Supplementary information The online version contains supplementary material available at 10.1007/s12298-022-01183-7.
Collapse
Affiliation(s)
- Ramya Parakkunnel
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, Karnataka 560065 India
| | - K Bhojaraja Naik
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, Karnataka 560065 India
| | - C Susmita
- ICAR- Indian Institute of Seed Science, Mau, Uttar Pradesh 275103 India
| | - Vanishree Girimalla
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, Karnataka 560065 India
| | - K Udaya Bhaskar
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, Karnataka 560065 India
| | - KV Sripathy
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, Karnataka 560065 India
| | - CS Shantharaja
- ICAR- Indian Institute of Seed Science, Regional Station, GKVK Campus, Bengaluru, Karnataka 560065 India
| | - S Aravindan
- 4Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, 110012 India
| | - Sanjay Kumar
- ICAR- Indian Institute of Seed Science, Mau, Uttar Pradesh 275103 India
| | | | - KV Bhat
- 4Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, 110012 India
| |
Collapse
|
7
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
8
|
Teppa E, Zea DJ, Oteri F, Carbone A. COVTree: Coevolution in OVerlapped sequences by Tree analysis server. Nucleic Acids Res 2020; 48:W558-W565. [PMID: 32374885 PMCID: PMC7319473 DOI: 10.1093/nar/gkaa330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Overlapping genes are commonplace in viruses and play an important role in their function and evolution. For these genes, molecular coevolution may be seen as a mechanism to decrease the evolutionary constraints of amino acid positions in the overlapping regions and to tolerate or compensate unfavorable mutations. Tracing these mutational sites, could help to gain insight on the direct or indirect effect of the mutations in the corresponding overlapping proteins. In the past, coevolution analysis has been used to identify residue pairs and coevolutionary signatures within or between proteins that served as markers of physical interactions and/or functional relationships. Coevolution in OVerlapped sequences by Tree analysis (COVTree) is a web server providing the online analysis of coevolving amino-acid pairs in overlapping genes, where residues might be located inside or outside the overlapping region. COVTree is designed to handle protein families with various characteristics, among which those that typically display a small number of highly conserved sequences. It is based on BIS2, a fast version of the coevolution analysis tool Blocks in Sequences (BIS). COVTree provides a rich and interactive graphical interface to ease biological interpretation of the results and it is openly accessible at http://www.lcqb.upmc.fr/COVTree/.
Collapse
Affiliation(s)
- Elin Teppa
- Sorbonne Université, UPMC Univ Paris 06, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Diego J Zea
- Sorbonne Université, UPMC Univ Paris 06, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Francesco Oteri
- Sorbonne Université, UPMC Univ Paris 06, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Alessandra Carbone
- Sorbonne Université, UPMC Univ Paris 06, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| |
Collapse
|
9
|
Meyer X, Dib L, Salamin N. CoevDB: a database of intramolecular coevolution among protein-coding genes of the bony vertebrates. Nucleic Acids Res 2020; 47:D50-D54. [PMID: 30357342 PMCID: PMC6324051 DOI: 10.1093/nar/gky986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/10/2018] [Indexed: 01/15/2023] Open
Abstract
The study of molecular coevolution, due to its potential to identify gene regions under functional or structural constraints, has recently been subject to numerous scientific inquiries. Particular efforts have been conducted to develop methods predicting the presence of coevolution in molecular sequences. Among these methods, a few aim to model the underlying evolutionary process of coevolution, which enable to differentiate the shared history of genes to coevolution and thus improve their accuracy. However, the usage of such methods remains sparse due to their expensive computational cost and the lack of resources alleviating this issue. Here we present CoevDB (http://phylodb.unil.ch/CoevDB), a database containing the result of a large-scale analysis of intramolecular coevolution of 8201 protein-coding genes of bony vertebrates. The web interface of CoevDB gives access to the results to 800 millions of statistical tests corresponding to all the pairs of sites analyzed. Several type of queries enable users to explore the database by either targeting specific genes or by discovering genes having promising estimations of coevolution.
Collapse
Affiliation(s)
- Xavier Meyer
- Department of Computational Biology, University of Lausanne, Biophore, 1015 Lausanne, Switzerland.,Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg, Berkeley, CA 94720-3140, USA
| | - Linda Dib
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Biophore, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Ivey G, Youker RT. Disease-relevant mutations alter amino acid co-evolution networks in the second nucleotide binding domain of CFTR. PLoS One 2020; 15:e0227668. [PMID: 31978131 PMCID: PMC6980524 DOI: 10.1371/journal.pone.0227668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 12/25/2019] [Indexed: 01/23/2023] Open
Abstract
Cystic Fibrosis (CF) is an inherited disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. Mutations in CFTR cause impaired chloride ion transport in the epithelial tissues of patients leading to cardiopulmonary decline and pancreatic insufficiency in the most severely affected patients. CFTR is composed of twelve membrane-spanning domains, two nucleotide-binding domains (NBDs), and a regulatory domain. The most common mutation in CFTR is a deletion of phenylalanine at position 508 (ΔF508) in NBD1. Previous research has primarily concentrated on the structure and dynamics of the NBD1 domain; However numerous pathological mutations have also been found in the lesser-studied NBD2 domain. We have investigated the amino acid co-evolved network of interactions in NBD2, and the changes that occur in that network upon the introduction of CF and CF-related mutations (S1251N(T), S1235R, D1270N, N1303K(T)). Extensive coupling between the α- and β-subdomains were identified with residues in, or near Walker A, Walker B, H-loop and C-loop motifs. Alterations in the predicted residue network varied from moderate for the S1251T perturbation to more severe for N1303T. The S1235R and D1270N networks varied greatly compared to the wildtype, but these CF mutations only affect ion transport preference and do not severely disrupt CFTR function, suggesting dynamic flexibility in the network of interactions in NBD2. Our results also suggest that inappropriate interactions between the β-subdomain and Q-loop could be detrimental. We also identified mutations predicted to stabilize the NBD2 residue network upon introduction of the CF and CF-related mutations, and these predicted mutations are scored as benign by the MUTPRED2 algorithm. Our results suggest the level of disruption of the co-evolution predictions of the amino acid networks in NBD2 does not have a straightforward correlation with the severity of the CF phenotypes observed.
Collapse
Affiliation(s)
- Gabrianne Ivey
- Kyder Christian Academy, Franklin, North Carolina, United States of America
- Southwestern Community College, Sylva, North Carolina, United States of America
| | - Robert T. Youker
- Department of Biology, Western Carolina University, Cullowhee, North Carolina, United States of America
| |
Collapse
|
11
|
Teppa E, Nadalin F, Combet C, Zea DJ, David L, Carbone A. Coevolution analysis of amino-acids reveals diversified drug-resistance solutions in viral sequences: a case study of hepatitis B virus. Virus Evol 2020; 6:veaa006. [PMID: 32158552 PMCID: PMC7050494 DOI: 10.1093/ve/veaa006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The study of mutational landscapes of viral proteins is fundamental for the understanding of the mechanisms of cross-resistance to drugs and the design of effective therapeutic strategies based on several drugs. Antiviral therapy with nucleos(t)ide analogues targeting the hepatitis B virus (HBV) polymerase protein (Pol) can inhibit disease progression by suppression of HBV replication and makes it an important case study. In HBV, treatment may fail due to the emergence of drug-resistant mutants. Primary and compensatory mutations have been associated with lamivudine resistance, whereas more complex mutational patterns are responsible for resistance to other HBV antiviral drugs. So far, all known drug-resistance mutations are located in one of the four Pol domains, called reverse transcriptase. We demonstrate that sequence covariation identifies drug-resistance mutations in viral sequences. A new algorithmic strategy, BIS2TreeAnalyzer, is designed to apply the coevolution analysis method BIS2, successfully used in the past on small sets of conserved sequences, to large sets of evolutionary related sequences. When applied to HBV, BIS2TreeAnalyzer highlights diversified viral solutions by discovering thirty-seven positions coevolving with residues known to be associated with drug resistance and located on the four Pol domains. These results suggest a sequential mechanism of emergence for some mutational patterns. They reveal complex combinations of positions involved in HBV drug resistance and contribute with new information to the landscape of HBV evolutionary solutions. The computational approach is general and can be applied to other viral sequences when compensatory mutations are presumed.
Collapse
Affiliation(s)
- Elin Teppa
- Sorbonne Université, Univ P6, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, 4 Place Jussieu, 75005 Paris, France
- Sorbonne Université, Institut des Sciences du Calcul et des Données (ISCD), 4 Place Jussieu, 75005 Paris, France
| | - Francesca Nadalin
- Sorbonne Université, Univ P6, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, 4 Place Jussieu, 75005 Paris, France
- Institute Curie, PSL Research University, INSERM U932, Immunity and Cancer Department, 26 rue d’Ulm, 75248 Paris, France
| | - Christophe Combet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 151 Cours Albert Thomas, 69424 Lyon, France
| | - Diego Javier Zea
- Sorbonne Université, Univ P6, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, 4 Place Jussieu, 75005 Paris, France
| | - Laurent David
- Sorbonne Université, Univ P6, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, 4 Place Jussieu, 75005 Paris, France
| | - Alessandra Carbone
- Sorbonne Université, Univ P6, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, 4 Place Jussieu, 75005 Paris, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
12
|
Oteri F, Nadalin F, Champeimont R, Carbone A. BIS2Analyzer: a server for co-evolution analysis of conserved protein families. Nucleic Acids Res 2019; 45:W307-W314. [PMID: 28472458 PMCID: PMC5570204 DOI: 10.1093/nar/gkx336] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Along protein sequences, co-evolution analysis identifies residue pairs demonstrating either a specific co-adaptation, where changes in one of the residues are compensated by changes in the other during evolution or a less specific external force that affects the evolutionary rates of both residues in a similar magnitude. In both cases, independently of the underlying cause, co-evolutionary signatures within or between proteins serve as markers of physical interactions and/or functional relationships. Depending on the type of protein under study, the set of available homologous sequences may greatly differ in size and amino acid variability. BIS2Analyzer, openly accessible at http://www.lcqb.upmc.fr/BIS2Analyzer/, is a web server providing the online analysis of co-evolving amino-acid pairs in protein alignments, especially designed for vertebrate and viral protein families, which typically display a small number of highly similar sequences. It is based on BIS2, a re-implemented fast version of the co-evolution analysis tool Blocks in Sequences (BIS). BIS2Analyzer provides a rich and interactive graphical interface to ease biological interpretation of the results.
Collapse
Affiliation(s)
- Francesco Oteri
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Francesca Nadalin
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Raphaël Champeimont
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Alessandra Carbone
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France.,Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
13
|
Dib L, Salamin N, Gfeller D. Polymorphic sites preferentially avoid co-evolving residues in MHC class I proteins. PLoS Comput Biol 2018; 14:e1006188. [PMID: 29782520 PMCID: PMC5983860 DOI: 10.1371/journal.pcbi.1006188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 06/01/2018] [Accepted: 05/09/2018] [Indexed: 01/11/2023] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules are critical to adaptive immune defence mechanisms in vertebrate species and are encoded by highly polymorphic genes. Polymorphic sites are located close to the ligand-binding groove and entail MHC-I alleles with distinct binding specificities. Some efforts have been made to investigate the relationship between polymorphism and protein stability. However, less is known about the relationship between polymorphism and MHC-I co-evolutionary constraints. Using Direct Coupling Analysis (DCA) we found that co-evolution analysis accurately pinpoints structural contacts, although the protein family is restricted to vertebrates and comprises less than five hundred species, and that the co-evolutionary signal is mainly driven by inter-species changes, and not intra-species polymorphism. Moreover, we show that polymorphic sites in human preferentially avoid co-evolving residues, as well as residues involved in protein stability. These results suggest that sites displaying high polymorphism may have been selected during vertebrates’ evolution to avoid co-evolutionary constraints and thereby maximize their mutability. Amino acid co-evolution represents cases of simultaneous substitution of amino acids at distinct positions in protein sequences. In the MHC-I protein family, such co-evolution could result from either amino acid changes across species or changes within species due to the high polymorphism of MHC-I molecules. Here we show that signals captured by global methods such as Direct Coupling Analysis (DCA) to estimate co-evolution primarily result from changes across species. Moreover, our results indicate that polymorphic sites in MHC-I molecules tend to be decoupled from co-evolving ones. This could suggest that they have been selected to maximize their mutability, which is known to be functionally important to entail MHC-I molecules with a wide repertoire of binding specificities for antigen presentation.
Collapse
Affiliation(s)
- Linda Dib
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Switzerland
- Swiss Institutes of Bioinformatics, Quartier Sorge, Lausanne, Switzerland
| | - Nicolas Salamin
- Swiss Institutes of Bioinformatics, Quartier Sorge, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Switzerland
- Swiss Institutes of Bioinformatics, Quartier Sorge, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Douam F, Fusil F, Enguehard M, Dib L, Nadalin F, Schwaller L, Hrebikova G, Mancip J, Mailly L, Montserret R, Ding Q, Maisse C, Carlot E, Xu K, Verhoeyen E, Baumert TF, Ploss A, Carbone A, Cosset FL, Lavillette D. A protein coevolution method uncovers critical features of the Hepatitis C Virus fusion mechanism. PLoS Pathog 2018; 14:e1006908. [PMID: 29505618 PMCID: PMC5854445 DOI: 10.1371/journal.ppat.1006908] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/15/2018] [Accepted: 01/26/2018] [Indexed: 12/15/2022] Open
Abstract
Amino-acid coevolution can be referred to mutational compensatory patterns preserving the function of a protein. Viral envelope glycoproteins, which mediate entry of enveloped viruses into their host cells, are shaped by coevolution signals that confer to viruses the plasticity to evade neutralizing antibodies without altering viral entry mechanisms. The functions and structures of the two envelope glycoproteins of the Hepatitis C Virus (HCV), E1 and E2, are poorly described. Especially, how these two proteins mediate the HCV fusion process between the viral and the cell membrane remains elusive. Here, as a proof of concept, we aimed to take advantage of an original coevolution method recently developed to shed light on the HCV fusion mechanism. When first applied to the well-characterized Dengue Virus (DENV) envelope glycoproteins, coevolution analysis was able to predict important structural features and rearrangements of these viral protein complexes. When applied to HCV E1E2, computational coevolution analysis predicted that E1 and E2 refold interdependently during fusion through rearrangements of the E2 Back Layer (BL). Consistently, a soluble BL-derived polypeptide inhibited HCV infection of hepatoma cell lines, primary human hepatocytes and humanized liver mice. We showed that this polypeptide specifically inhibited HCV fusogenic rearrangements, hence supporting the critical role of this domain during HCV fusion. By combining coevolution analysis and in vitro assays, we also uncovered functionally-significant coevolving signals between E1 and E2 BL/Stem regions that govern HCV fusion, demonstrating the accuracy of our coevolution predictions. Altogether, our work shed light on important structural features of the HCV fusion mechanism and contributes to advance our functional understanding of this process. This study also provides an important proof of concept that coevolution can be employed to explore viral protein mediated-processes, and can guide the development of innovative translational strategies against challenging human-tropic viruses. Several virus-mediated molecular processes remain poorly described, which dampen the development of potent anti-viral therapies. Hence, new experimental strategies need to be undertaken to improve and accelerate our understanding of these processes. Here, as a proof of concept, we employ amino-acid coevolution as a tool to gain insights into the structural rearrangements of Hepatitis C Virus (HCV) envelope glycoproteins E1 and E2 during virus fusion with the cell membrane, and provide a basis for the inhibition of this process. Our coevolution analysis predicted that a specific domain of E2, the Back Layer (BL) is involved into significant conformational changes with E1 during the fusion of the HCV membrane with the cellular membrane. Consistently, a recombinant, soluble form of the BL was able to inhibit E1E2 fusogenic rearrangements and HCV infection. Moreover, predicted coevolution networks involving E1 and BL residues, as well as E1 and BL-adjacent residues, were found to modulate virus fusion. Our data shows that coevolution analysis is a powerful and underused approach that can provide significant insights into the functions and structural rearrangements of viral proteins. Importantly, this approach can also provide structural and molecular basis for the design of effective anti-viral drugs, and opens new perspectives to rapidly identify effective antiviral strategies against emerging and re-emerging viral pathogens.
Collapse
Affiliation(s)
- Florian Douam
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- CNRS UMR5557 Microbial ecology, Université Claude Bernard Lyon 1, INRA, UMR1418, Villeurbanne, France
- Department of Molecular Biology, Princeton University, Princeton NJ, United States of America
| | - Floriane Fusil
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Margot Enguehard
- CNRS UMR5557 Microbial ecology, Université Claude Bernard Lyon 1, INRA, UMR1418, Villeurbanne, France
- University of Lyon, Université Claude Bernard Lyon1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, Lyon, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Linda Dib
- Molecular Phylogenetics and Speciation, Département d’écologie et évolution, Université de Lausanne, Lausanne, Suisse
| | - Francesca Nadalin
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Loïc Schwaller
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Gabriela Hrebikova
- Department of Molecular Biology, Princeton University, Princeton NJ, United States of America
| | - Jimmy Mancip
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Laurent Mailly
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, Princeton NJ, United States of America
| | - Carine Maisse
- University of Lyon, Université Claude Bernard Lyon1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, Lyon, France
| | - Emilie Carlot
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of interspecies transmission of arboviruses and antivirals, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ke Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of interspecies transmission of arboviruses and antivirals, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Els Verhoeyen
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Thomas F. Baumert
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton NJ, United States of America
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- Institut Universitaire de France, Paris, France
- * E-mail: (FLC); (AC); (DL)
| | - François-Loïc Cosset
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- * E-mail: (FLC); (AC); (DL)
| | - Dimitri Lavillette
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- CNRS UMR5557 Microbial ecology, Université Claude Bernard Lyon 1, INRA, UMR1418, Villeurbanne, France
- University of Lyon, Université Claude Bernard Lyon1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, Lyon, France
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of interspecies transmission of arboviruses and antivirals, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (FLC); (AC); (DL)
| |
Collapse
|
15
|
Bhagi-Damodaran A, Hosseinzadeh P, Mirts E, Reed J, Petrik ID, Lu Y. Design of Heteronuclear Metalloenzymes. Methods Enzymol 2016; 580:501-37. [PMID: 27586347 PMCID: PMC5156654 DOI: 10.1016/bs.mie.2016.05.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heteronuclear metalloenzymes catalyze some of the most fundamentally interesting and practically useful reactions in nature. However, the presence of two or more metal ions in close proximity in these enzymes makes them more difficult to prepare and study than homonuclear metalloenzymes. To meet these challenges, heteronuclear metal centers have been designed into small and stable proteins with rigid scaffolds to understand how these heteronuclear centers are constructed and the mechanism of their function. This chapter describes methods for designing heterobinuclear metal centers in a protein scaffold by giving specific examples of a few heme-nonheme bimetallic centers engineered in myoglobin and cytochrome c peroxidase. We provide step-by-step procedures on how to choose the protein scaffold, design a heterobinuclear metal center in the protein scaffold computationally, incorporate metal ions into the protein, and characterize the resulting metalloproteins, both structurally and functionally. Finally, we discuss how an initial design can be further improved by rationally tuning its secondary coordination sphere, electron/proton transfer rates, and the substrate affinity.
Collapse
Affiliation(s)
- A Bhagi-Damodaran
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - P Hosseinzadeh
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - E Mirts
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - J Reed
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - I D Petrik
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Y Lu
- University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
16
|
Champeimont R, Laine E, Hu SW, Penin F, Carbone A. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins. Sci Rep 2016; 6:26401. [PMID: 27198619 PMCID: PMC4873791 DOI: 10.1038/srep26401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.
Collapse
Affiliation(s)
- Raphaël Champeimont
- Sorbonne Universités, UPMC-Univ P6, CNRS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 15 rue de l’Ecole de Médecine, 75006 Paris, France
| | - Elodie Laine
- Sorbonne Universités, UPMC-Univ P6, CNRS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 15 rue de l’Ecole de Médecine, 75006 Paris, France
| | - Shuang-Wei Hu
- Sorbonne Universités, UPMC-Univ P6, CNRS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 15 rue de l’Ecole de Médecine, 75006 Paris, France
| | - Francois Penin
- CNRS, UMR5086, Bases Moléculaires et Structurales des Systèmes Infectieux, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, Cedex 07, F-69367 Lyon, France
- LABEX Ecofect, Université de Lyon, Lyon, France
| | - Alessandra Carbone
- Sorbonne Universités, UPMC-Univ P6, CNRS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 15 rue de l’Ecole de Médecine, 75006 Paris, France
- Institut Universitaire de France, 75005, Paris, France
| |
Collapse
|
17
|
Hetti Arachchilage M, Piontkivska H. Coevolutionary Analysis Identifies Protein-Protein Interaction Sites between HIV-1 Reverse Transcriptase and Integrase. Virus Evol 2016; 2:vew002. [PMID: 27152230 PMCID: PMC4854294 DOI: 10.1093/ve/vew002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The replication of human immunodeficiency virus-1 (HIV-1) requires reverse transcription of the viral RNA genome and integration of newly synthesized pro-viral DNA into the host genome. This is mediated by the viral proteins reverse transcriptase (RT) and integrase (IN). The formation and stabilization of the pre-integration complex (PIC), which is an essential step for reverse transcription, nuclear import, chromatin targeting, and subsequent integration, involves direct and indirect modes of interaction between RT and IN proteins. While epitope-based treatments targeting IN-viral DNA and IN-RT complexes appear to be a promising combination for an anti-HIV treatment, the mechanisms of IN-RT interactions within the PIC are not well understood due to the transient nature of the protein complex and the intrinsic flexibility of its components. Here, we identify potentially interacting regions between the IN and RT proteins within the PIC through the coevolutionary analysis of amino acid sequences of the two proteins. Our results show that specific regions in the two proteins have strong coevolutionary signatures, suggesting that these regions either experience direct and prolonged interactions between them that require high affinity and/or specificity or that the regions are involved in interactions mediated by dynamic conformational changes and, hence, may involve both direct and indirect interactions. Other regions were found to exhibit weak, but positive correlations, implying interactions that are likely transient and/or have low affinity. We identified a series of specific regions of potential interactions between the IN and RT proteins (e.g., specific peptide regions within the C-terminal domain of IN were identified as potentially interacting with the Connection domain of RT). Coevolutionary analysis can serve as an important step in predicting potential interactions, thus informing experimental studies. These studies can be integrated with structural data to gain a better understanding of the mechanisms of HIV protein interactions.
Collapse
Affiliation(s)
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
18
|
Dib L, Meyer X, Artimo P, Ioannidis V, Stockinger H, Salamin N. Coev-web: a web platform designed to simulate and evaluate coevolving positions along a phylogenetic tree. BMC Bioinformatics 2015; 16:394. [PMID: 26597459 PMCID: PMC4657261 DOI: 10.1186/s12859-015-0785-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/20/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Available methods to simulate nucleotide or amino acid data typically use Markov models to simulate each position independently. These approaches are not appropriate to assess the performance of combinatorial and probabilistic methods that look for coevolving positions in nucleotide or amino acid sequences. RESULTS We have developed a web-based platform that gives a user-friendly access to two phylogenetic-based methods implementing the Coev model: the evaluation of coevolving scores and the simulation of coevolving positions. We have also extended the capabilities of the Coev model to allow for the generalization of the alphabet used in the Markov model, which can now analyse both nucleotide and amino acid data sets. The simulation of coevolving positions is novel and builds upon the developments of the Coev model. It allows user to simulate pairs of dependent nucleotide or amino acid positions. CONCLUSIONS The main focus of our paper is the new simulation method we present for coevolving positions. The implementation of this method is embedded within the web platform Coev-web that is freely accessible at http://coev.vital-it.ch/, and was tested in most modern web browsers.
Collapse
Affiliation(s)
- Linda Dib
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland. .,Laboratoire de recherche en neuroimagerie, CHUV, Lausanne, 1011, Switzerland.
| | - Xavier Meyer
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland. .,Computer Science department, University of Geneva, Carouge, 1227, Switzerland.
| | - Panu Artimo
- SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
| | | | - Heinz Stockinger
- SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
| | - Nicolas Salamin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland. .,SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
| |
Collapse
|
19
|
Dib L, Silvestro D, Salamin N. Evolutionary footprint of coevolving positions in genes. Bioinformatics 2014; 30:1241-9. [DOI: 10.1093/bioinformatics/btu012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|