1
|
Moreno-del Álamo M, Carrasco B, Torres R, Alonso JC. Bacillus subtilis PcrA Helicase Removes Trafficking Barriers. Cells 2021; 10:935. [PMID: 33920686 PMCID: PMC8074105 DOI: 10.3390/cells10040935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022] Open
Abstract
Bacillus subtilis PcrA interacts with the RNA polymerase and might contribute to mitigate replication-transcription conflicts (RTCs). We show that PcrA depletion lethality is partially suppressed by rnhB inactivation, but cell viability is significantly reduced by rnhC or dinG inactivation. Following PcrA depletion, cells lacking RnhC or DinG are extremely sensitive to DNA damage. Chromosome segregation is not further impaired by rnhB or dinG inactivation but is blocked by rnhC or recA inactivation upon PcrA depletion. Despite our efforts, we could not construct a ΔrnhC ΔrecA strain. These observations support the idea that PcrA dismantles RTCs. Purified PcrA, which binds single-stranded (ss) DNA over RNA, is a ssDNA-dependent ATPase and preferentially unwinds DNA in a 3'→5'direction. PcrA unwinds a 3'-tailed RNA of an RNA-DNA hybrid significantly faster than that of a DNA substrate. Our results suggest that a replicative stress, caused by mis-incorporated rNMPs, indirectly increases cell viability upon PcrA depletion. We propose that PcrA, in concert with RnhC or DinG, contributes to removing spontaneous or enzyme-driven R-loops, to counteract deleterious trafficking conflicts and preserve to genomic integrity.
Collapse
Affiliation(s)
| | | | | | - Juan Carlos Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain; (M.M.-d.Á.); (B.C.); (R.T.)
| |
Collapse
|
2
|
The Novel Halovirus Hardycor1, and the Presence of Active (Induced) Proviruses in Four Haloarchaea. Genes (Basel) 2021; 12:genes12020149. [PMID: 33498646 PMCID: PMC7911831 DOI: 10.3390/genes12020149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
The virus Hardycor1 was isolated in 1998 and infects the haloarchaeon Halorubrum coriense. DNA from a frozen stock (HC1) was sequenced and the viral genome found to be 45,142 bp of dsDNA, probably having redundant, circularly permuted termini. The genome showed little similarity (BLASTn) to known viruses. Only twenty-two of the 53 (41%) predicted proteins were significantly similar to sequences in the NCBI nr protein database (E-value ≤ 10-15). Six caudovirus-like proteins were encoded, including large subunit terminase (TerL), major capsid protein (Mcp) and tape measure protein (Tmp). Hardycor1 was predicted to be a siphovirus (VIRFAM). No close relationship to other viruses was found using phylogenetic tree reconstructions based on TerL and Mcp. Unexpectedly, the sequenced virus stock HC1 also revealed two induced proviruses of the host: a siphovirus (Humcor1) and a pleolipovirus (Humcor2). A re-examination of other similarly sequenced, archival virus stocks revealed induced proviruses of Haloferax volcanii, Haloferax gibbonsii and Haloarcula hispanica, three of which were pleolipoviruses. One provirus (Halfvol2) of Hfx. volcanii showed little similarity (BLASTn) to known viruses and probably represents a novel virus group. The attP sequences of many pleolipoproviruses were found to be embedded in a newly detected coding sequence, split in the provirus state, that spans between genes for integrase and a downstream CxxC-motif protein. This gene might play an important role in regulation of the temperate state.
Collapse
|
3
|
Serrano E, Ramos C, Ayora S, Alonso JC. Viral SPP1 DNA is infectious in naturally competent Bacillus subtilis cells: inter- and intramolecular recombination pathways. Environ Microbiol 2020; 22:714-725. [PMID: 31876108 DOI: 10.1111/1462-2920.14908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 01/09/2023]
Abstract
A proteolyzed bacteriophage (phage) might release its DNA into the environment. Here, we define the recombination functions required to resurrect an infective lytic phage from inactive environmental viral DNA in naturally competent Bacillus subtilis cells. Using phage SPP1 DNA, a model that accounts for the obtained data is proposed (i) the DNA uptake apparatus takes up environmental SPP1 DNA, fragments it, and incorporates into the cytosol different linear single-stranded (ss) DNA molecules shorter than genome-length; (ii) the SsbA-DprA mediator loads RecA onto any fragmented linear SPP1 ssDNA, but negative modulators (RecX and RecU) promote a net RecA disassembly from these ssDNAs not homologous to the host genome; (iii) single strand annealing (SSA) proteins, DprA and RecO, anneal the SsbA- or SsbB-coated complementary strands, yielding tailed SPP1 duplex intermediates; (iv) RecA polymerized on these tailed intermediates invades a homologous region in another incomplete molecule, and in concert with RecD2 helicase, reconstitutes a complete linear phage genome with redundant regions at the ends of the molecule; and (v) DprA, RecO or viral G35P SSA, may catalyze the annealing of these terminally redundant regions, alone or with the help of an exonuclease, to produce a circular unit-length duplex viral genome ready to initiate replication.
Collapse
Affiliation(s)
- Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain
| |
Collapse
|
4
|
Torres R, Serrano E, Alonso JC. Bacillus subtilis RecA interacts with and loads RadA/Sms to unwind recombination intermediates during natural chromosomal transformation. Nucleic Acids Res 2019; 47:9198-9215. [PMID: 31350886 PMCID: PMC6755099 DOI: 10.1093/nar/gkz647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 02/01/2023] Open
Abstract
During natural transformation Bacillus subtilis RecA, polymerized onto the incoming single-stranded (ss) DNA, catalyses DNA strand invasion resulting in a displacement loop (D-loop) intermediate. A null radA mutation impairs chromosomal transformation, and RadA/Sms unwinds forked DNA in the 5′→3′ direction. We show that in the absence of RadA/Sms competent cells require the RecG translocase for natural chromosomal transformation. RadA/Sms tetracysteine motif (C13A and C13R) variants, which fail to interact with RecA, are also deficient in plasmid transformation, but this defect is suppressed by inactivating recA. The RadA/Sms C13A and C13R variants bind ssDNA, and this interaction stimulates their ATPase activity. Wild-type (wt) RadA/Sms interacts with and inhibits the ATPase activity of RecA, but RadA/Sms C13A fails to do it. RadA/Sms and its variants, C13A and C13R, bound to the 5′-tail of a DNA substrate, unwind DNA in the 5′→3′ direction. RecA interacts with and loads wt RadA/Sms to promote unwinding of a non-cognate 3′-tailed or 5′-fork DNA substrate, but RadA/Sms C13A or C13R fail to do it. We propose that wt RadA/Sms interaction with RecA is crucial to recruit the former onto D-loop DNA, and both proteins in concert catalyse D-loop extension to favour integration of ssDNA during chromosomal transformation.
Collapse
Affiliation(s)
- Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91585 4546; Fax: +34 91585 4506;
| |
Collapse
|
5
|
Torres R, Serrano E, Tramm K, Alonso JC. Bacillus subtilis RadA/Sms contributes to chromosomal transformation and DNA repair in concert with RecA and circumvents replicative stress in concert with DisA. DNA Repair (Amst) 2019; 77:45-57. [PMID: 30877841 DOI: 10.1016/j.dnarep.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/15/2019] [Accepted: 03/03/2019] [Indexed: 01/01/2023]
Abstract
Bacillus subtilis radA is epistatic to disA and recA genes in response to methyl methane sulfonate- and 4-nitroquinoline-1-oxide-induced DNA damage. We show that ΔradA cells were sensitive to mitomycin C- and H2O2-induced damage and impaired in natural chromosomal transformation, whereas cells lacking DisA were not. RadA/Sms mutants in the conserved H1 (K104A and K104R) or KNRFG (K255A and K255R) motifs fail to rescue the sensitivity of ΔradA in response to the four different DNA damaging agents. A RadA/Sms H1 or KNRFG mutation impairs both chromosomal and plasmid transformation, but the latter defect was suppressed by inactivating RecA. RadA/Sms K255A, K255R and wild type RadA/Sms reduced the diadenylate cyclase activity of DisA, whereas RadA/Sms K104A and K104R blocked it. Single-stranded and Holliday junction DNA are preferentially bound over double-stranded DNA by RadA/Sms and its variants. Moreover, RadA/Sms ATPase activity was neither stimulated by a variety of DNA substrates nor by DisA. RadA/Sms possesses a 5´→3´ DNA helicase activity. The RadA/Sms mutants neither hydrolyze ATP nor unwind DNA. Thus, we propose that RadA/Sms has two activities: to modulate DisA and to promote RecA-mediated DNA strand exchange. Both activities are required to coordinate responses to replicative stress and genetic recombination.
Collapse
Affiliation(s)
- Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| | - Kristina Tramm
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain.
| |
Collapse
|
6
|
Carrasco B, Serrano E, Martín-González A, Moreno-Herrero F, Alonso JC. Bacillus subtilis MutS Modulates RecA-Mediated DNA Strand Exchange Between Divergent DNA Sequences. Front Microbiol 2019; 10:237. [PMID: 30814990 PMCID: PMC6382021 DOI: 10.3389/fmicb.2019.00237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
The efficiency of horizontal gene transfer, which contributes to acquisition and spread of antibiotic resistance and pathogenicity traits, depends on nucleotide sequence and different mismatch-repair (MMR) proteins participate in this process. To study how MutL and MutS MMR proteins regulate recombination across species boundaries, we have studied natural chromosomal transformation with DNA up to ∼23% sequence divergence. We show that Bacillus subtilis natural chromosomal transformation decreased logarithmically with increased sequence divergence up to 15% in wild type (wt) cells or in cells lacking MutS2 or mismatch repair proteins (MutL, MutS or both). Beyond 15% sequence divergence, the chromosomal transformation efficiency is ∼100-fold higher in ΔmutS and ΔmutSL than in ΔmutS2 or wt cells. In the first phase of the biphasic curve (up to 15% sequence divergence), RecA-catalyzed DNA strand exchange contributes to the delineation of species, and in the second phase, homology-facilitated illegitimate recombination might aid in the restoration of inactivated genes. To understand how MutS modulates the integration process, we monitored DNA strand exchange reactions using a circular single-stranded DNA and a linear double-stranded DNA substrate with an internal 77-bp region with ∼16% or ∼54% sequence divergence in an otherwise homologous substrate. The former substrate delayed, whereas the latter halted RecA-mediated strand exchange. Interestingly, MutS addition overcame the heterologous barrier. We propose that MutS assists DNA strand exchange by facilitating RecA disassembly, and indirectly re-engagement with the homologous 5′-end of the linear duplex. Our data supports the idea that MutS modulates bidirectional RecA-mediated integration of divergent sequences and this is important for speciation.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alejandro Martín-González
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
7
|
The Revisited Genome of Bacillus subtilis Bacteriophage SPP1. Viruses 2018; 10:v10120705. [PMID: 30544981 PMCID: PMC6316719 DOI: 10.3390/v10120705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis bacteriophage SPP1 is a lytic siphovirus first described 50 years ago [1]. Its complete DNA sequence was reported in 1997 [2]. Here we present an updated annotation of the 44,016 bp SPP1 genome and its correlation to different steps of the viral multiplication process. Five early polycistronic transcriptional units encode phage DNA replication proteins and lysis functions together with less characterized, mostly non-essential, functions. Late transcription drives synthesis of proteins necessary for SPP1 viral particles assembly and for cell lysis, together with a short set of proteins of unknown function. The extensive genetic, biochemical and structural biology studies on the molecular mechanisms of SPP1 DNA replication and phage particle assembly rendered it a model system for tailed phages research. We propose SPP1 as the reference species for a new SPP1-like viruses genus of the Siphoviridae family.
Collapse
|
8
|
Carrasco B, Seco EM, López-Sanz M, Alonso JC, Ayora S. Bacillus subtilis RarA modulates replication restart. Nucleic Acids Res 2018; 46:7206-7220. [PMID: 29947798 PMCID: PMC6101539 DOI: 10.1093/nar/gky541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/05/2018] [Indexed: 02/01/2023] Open
Abstract
The ubiquitous RarA/Mgs1/WRNIP protein plays a crucial, but poorly understood role in genome maintenance. We show that Bacillus subtilis RarA, in the apo form, preferentially binds single-stranded (ss) over double-stranded (ds) DNA. SsbA bound to ssDNA loads RarA, and for such recruitment the amphipathic C-terminal domain of SsbA is required. RarA is a DNA-dependent ATPase strongly stimulated by ssDNA–dsDNA junctions and SsbA, or by dsDNA ends. RarA, which may interact with PriA, does not stimulate PriA DNA unwinding. In a reconstituted PriA-dependent DNA replication system, RarA inhibited initiation, but not chain elongation. The RarA effect was not observed in the absence of SsbA, or when the host-encoded preprimosome and the DNA helicase are replaced by proteins from the SPP1 phage with similar function. We propose that RarA assembles at blocked forks to maintain genome integrity. Through its interaction with SsbA and with a preprimosomal component, RarA might impede the assembly of the replicative helicase, to prevent that recombination intermediates contribute to pathological DNA replication restart.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, (CNB-CSIC), Cantoblanco 28049, Madrid, Spain
| | - Elena M Seco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, (CNB-CSIC), Cantoblanco 28049, Madrid, Spain
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, (CNB-CSIC), Cantoblanco 28049, Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, (CNB-CSIC), Cantoblanco 28049, Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, (CNB-CSIC), Cantoblanco 28049, Madrid, Spain
| |
Collapse
|
9
|
Serrano E, Carrasco B, Gilmore JL, Takeyasu K, Alonso JC. RecA Regulation by RecU and DprA During Bacillus subtilis Natural Plasmid Transformation. Front Microbiol 2018; 9:1514. [PMID: 30050509 PMCID: PMC6050356 DOI: 10.3389/fmicb.2018.01514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023] Open
Abstract
Natural plasmid transformation plays an important role in the dissemination of antibiotic resistance genes in bacteria. During this process, Bacillus subtilis RecA physically interacts with RecU, RecX, and DprA. These three proteins are required for plasmid transformation, but RecA is not. In vitro, DprA recruits RecA onto SsbA-coated single-stranded (ss) DNA, whereas RecX inhibits RecA filament formation, leading to net filament disassembly. We show that a null recA (ΔrecA) mutation suppresses the plasmid transformation defect of competent ΔrecU cells, and that RecU is essential for both chromosomal and plasmid transformation in the ΔrecX context. RecU inhibits RecA filament growth and facilitates RecA disassembly from preformed filaments. Increasing SsbA concentrations additively contributes to RecU-mediated inhibition of RecA filament extension. DprA is necessary and sufficient to counteract the negative effect of both RecU and SsbA on RecA filament growth onto ssDNA. DprA-SsbA activates RecA to catalyze DNA strand exchange in the presence of RecU, but this effect was not observed if RecU was added prior to RecA. We propose that DprA contributes to RecA filament growth onto any internalized SsbA-coated ssDNA. When the ssDNA is homologous to the recipient, DprA antagonizes the inhibitory effect of RecU on RecA filament growth and helps RecA to catalyze chromosomal transformation. On the contrary, RecU promotes RecA filament disassembly from a heterologous (plasmid) ssDNA, overcoming an unsuccessful homology search and favoring plasmid transformation. The DprA–DprA interaction may promote strand annealing upon binding to the complementary plasmid strands and facilitating thereby plasmid transformation rather than through a mediation of RecA filament growth.
Collapse
Affiliation(s)
- Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jamie L Gilmore
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
10
|
Johnson MC, Sena-Velez M, Washburn BK, Platt GN, Lu S, Brewer TE, Lynn JS, Stroupe ME, Jones KM. Structure, proteome and genome of Sinorhizobium meliloti phage ΦM5: A virus with LUZ24-like morphology and a highly mosaic genome. J Struct Biol 2017; 200:343-359. [DOI: 10.1016/j.jsb.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/24/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022]
|
11
|
Neamah MM, Mir-Sanchis I, López-Sanz M, Acosta S, Baquedano I, Haag AF, Marina A, Ayora S, Penadés JR. Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus. Nucleic Acids Res 2017; 45:6507-6519. [PMID: 28475766 PMCID: PMC5499656 DOI: 10.1093/nar/gkx308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 05/03/2017] [Indexed: 11/16/2022] Open
Abstract
DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages.
Collapse
Affiliation(s)
- Maan M Neamah
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.,Department of Microbiology, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq
| | - Ignacio Mir-Sanchis
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113 Moncada, Valencia, Spain
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Sonia Acosta
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Ignacio Baquedano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Andreas F Haag
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
12
|
Complete Genome Sequences of
Arthrobacter
Phages Beans, Franzy, Jordan, Piccoletto, Shade, and Timinator. GENOME ANNOUNCEMENTS 2017; 5:5/44/e01094-17. [PMID: 29097454 PMCID: PMC5668530 DOI: 10.1128/genomea.01094-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the genome sequences of six newly isolated bacteriophages infecting Arthrobacter sp. ATCC 21022. All six have myoviral morphologies and have double-stranded DNA genomes with circularly permuted ends. The six phages are closely related with average nucleotide identities of 73.4 to 93.0% across genomes lengths of 49,797 to 51,347 bp.
Collapse
|
13
|
Valero-Rello A, López-Sanz M, Quevedo-Olmos A, Sorokin A, Ayora S. Molecular Mechanisms That Contribute to Horizontal Transfer of Plasmids by the Bacteriophage SPP1. Front Microbiol 2017; 8:1816. [PMID: 29018417 PMCID: PMC5615212 DOI: 10.3389/fmicb.2017.01816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023] Open
Abstract
Natural transformation and viral-mediated transduction are the main avenues of horizontal gene transfer in Firmicutes. Bacillus subtilis SPP1 is a generalized transducing bacteriophage. Using this lytic phage as a model, we have analyzed how viral replication and recombination systems contribute to the transfer of plasmid-borne antibiotic resistances. Phage SPP1 DNA replication relies on essential phage-encoded replisome organizer (G38P), helicase loader (G39P), hexameric replicative helicase (G40P), recombinase (G35P) and in less extent on the partially dispensable 5′→3′ exonuclease (G34.1P), the single-stranded DNA binding protein (G36P) and the Holliday junction resolvase (G44P). Correspondingly, the accumulation of linear concatemeric plasmid DNA, and the formation of transducing particles were blocked in the absence of G35P, G38P, G39P, and G40P, greatly reduced in the G34.1P, G36P mutants, and slightly reduced in G44P mutants. In contrast, establishment of injected linear plasmid DNA in the recipient host was independent of viral-encoded functions. DNA homology between SPP1 and the plasmid, rather than a viral packaging signal, enhanced the accumulation of packagable plasmid DNA. The transfer efficiency was also dependent on plasmid copy number, and rolling-circle plasmids were encapsidated at higher frequencies than theta-type replicating plasmids.
Collapse
Affiliation(s)
- Ana Valero-Rello
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alvaro Quevedo-Olmos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alexei Sorokin
- Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
14
|
Activity and in vivo dynamics of Bacillus subtilis DisA are affected by RadA/Sms and by Holliday junction-processing proteins. DNA Repair (Amst) 2017; 55:17-30. [PMID: 28511132 DOI: 10.1016/j.dnarep.2017.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
Bacillus subtilis c-di-AMP synthase DisA and RecA-related RadA/Sms are involved in the repair of DNA damage in exponentially growing cells. We provide genetic evidence that DisA or RadA/Sms is epistatic to the branch migration translocase (BMT) RecG and the Holliday junction (HJ) resolvase RecU in response to DNA damage. We provide genetic evidence damage. Functional DisA-YFP formed dynamic foci in exponentially growing cells, which moved through the nucleoids at a speed compatible with a DNA-scanning mode. DisA formed more static structures in the absence of RecU or RecG than in wild type cells, while dynamic foci were still observed in cells lacking the BMT RuvAB. Purified DisA synthesizes c-di-AMP, but interaction with RadA/Sms or with HJ DNA decreases DisA-mediated c-di-AMP synthesis. RadA/Sms-YFP also formed dynamic foci in growing cells, but the foci moved throughout the cells rather than just on the nucleoids, and co-localized rarely with DisA-YFP foci, suggesting that RadA/Sms and DisA interact only transiently in unperturbed conditions. Our data suggest a model in which DisA moving along dsDNA indicates absence of DNA damage/replication stress via normal c-di-AMP levels, while interaction with HJ DNA/halted forks leads to reduced c-di-AMP levels and an ensuing block in cell proliferation. RadA/Sms may be involved in modulating DisA activities.
Collapse
|
15
|
End of the beginning: elongation and termination features of alternative modes of chromosomal replication initiation in bacteria. PLoS Genet 2015; 11:e1004909. [PMID: 25569209 PMCID: PMC4287441 DOI: 10.1371/journal.pgen.1004909] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In bacterial cells, bidirectional replication of the circular chromosome is initiated from a single origin (oriC) and terminates in an antipodal terminus region such that movement of the pair of replication forks is largely codirectional with transcription. The terminus region is flanked by discrete Ter sequences that act as polar, or direction-dependent, arrest sites for fork progression. Alternative oriC-independent modes of replication initiation are possible, one of which is constitutive stable DNA replication (cSDR) from transcription-associated RNA–DNA hybrids or R-loops. Here, I discuss the distinctive attributes of fork progression and termination associated with different modes of bacterial replication initiation. Two hypothetical models are proposed: that head-on collisions between pairs of replication forks, which are a feature of replication termination in all kingdoms of life, provoke bilateral fork reversal reactions; and that cSDR is characterized by existence of distinct subpopulations in bacterial cultures and a widespread distribution of origins in the genome, each with a small firing potential. Since R-loops are known to exist in eukaryotic cells and to inflict genome damage in G1 phase, it is possible that cSDR-like events promote aberrant replication initiation even in eukaryotes.
Collapse
|
16
|
López-Perrote A, Alatwi HE, Torreira E, Ismail A, Ayora S, Downs JA, Llorca O. Structure of Yin Yang 1 oligomers that cooperate with RuvBL1-RuvBL2 ATPases. J Biol Chem 2014; 289:22614-22629. [PMID: 24990942 PMCID: PMC4132769 DOI: 10.1074/jbc.m114.567040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/22/2014] [Indexed: 02/03/2023] Open
Abstract
Yin Yang 1 (YY1) is a transcription factor regulating proliferation and differentiation and is involved in cancer development. Oligomers of recombinant YY1 have been observed before, but their structure and DNA binding properties are not well understood. Here we find that YY1 assembles several homo-oligomeric species built from the association of a bell-shaped dimer, a process we characterized by electron microscopy. Moreover, we find that YY1 self-association also occurs in vivo using bimolecular fluorescence complementation. Unexpectedly, these oligomers recognize several DNA substrates without the consensus sequence for YY1 in vitro, and DNA binding is enhanced in the presence of RuvBL1-RuvBL2, two essential AAA+ ATPases. YY1 oligomers bind RuvBL1-RuvBL2 hetero-oligomeric complexes, but YY1 interacts preferentially with RuvBL1. Collectively, these findings suggest that YY1-RuvBL1-RuvBL2 complexes could contribute to functions beyond transcription, and we show that YY1 and the ATPase activity of RuvBL2 are required for RAD51 foci formation during homologous recombination.
Collapse
Affiliation(s)
- Andrés López-Perrote
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maetzu 9, 28040 Madrid, Spain
| | - Hanan E Alatwi
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, United Kingdom, and
| | - Eva Torreira
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maetzu 9, 28040 Madrid, Spain
| | - Amani Ismail
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, United Kingdom, and
| | - Silvia Ayora
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, 28049 Madrid, Spain
| | - Jessica A Downs
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, United Kingdom, and.
| | - Oscar Llorca
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maetzu 9, 28040 Madrid, Spain,.
| |
Collapse
|
17
|
Cañas C, Suzuki Y, Marchisone C, Carrasco B, Freire-Benéitez V, Takeyasu K, Alonso JC, Ayora S. Interaction of branch migration translocases with the Holliday junction-resolving enzyme and their implications in Holliday junction resolution. J Biol Chem 2014; 289:17634-46. [PMID: 24770420 DOI: 10.1074/jbc.m114.552794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Double-strand break repair involves the formation of Holliday junction (HJ) structures that need to be resolved to promote correct replication and chromosomal segregation. The molecular mechanisms of HJ branch migration and/or resolution are poorly characterized in Firmicutes. Genetic evidence suggested that the absence of the RuvAB branch migration translocase and the RecU HJ resolvase is synthetically lethal in Bacillus subtilis, whereas a recU recG mutant was viable. In vitro RecU, which is restricted to bacteria of the Firmicutes phylum, binds HJs with high affinity. In this work we found that RecU does not bind simultaneously with RecG to a HJ. RuvB by interacting with RecU bound to the central region of HJ DNA, loses its nonspecific association with DNA, and re-localizes with RecU to form a ternary complex. RecU cannot stimulate the ATPase or branch migration activity of RuvB. The presence of RuvB·ATPγS greatly stimulates RecU-mediated HJ resolution, but the addition of ATP or RuvA abolishes this stimulatory effect. A RecU·HJ·RuvAB complex might be formed. RecU does not increase the RuvAB activities but slightly inhibits them.
Collapse
Affiliation(s)
- Cristina Cañas
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Yuki Suzuki
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chiara Marchisone
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Begoña Carrasco
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Verónica Freire-Benéitez
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Juan C Alonso
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| | - Silvia Ayora
- From the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Biotecnología Microbiana, 28049 Madrid, Spain and
| |
Collapse
|
18
|
Yuan Y, Gao M, Peng Q, Wu D, Liu P, Wu Y. Genomic analysis of a phage and prophage from a Bacillus thuringiensis strain. J Gen Virol 2013; 95:751-761. [PMID: 24285088 DOI: 10.1099/vir.0.058735-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages have been found to be the most abundant and also potentially most diverse biological entities on Earth. In the present study, Bacillus phages were isolated rapidly and shown to have a high degree of diversity. The genomes of a newly isolated phage, phiCM3, and a prophage, proCM3, from the Bacillus thuringiensis strain YM-03 were sequenced and characterized. Comparative genome analysis showed that the phiCM3 genome is highly similar to the genomes of eight other Bacillus phages and seven of these phages were classified as the Wβ group of phages. Analysis of the differential evolution of the genes in the Wβ-group phages indicated that the genes encoding the antirepressor and tail fibre protein were more highly conserved than those encoding the major capsid protein, DNA replication protein, and RNA polymerase σ factor, which might have diverged to acquire mechanisms suitable for survival in different microbial hosts. Genome analysis of proCM3 revealed that proCM3 might be a defective phage because of mutations in the minor structural protein, and it was not inducible by mitomycin C treatment. The proCM3 genome was similar to those of two lytic Bacillus phages in sequence, but had a different genomic structure, composed of three regions in a different order. These data suggest that the three phages might have had a common ancestor and that genome rearrangement might have occurred during evolution. The findings of this study enrich our current knowledge of Bacillus phage diversity and evolution, especially for the Wβ-group and TP21-L-like phages, and may help the development of practical applications of Bacillus phages.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Qin Peng
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Dandan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Pengming Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
19
|
Seco EM, Zinder JC, Manhart CM, Lo Piano A, McHenry CS, Ayora S. Bacteriophage SPP1 DNA replication strategies promote viral and disable host replication in vitro. Nucleic Acids Res 2012; 41:1711-21. [PMID: 23268446 PMCID: PMC3561973 DOI: 10.1093/nar/gks1290] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Complex viruses that encode their own initiation proteins and subvert the host’s elongation apparatus have provided valuable insights into DNA replication. Using purified bacteriophage SPP1 and Bacillus subtilis proteins, we have reconstituted a rolling circle replication system that recapitulates genetically defined protein requirements. Eleven proteins are required: phage-encoded helicase (G40P), helicase loader (G39P), origin binding protein (G38P) and G36P single-stranded DNA-binding protein (SSB); and host-encoded PolC and DnaE polymerases, processivity factor (β2), clamp loader (τ-δ-δ′) and primase (DnaG). This study revealed a new role for the SPP1 origin binding protein. In the presence of SSB, it is required for initiation on replication forks that lack origin sequences, mimicking the activity of the PriA replication restart protein in bacteria. The SPP1 replisome is supported by both host and viral SSBs, but phage SSB is unable to support B. subtilis replication, likely owing to its inability to stimulate the PolC holoenzyme in the B. subtilis context. Moreover, phage SSB inhibits host replication, defining a new mechanism by which bacterial replication could be regulated by a viral factor.
Collapse
Affiliation(s)
- Elena M Seco
- Departamento de Biotecnología Microbiana, Centro Nacional, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|