1
|
Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal and Advanced Glycation End Products (AGEs): Targets for the Prevention and Treatment of Diabetes-Associated Bladder Dysfunction? Biomedicines 2024; 12:939. [PMID: 38790901 PMCID: PMC11118115 DOI: 10.3390/biomedicines12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyperglycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant environment through NADPH oxidase activation and generation of high levels of reactive oxygen species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test drugs that selectively inhibit the MGO-AGEs-RAGE signaling, aiming to reduce the manifestations of diabetes-associated bladder dysfunction. This review summarizes the current literature on the role of MGO-AGEs-RAGE-ROS axis in diabetes-associated bladder dysfunction. Drugs that directly inactivate MGO and ameliorate bladder dysfunction are also reviewed here.
Collapse
Affiliation(s)
| | | | | | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (A.L.O.); (M.G.d.O.); (F.Z.M.)
| |
Collapse
|
2
|
Li S, Zou J, Wang Z, Wang M, Yuan Y, Lv H. Correlation Between Insulin Resistance and Urinary Incontinence in Female Patients with Type 2 Diabetes Mellitus. Int Urogynecol J 2024; 35:431-440. [PMID: 38189852 DOI: 10.1007/s00192-023-05715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
INTRODUCTION AND HYPOTHESIS Patients with type 2 diabetes mellitus (T2DM) are at a high risk of developing urinary incontinence; however, its pathogenesis is unclear. The purpose of this study is to explore the relationship between insulin resistance and urinary incontinence and its severity in female patients with T2DM. METHODS A total of 366 women with T2DM aged ≥18 years were enrolled in this study. Insulin resistance was evaluated by the homeostasis model insulin resistance (HOMA-IR) index and urinary incontinence was assessed by the International Consultation on Incontinence Questionnaire Short Form (ICIQ-SF). All subjects were divided into four groups according to HOMA-IR quartiles. Logistic regression analysis was performed to investigate the relationship between insulin resistance and urinary incontinence and its severity. RESULTS Among the 366 patients, 186 (50.8%) had urinary incontinence. The prevalence of urinary incontinence increased significantly with HOMA-IR quartiles (p < 0.001). Adjusted logistic regression analysis showed that compared with HOMA-IR ≤ 1.76, 2.81 ≤ HOMA-IR ≤ 4.27 was associated with a significantly increased risk of moderate incontinence (OR = 2.197, 95% CI 1.031-4.683, p = 0.041), and HOMA-IR ≥ 4.28 was associated with a significantly increased risk of severe incontinence (OR = 5.699, 95% CI 1.685-19.276, p = 0.005). Binary logistic regression analysis showed that HOMA-IR was the independent risk factor for urinary incontinence (p < 0.001). CONCLUSIONS Higher levels of insulin resistance are associated with urinary incontinence and its severity in female patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Shuyun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Jingyi Zou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Zhen Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Mengke Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Yue Yuan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Haihong Lv
- Department of Endocrinology, The First Hospital of Lanzhou University, 1 Donggang West Road, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
3
|
Oliveira AL, Medeiros ML, de Oliveira MG, Teixeira CJ, Mónica FZ, Antunes E. Enhanced RAGE Expression and Excess Reactive-Oxygen Species Production Mediates Rho Kinase-Dependent Detrusor Overactivity After Methylglyoxal Exposure. Front Physiol 2022; 13:860342. [PMID: 35418871 PMCID: PMC8996136 DOI: 10.3389/fphys.2022.860342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
Methylglyoxal (MGO) is a highly reactive dicarbonyl compound implicated in diabetes-associated diseases. In vascular tissues, MGO induces the formation of advanced glycation end products (AGEs) that bounds its receptor RAGE, initiating the downstream tissue injury. Outside the cardiovascular system, MGO intake produces mouse voiding dysfunction and bladder overactivity. We have sought that MGO-induced bladder overactivity is due to activation of AGE-RAGE-reactive-oxygen species (ROS) signaling cascade, leading to Rho kinase activation. Therefore, female mice received 0.5% MGO orally for 12 weeks, after which in vitro bladder contractions were evaluated in the presence or not of superoxide dismutase (PEG-SOD) or the Rho kinase inhibitor Y27632. Treatment with MGO significantly elevated the serum levels of MGO and fluorescent AGEs, as well as the RAGE immunostaining in the urothelium, detrusor, and vascular endothelium. RAGE mRNA expression in the bladder was also higher in the MGO group. Methylglyoxal significantly increased the ROS production in both urothelium and detrusor smooth muscle, with the increases in detrusor markedly higher than urothelium. The bladder activity of superoxide dismutase (SOD) was significantly reduced in the MGO group. Gene expressions of L-type Ca2+ channels, RhoA, ROCK-1, and ROCK-2 in bladder tissues were significantly elevated in the MGO group. Increased bladder contractions to electrical-field stimulation, carbachol α,β-methylene ATP, and extracellular Ca2+ were observed after MGO exposure, which was significantly reduced by prior incubation with either PEG-SOD or Y27632. Overall, our data indicate serum MGO accumulation elevates the AGEs levels and activates the RAGE-ROS signaling leading to Rho kinase-induced muscle sensitization, ultimately leading to detrusor overactivity.
Collapse
Affiliation(s)
- Akila L Oliveira
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Matheus L Medeiros
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Caio Jordão Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
4
|
Efficacy of resveratrol in male urogenital tract dysfunctions: an evaluation of pre-clinical data. Nutr Res Rev 2021; 36:86-97. [PMID: 34776039 DOI: 10.1017/s0954422421000354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Resveratrol is a polyphenol found naturally in fruits and plants. Recently, studies in humans and animal models have suggested beneficial properties of this polyphenol, such as improvements to metabolic and lipid profiles, along with antioxidant, anti-inflammatory and anti-proliferative effects. In the urogenital tract (UGT), resveratrol has also been tested clinically and experimentally as a therapeutic drug in several diseases; however, the translational efficacy of resveratrol, especially in UGT, is still a matter of debate. In the present review, we address the pre-clinical efficacy of resveratrol in UGT-related dysfunctions, focusing on lower urinary tract symptoms, non-cancerous prostatic disease (benign prostatic hyperplasia and prostatitis) and erectile dysfunction. In vitro studies indicate that resveratrol reduces inflammatory markers and oxidative stress, and improves endothelial function in UGT organs and cells isolated from humans and animals. Despite displaying low oral bioavailability, in vivo administration of resveratrol largely improves erectile dysfunction, benign prostatic hyperplasia, prostatitis and voiding impairments, as evidenced in different animal models. Resveratrol also acts as a microbiota modulator, which may explain some of its beneficial effects in vivo. In contrast to the large amount of pre-clinical data, there are insufficient clinical trials to establish resveratrol treatment efficacy in human UGT-related diseases. In summary, we provide an overview of the in vivo and in vitro efficacy of resveratrol in animal and human UGT dysfunctions, which may support future clinical trials.
Collapse
|
5
|
Metformin abrogates the voiding dysfunction induced by prolonged methylglyoxal intake. Eur J Pharmacol 2021; 910:174502. [PMID: 34516950 DOI: 10.1016/j.ejphar.2021.174502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022]
Abstract
Methylglyoxal (MGO) is a reactive carbonyl species found at high levels in blood of diabetic patients. The anti-hyperglycemic drug metformin can scavenger MGO and reduce the formation of advanced glycation end products (AGEs). Here, we aimed to investigate if MGO-induced bladder dysfunction can be reversed by metformin. Male C57/BL6 mice received 0.5% MGO in drinking water for 12 weeks, and metformin (300 mg/kg, daily gavage) was given in the last two weeks. The bladder functions were evaluated by performing voiding behavior assays, cystometry and in vitro bladder contractions. MGO intake markedly elevated the levels of MGO and fluorescent AGEs in serum and reduced the mRNA expression and activity of glyoxalase (Glo1) in bladder tissues. Glucose levels were unaffected among groups. MGO intake also increased the urothelium thickness and collagen content of the bladder. Void spot assays in conscious mice revealed an increased void volume in MGO group. The cystometric assays in anesthetized mice revealed increases of basal pressure, non-voiding contractions frequency, bladder capacity, inter-micturition pressure and residual volume, which were accompanied by reduced voiding efficiency in MGO group. In vitro bladder contractions to carbachol, α,β-methylene ATP and electrical-field stimulation were significantly greater in MGO group. Metformin normalized the changes of MGO and AGEs levels, Glo1 expression and activity, urothelium thickness and collagen content. The MGO-induced voiding dysfunction were all restored by metformin treatment. Our findings strongly suggest that the amelioration of MGO-induced voiding dysfunction by metformin relies on its ability to scavenger MGO, preventing its accumulation in blood.
Collapse
|
6
|
Peres Valgas da Silva C, Calmasini F, Alexandre EC, Raposo HF, Delbin MA, Monica FZ, Zanesco A. The effects of mirabegron on obesity-induced inflammation and insulin resistance are associated with brown adipose tissue activation but not beiging in the subcutaneous white adipose tissue. Clin Exp Pharmacol Physiol 2021; 48:1477-1487. [PMID: 34343353 DOI: 10.1111/1440-1681.13566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023]
Abstract
Mirabegron is a selective β₃-adrenergic receptors agonist, which has been recently shown to improve metabolic health in rodents and humans. In this study, we investigated the effects of 2-week mirabegron treatment on the metabolic parameters of mice with a diet-induced obesity (DIO). C57BL/6JUnib mice were divided into control (CTR) and obese (OB) groups treated with vehicle, and an OB group treated with mirabegron (OB + MIRA). The obese groups were fed a high-fat diet for 12 weeks. Mirabegron (10 mg/kg/day) was administrated orally by gavage from weeks 10-12. After 2 weeks of mirabegron treatment, the energy expenditure was assessed with indirect calorimetry. Blood glucose, insulin, glycerol, free fatty acids (FFA), thiobarbituric acid reactive substance (TBAR), and tumour necrosis factor (TNF)-α levels were also assessed, and the HOMA index was determined. Liver tissue, brown adipose tissue (BAT), and inguinal white adipose tissue (iWAT) samples were collected for histological examination. The protein expressions of uncoupling protein 1 (UCP1) and mitochondrial transcription factor A (TFAM) were assessed using western blotting of the BAT and iWAT samples. In this study, mirabegron increased the energy expenditure and decreased adiposity in OB + MIRA. Increased UCP1 expression in BAT without changes in iWAT was also found. Mirabegron decreased circulating levels of FFA, glycerol, insulin, TNF-α, TBARS and HOMA index. DIO significantly increased the lipid deposits in the liver and BAT, but mirabegron partially reversed this change. Our findings indicate that treatment with mirabegron decreased inflammation and improved metabolism in obese mice. This effect was associated with increased BAT-mediated energy expenditure, but not iWAT beiging, which suggests that mirabegron might be useful for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Carmem Peres Valgas da Silva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physical Education, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Fabiano Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Helena Fonseca Raposo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria Andreia Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiola Zakia Monica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Angelina Zanesco
- Department of Physical Education, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
- Medical School, Graduate Program in Environmental Health, Metropolitan University of Santos, Santos, Brazil
| |
Collapse
|
7
|
de Oliveira MG, de Medeiros ML, Tavares EBG, Mónica FZ, Antunes E. Methylglyoxal, a Reactive Glucose Metabolite, Induces Bladder Overactivity in Addition to Inflammation in Mice. Front Physiol 2020; 11:290. [PMID: 32317986 PMCID: PMC7147252 DOI: 10.3389/fphys.2020.00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetic bladder dysfunction (DBD) is one of the most common complication of diabetes. Methylglyoxal (MGO), a highly reactive dicarbonyl compound formed as a by-product of glycolysis, is found at high levels in plasma of diabetic patients. Here, we explored the effects of chronic administration of MGO on micturition pattern (cystometry) and bladder contractility in vitro in healthy male C57/BL6 mice. Methylglyoxal was given at 0.5% in drinking water for 4 weeks. Exposure to MGO led to bladder tissue disorganization, edema of lamina propria, partial loss of urothelium and multiple leukocyte infiltrates. Filling cystometry revealed significant increases of micturition frequency and number of non-voiding contractions (NVCs) in the MGO group, clearly indicating an overactive bladder profile. Bladder contractions induced by electrical-field stimulation (EFS) and carbachol were significantly higher in the MGO group, while the muscarinic M2 and M3 mRNA expressions remained unchanged between groups. Additionally, MGO exposure induced upregulation of TRPA1 and down-regulation of TRPV1 and TRPV4 in bladder tissues. Methylglyoxal did not change the mRNA expression of the advanced glycation end products receptor (RAGE), but markedly increased its downstream NF-κB - iNOS signaling. The mRNA expression of cyclooxygenase-2 (COX-2) and reactive-oxygen species (ROS) levels remained unchanged. Altogether, our data show that 4-week MGO intake in mice produces an overactive bladder phenotype in addition to bladder inflammation and increased NF-kB/iNOS signaling. TRPA1 up-regulation and TRPV1/TRPV4 down-regulation may account for the MGO-induced bladder overactivity. Scavengers of MGO could be an option to ameliorate bladder dysfunction in diabetic conditions.
Collapse
Affiliation(s)
| | | | - Edith B G Tavares
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiola Z Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
8
|
Kim AK, Hamadani C, Zeidel ML, Hill WG. Urological complications of obesity and diabetes in males and females of three mouse models: temporal manifestations. Am J Physiol Renal Physiol 2020; 318:F160-F174. [PMID: 31682171 DOI: 10.1152/ajprenal.00207.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetic bladder dysfunction is a frequent complication of diabetes. Although many mouse models of diabetes now exist, there has been little systematic effort to characterize them for the timing of onset and severity of bladder dysfunction. We monitored metabolic status and tested bladder function by void spot assay and limited anesthetized cystometry in both male and female mice of three models of obesity and diabetes: a type 1 diabetes model (the Akita mouse) and two type 2 diabetes models [the diet-induced obese (DIO) model and the ob/ob mouse]. Akita mice had insulin pellets implanted subcutaneously every 3 mo to mimic poorly controlled type 1 diabetes in humans. Mice were hyperglycemic by 48 days after implants. Female mice exhibited no bladder dysfunction at any age up to 20 mo and gained weight normally. In contrast, by 7 mo, male Akita mice developed a profound polyuria and failed to show normal weight gain. There were no observable signs of bladder dysfunction in either sex. DIO mice on high/low-fat diets for 16 mo exhibited mild hyperglycemia in female mice (not in male mice), mild weight gain, and no evidence of bladder dysfunction. Ob/ob mice were followed for 8 mo and became extremely obese. Male and female mice were glucose intolerant, insulin intolerant, and hyperinsulinemic at 4 mo. By 8 mo, their metabolic status had improved but was still abnormal. Urine volume increased in male mice but not in female mice. Bladder dysfunction was observed in the spotting patterns of female mice at 4 and 6 mo of age, resolving by 8 mo. We conclude there are dramatic sex-related differences in lower urinary tract function in these models. Male Akita mice may be a good model for polyuria-related bladder remodeling, whereas female ob/ob mice may better mimic storage problems related to loss of outlet control in a setting of type 2 diabetes complicated by obesity.
Collapse
Affiliation(s)
- Alexandra K Kim
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Christine Hamadani
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mark L Zeidel
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Warren G Hill
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Klee NS, Moreland RS, Kendig DM. Detrusor contractility to parasympathetic mediators is differentially altered in the compensated and decompensated states of diabetic bladder dysfunction. Am J Physiol Renal Physiol 2019; 317:F388-F398. [PMID: 31141399 DOI: 10.1152/ajprenal.00178.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetic bladder dysfunction (DBD) affects up to 50% of all patients with diabetes, characterized by symptoms of both overactive and underactive bladder. Although most diabetic bladder dysfunction studies have been performed using models with type 1 diabetes, few have been performed in models of type 2 diabetes, which accounts for ~90% of all diabetic cases. In a type 2 rat model using a high-fat diet (HFD) and two low doses of streptozotocin (STZ), we examined voiding measurements and functional experiments in urothelium-denuded bladder strips to establish a timeline of disease progression. We hypothesized that overactive bladder symptoms (compensated state) would develop and progress into symptoms characterized by underactive bladder (decompensated state). Our results indicated that this model developed the compensated state at 1 wk after STZ and the decompensated state at 4 mo after STZ administration. Diabetic bladders were hypertrophied compared with control bladders. Increased volume per void and detrusor muscle contractility to exogenous addition of carbachol and ATP confirmed the development of the compensated state. This enhanced contractility to carbachol was not due to increased levels of M3 receptor expression. Decompensation was characterized by increased volume per void, number of voids, and contractility to ATP but not carbachol. Thus, progression from the compensated to decompensated state may involve decreased contractility to muscarinic stimulation. These data suggest that the compensated state of DBD progresses temporally into the decompensated state in the male HFD/STZ model of diabetes; therefore, this male HFD/STZ model can be used to study the progression of DBD.
Collapse
Affiliation(s)
- Nicole S Klee
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Robert S Moreland
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Derek M Kendig
- Department of Biology, Loyola University Maryland, Baltimore, Maryland
| |
Collapse
|
10
|
Ellenbroek JH, Arioglu Inan E, Michel MC. A systematic review of urinary bladder hypertrophy in experimental diabetes: Part 2. Comparison of animal models and functional consequences. Neurourol Urodyn 2018; 37:2346-2360. [DOI: 10.1002/nau.23786] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Johanne H. Ellenbroek
- Department of Internal Medicine; Leiden University Medical Centre; Leiden The Netherlands
| | | | - Martin C. Michel
- Department of Pharmacology; Johannes Gutenberg University; Mainz Germany
| |
Collapse
|
11
|
Anjum I. Calcium sensitization mechanisms in detrusor smooth muscles. J Basic Clin Physiol Pharmacol 2018; 29:227-235. [PMID: 29306925 DOI: 10.1515/jbcpp-2017-0071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
The contraction of detrusor smooth muscles depends on the increase in intracellular calcium. The influx of calcium from the plasma membrane calcium channels and calcium release from the sarcoplasmic reticulum give rise to intracellular calcium. Under the pathophysiological conditions, the increased sensitivity of regulatory and contractile proteins to calcium also plays an important role in maintaining the spontaneous detrusor smooth muscle activity. Many proteins have been identified to play a role in calcium sensitization. Both the protein kinase C (PKC) and Rho-kinase (ROCK) signaling pathways are responsible for the induction of calcium sensitization in the detrusor smooth muscles. The balance between the myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) regulates the intracellular calcium-contractile force relationship. The inhibition of MLCP by PKC-mediated phosphatase inhibitor (CPI-17) and myosin phosphatase target subunit (MYPT-1) phosphorylation by both the PKC and ROCK are responsible for calcium sensitization in the detrusor smooth muscles. However, the ROCK pathway predominantly participates in the calcium sensitization induction under pathophysiological situations. Many kinases are well known nowadays to play a role in calcium sensitization. This review aims to enlighten the current understanding of the regulatory mechanisms of calcium sensitization with special reference to the PKC and ROCK pathways in the detrusor smooth muscles. It will also aid in the development of new pharmacological strategies to prevent and treat bladder diseases.
Collapse
Affiliation(s)
- Irfan Anjum
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| |
Collapse
|
12
|
Treatment of obesity-associated overactive bladder by the phosphodiesterase type-4 inhibitor roflumilast. Int Urol Nephrol 2017; 49:1723-1730. [PMID: 28756610 DOI: 10.1007/s11255-017-1671-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE To prove that phosphodiesterase type-4 inhibitors could potentially treat obesity-associated overactive bladder through modulation of the systemic inflammatory response. METHODS In this 12-week study, 90 female Sprague-Dawley rats were divided into three groups: (1) vehicle-treated normal diet (ND)-fed rats; (2) vehicle-treated high-fat diet (HFD)-fed rats; and (3) roflumilast-treated HFD-fed rats. Oral roflumilast (5 mg/kg/day) was administered during the last 4 weeks of HFD feeding in the test group. At 12 weeks, a urodynamic study was performed in ten rats of each group. Bladder tissue was extracted, the bladder mucosa was separated under microscopy, and bladder detrusor smooth muscle (DSM) expression of TNF-α, interleukin (IL)-6, IL-1β, and nuclear factor kappa B (NF-κB) were analyzed using Western blotting and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS Bodyweights of the HFD-fed rats significantly increased and were not ameliorated by roflumilast treatment. Cystometry evidenced augmented frequency and non-void contractions in obese rats that were also prevented by roflumilast. These alterations were accompanied by a markedly increased expression of TNF-α, IL-6, IL-1β, and NF-κB in DSM of obese rats. Furthermore, roflumilast decreased expression of inflammatory factors in DSM. CONCLUSIONS Oral treatment with roflumilast in rats fed an HFD restores normal bladder function and downregulates expression of inflammatory factors in the bladder.
Collapse
|
13
|
Daneshgari F, Liu G, Hanna-Mitchell AT. Path of translational discovery of urological complications of obesity and diabetes. Am J Physiol Renal Physiol 2017; 312:F887-F896. [PMID: 28052873 DOI: 10.1152/ajprenal.00489.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/15/2016] [Accepted: 01/01/2017] [Indexed: 01/07/2023] Open
Abstract
Diabetes mellitus (DM) is a prevalent chronic disease. Type 1 DM (T1DM) is a metabolic disorder that is characterized by hyperglycemia in the context of absolute lack of insulin, whereas type 2 DM (T2DM) is due to insulin resistance-related relative insulin deficiency. In comparison with T1DM, T2DM is more complex. The natural history of T2DM in most patients typically involves a course of obesity to impaired glucose tolerance, to insulin resistance, to hyperinsulinemia, to hyperglycemia, and finally to insulin deficiency. Obesity is a risk factor of T2DM. Diabetes causes some serious microvascular and macrovascular complications, such as retinopathy, nephropathy, neuropathy, angiopathy and stroke. Urological complications of obesity and diabetes (UCOD) affect quality of life, but are not well investigated. The urological complications in T1DM and T2DM are different. In addition, obesity itself affects the lower urinary tract. The aim of this perspective is to review the available data, combined with the experience of our research teams, who have spent a good part of last decade on studies of association between DM and lower urinary tract symptoms (LUTS) with the aim of bringing more focus to the future scientific exploration of UCOD. We focus on the most commonly seen urological complications, urinary incontinence, bladder dysfunction, and LUTS, in obesity and diabetes. Knowledge of these associations will lead to a better understanding of the pathophysiology underlying UCOD and hopefully assist urologists in the clinical management of obese or diabetic patients with LUTS.
Collapse
Affiliation(s)
- Firouz Daneshgari
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Ann T Hanna-Mitchell
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
14
|
Calmasini FB, de Oliveira MG, Alexandre EC, da Silva FH, da Silva CPV, Candido TZ, Antunes E, Mónica FZ. Long-term treatment with the beta-3 adrenoceptor agonist, mirabegron ameliorates detrusor overactivity and restores cyclic adenosine monophosphate (cAMP) levels in obese mice. Neurourol Urodyn 2016; 36:1511-1518. [PMID: 27794199 DOI: 10.1002/nau.23171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/06/2016] [Indexed: 01/14/2023]
Abstract
AIMS To evaluate the effects of the beta-3 adrenoceptor agonist, mirabegron in a mouse model of detrusor overactivity induced by obesity. METHODS C57BL/6 male mice were fed with standard chow or high-fat diet for 12 weeks. Lean and obese mice were treated orally with mirabegron (10 mg/kg/day) from the last 2 weeks of diet. Cystometric evaluations, functional assays, protein expression for phosphodiesterase type 4 (PDE4), and cyclic adenosine monophosphate (cAMP) measurement were carried out. RESULTS In obese mice the body weight, epididymal fat mass, fasting glucose, and low-density lipoprotein (LDL) levels were higher (P < 0.001) than in the lean mice. A reduction of 34% and 54% and an increase of 35% in the epididimal fat, LDL, and HDL levels (P < 0.05), respectively, were observed in the obese group treated with mirabegron, whereas no changes were seen in the lipid profile from lean mice. Obese group showed irregular micturition pattern, characterized by significant increases in frequency and non-void contractions. Carbachol, potassium chloride, and electrical-field stimulation induced detrusor smooth muscle (DSM) contractions, which were greater in bladders from obese mice than from lean mice. Two-week treatment with mirabegron restored all the contractile response alterations in the DSM. Basal intracellular levels of cAMP were reduced (68%), whereas PDE4 protein expression was increased (54%) in bladder from obese mice. Mirabegron restored the cAMP levels in obese bladder, without changing the PDE4 expression. CONCLUSION Mirabegron was able to completely restore the urinary alterations seen in the bladder from obese mice.
Collapse
Affiliation(s)
- Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fábio H da Silva
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carmem P V da Silva
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tuany Z Candido
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
15
|
Li W, Lv J, Wu J, Zhou X, Jiang L, Zhu X, Tu Q, Tang J, Liu Y, He A, Zhong Y, Xu Z. Maternal high-salt diet altered PKC/MLC20 pathway and increased ANG II receptor-mediated vasoconstriction in adult male rat offspring. Mol Nutr Food Res 2016; 60:1684-94. [PMID: 26991838 DOI: 10.1002/mnfr.201500998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Weisheng Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jue Wu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Lin Jiang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiaolin Zhu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Qing Tu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Axin He
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yuan Zhong
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
- Center for Prenatal Biology, Loma Linda University, CA, USA
| |
Collapse
|
16
|
Kendig DM, Ets HK, Moreland RS. Effect of type II diabetes on male rat bladder contractility. Am J Physiol Renal Physiol 2016; 310:F909-22. [PMID: 26823284 PMCID: PMC4867315 DOI: 10.1152/ajprenal.00511.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/20/2016] [Indexed: 12/17/2022] Open
Abstract
Type II diabetes is the most prevalent form of diabetes. One of the primary complications of diabetes that significantly affects quality of life is bladder dysfunction. Many studies on diabetic bladder dysfunction have been performed in models of type I diabetes; however, few have been performed in animal models of type II diabetes. Using the Zucker Diabetic Fatty (ZDF) rat model of type II diabetes, we examined the contractility and sensitivity of bladder smooth muscle in response to mediators of depolarization-induced contraction, muscarinic receptor-mediated contraction, ATP-induced contraction, and neurogenic contraction. Studies were performed at 16 and 27 wk of age to monitor the progression of diabetic bladder dysfunction. Voiding behavior was also quantified. The entire bladder walls of diabetic rats were hypertrophied compared with that of control rats. Contractility and sensitivity to carbachol and ATP were increased at 27 wk in bladder smooth muscle strips from diabetic rats, suggesting a compensated state of diabetic bladder dysfunction. Purinergic signaling was increased in response to exogenous ATP in bladders from diabetic animals; however, the purinergic component of neurogenic contractions was decreased. The purinergic component of neurogenic contraction was reduced by P2X receptor desensitization, but was unchanged by P2X receptor inhibition in diabetic rats. Residual and tetrodotoxin-resistant components of neurogenic contraction were increased in bladder strips from diabetic animals. Overall, our results suggest that in the male ZDF rat model, the bladder reaches the compensated stage of function by 27 wk and has increased responsiveness to ATP.
Collapse
Affiliation(s)
- Derek M Kendig
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania; and
| | - Hillevi K Ets
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania; and
| | - Robert S Moreland
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania; and Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvnia
| |
Collapse
|
17
|
Hypolite JA, Malykhina AP. Regulation of urinary bladder function by protein kinase C in physiology and pathophysiology. BMC Urol 2015; 15:110. [PMID: 26538012 PMCID: PMC4634593 DOI: 10.1186/s12894-015-0106-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/22/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Protein kinase C (PKC) is expressed in many tissues and organs including the urinary bladder, however, its role in bladder physiology and pathophysiology is still evolving. The aim of this review was to evaluate available evidence on the involvement of PKC in regulation of detrusor contractility, muscle tone of the bladder wall, spontaneous contractile activity and bladder function under physiological and pathophysiological conditions. METHODS This is a non-systematic review of the published literature which summarizes the available animal and human data on the role of PKC signaling in the urinary bladder under different physiological and pathophysiological conditions. A wide PubMed search was performed including the combination of the following keywords: "urinary bladder", "PKC", "detrusor contractility", "bladder smooth muscle", "detrusor relaxation", "peak force", "detrusor underactivity", "partial bladder outlet obstruction", "voltage-gated channels", "bladder nerves", "PKC inhibitors", "PKC activators". Retrieved articles were individually screened for the relevance to the topic of this review with 91 citations being selected and included in the data analysis. DISCUSSION Urinary bladder function includes the ability to store urine at low intravesical pressure followed by a subsequent release of bladder contents due to a rapid phasic contraction that is maintained long enough to ensure complete emptying. This review summarizes the current concepts regarding the potential contribution of PKC to contractility, physiological voiding, and related signaling mechanisms involved in the control of both the storage and emptying phases of the micturition cycle, and in dysfunctional voiding. Previous studies linked PKC activation exclusively with an increase in generation of the peak force of smooth muscle contraction, and maximum force generation in the lower urinary tract. More recent data suggests that PKC presents a broader range of effects on urinary bladder function including regulation of storage, emptying, excitability of the detrusor, and bladder innervation. In this review, we evaluated the mechanisms of peripheral and local regulation of PKC signaling in the urinary bladder, and their impact on different phases of the micturition cycle under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Joseph A Hypolite
- Division of Urology, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, 12700 E 19th Ave. Mail Stop C317, Aurora, CO, 80045, USA.
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, 12700 E 19th Ave. Mail Stop C317, Aurora, CO, 80045, USA.
| |
Collapse
|
18
|
Silva FH, Alexandre EC, Calmasini FB, Calixto MC, Antunes E. Treatment With Metformin Improves Erectile Dysfunction in a Murine Model of Obesity Associated With Insulin Resistance. Urology 2015. [PMID: 26199165 DOI: 10.1016/j.urology.2015.04.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the effects of treatment with metformin on a murine model of obesity-associated erectile dysfunction. MATERIAL AND METHODS C57BL/6 male mice were fed for 10 weeks with standard chow or high-fat diet. Lean and obese mice were treated with the insulin sensitizer metformin (300 mg/kg/day, 2 weeks). Intracavernosal pressure (ICP) and in vitro corpus cavernosum (CC) relaxations to both acetylcholine and electrical field stimulation, as well as phenylephrine-induced contractions, were obtained. Levels of cyclic guanosine monophosphate in CC were detected by enzyme immunoassay. RESULTS High-fat-fed mice exhibited higher body weight and insulin resistance. Cavernous nerve stimulation caused frequency-dependent ICP increases, which were significantly lower in obese compared with lean mice (P <.05). Two-week therapy with metformin reversed the decreased ICP in obese group. The maximal response to acetylcholine in CC was 35% lower (P <.05) in the obese compared to the lean group, which were restored by metformin treatment. Likewise, the impaired electrical field stimulation-induced CC relaxations in obese mice were also partly restored by metformin. Contractile responses to phenylephrine were significantly greater (P <.05) in obese compared to lean mice, which were fully restored by metformin. Basal and stimulated cyclic guanosine monophosphate productions in the erectile tissues were significantly lower (P <.05) in the obese group, an effect fully restored by metformin. CONCLUSION Treatment with metformin restored the erectile function in obese mice, through improvement of in vitro endothelial and nitrergic cavernosal relaxations. Therefore, use of metformin may be a good pharmacologic approach to treat insulin resistance-associated erectile dysfunction.
Collapse
Affiliation(s)
- Fábio H Silva
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil.
| | - Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Marina C Calixto
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil
| |
Collapse
|
19
|
Palleschi G, Pastore AL, Rizzello M, Cavallaro G, Silecchia G, Carbone A. Laparoscopic sleeve gastrectomy effects on overactive bladder symptoms. J Surg Res 2015; 196:307-12. [DOI: 10.1016/j.jss.2015.03.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/07/2015] [Accepted: 03/13/2015] [Indexed: 11/26/2022]
|
20
|
Li DJ, Huang F, Lu WJ, Jiang GJ, Deng YP, Shen FM. Metformin promotes irisin release from murine skeletal muscle independently of AMP-activated protein kinase activation. Acta Physiol (Oxf) 2015; 213:711-21. [PMID: 25382002 DOI: 10.1111/apha.12421] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/01/2014] [Accepted: 11/05/2014] [Indexed: 12/25/2022]
Abstract
AIM Irisin, a novel myocyte-secreted hormone mediating beneficial effects of exercise on metabolism, is supposed to be an ideal therapeutic target for metabolic disorders such as obesity and diabetes. Here, we investigated the potential effects of metformin and glibenclamide, two antidiabetic medicines, on irisin release in mouse. METHODS Wild-type and diabetic obese db/db mice were administrated with metformin and glibenclamide for 2 weeks, and cultured C2C12 myotubes were treated by metformin. Expression of irisin precursor FNDC5 was measured and blood irisin concentration was detected. AMP-activated protein kinase (AMPK) was blocked by chemical inhibitor compound C or knocking down with specific siRNA. RESULTS The mRNA and protein expression of FNDC5 in skeletal muscle and blood irisin concentrations were lower in diabetic db/db mice than those in wild-type mice. Metformin and glibenclamide decreased blood glucose in db/db mice. Metformin, but not glibenclamide, increased intramuscular FNDC5 mRNA/protein expression and blood irisin levels. Additionally, the reductions of blood glucose and body weight in metformin-treated db/db mice were positively associated with blood irisin concentrations. In C2C12 myotubes, metformin upregulated intracellular FDNC5 mRNA/protein expression and promoted irisin release. Although metformin activated AMPK signalling in skeletal muscle cells, disrupting of AMPK signalling by chemical inhibitor or siRNA-mediated knockdown did not abolish the promoting effect of metformin on irisin release. CONCLUSION Metformin promotes irisin release from murine skeletal muscle into blood, independently of AMPK pathway activation. Our results suggest that stimulation of irisin may be a novel molecular mechanism of metformin which is widely used for treatment of metabolic disorders.
Collapse
Affiliation(s)
- D.-J. Li
- Department of Pharmacy; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
| | - F. Huang
- Department of Pharmacy; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
| | - W.-J. Lu
- Department of Pharmacy; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
| | - G.-J. Jiang
- Department of Pharmacy; Zhejiang Xiaoshan Hospital; Hangzhou Zhejiang China
| | - Y.-P. Deng
- Department of Pharmacy; Zhejiang Xiaoshan Hospital; Hangzhou Zhejiang China
| | - F.-M. Shen
- Department of Pharmacy; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
| |
Collapse
|
21
|
Kandadi MR, Panzhinskiy E, Roe ND, Nair S, Hu D, Sun A. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: Role of AMPK-dependent autophagy. Biochim Biophys Acta Mol Basis Dis 2015; 1852:299-309. [DOI: 10.1016/j.bbadis.2014.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/20/2014] [Accepted: 07/03/2014] [Indexed: 01/11/2023]
|
22
|
Vissers D, Neels H, Vermandel A, De Wachter S, Tjalma WAA, Wyndaele JJ, Taeymans J. The effect of non-surgical weight loss interventions on urinary incontinence in overweight women: a systematic review and meta-analysis. Obes Rev 2014; 15:610-7. [PMID: 24754672 DOI: 10.1111/obr.12170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 01/24/2023]
Abstract
Although the aetiology of urinary incontinence can be multifactorial, in some cases weight loss could be considered as a part of the therapeutic approach for urinary incontinence in people who are overweight. The objective of this study was to review and meta-analyse the effect of non-surgical weight loss interventions on urinary incontinence in overweight women. Web of Science, PubMed, Pedro, SPORTDiscus and Cochrane were systematically searched for clinical trials that met the a priori set criteria. Data of women who participated in non-surgical weight loss interventions (diet, exercise, medication or a combination) were included in the meta-analysis. After removing duplicates, 62 articles remained for screening on title, abstract and full text. Six articles (totalling 2,352 subjects in the intervention groups) were included for meta-analysis. The mean change in urinary incontinence (reported as frequency or quantity, depending on the study) after a non-surgical weight loss intervention, expressed as standardized effect size and corrected for small sample sizes (Hedges' g), was -0.30 (95%CI = -0.47 to -0.12). This systematic review and meta-analysis shows evidence that a non-surgical weight loss intervention has the potential to improve urinary incontinence and should be considered part of standard practice in the management of urinary incontinence in overweight women.
Collapse
Affiliation(s)
- D Vissers
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Liang L, Shou XL, Zhao HK, Ren GQ, Wang JB, Wang XH, Ai WT, Maris JR, Hueckstaedt LK, Ma AQ, Zhang Y. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy. Biochim Biophys Acta Mol Basis Dis 2014; 1852:343-52. [PMID: 24993069 DOI: 10.1016/j.bbadis.2014.06.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/10/2014] [Accepted: 06/22/2014] [Indexed: 01/08/2023]
Abstract
Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial autophagy. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Lei Liang
- Department of Cardiology, The People's Hospital of Shaanxi Province, Xi'an, China; Department of Cardiology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xi-Ling Shou
- Department of Cardiology, The People's Hospital of Shaanxi Province, Xi'an, China; Department of Cardiology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hai-Kang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Gu-Qun Ren
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Jian-Bang Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Xi-Hui Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Wen-Ting Ai
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jackie R Maris
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Lindsay K Hueckstaedt
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Ai-Qun Ma
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.
| | - Yingmei Zhang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
24
|
Wu C, Li J, Bo L, Gao Q, Zhu Z, Li D, Li S, Sun M, Mao C, Xu Z. High-sucrose diets in pregnancy alter angiotensin II-mediated pressor response and microvessel tone via the PKC/Cav1.2 pathway in rat offspring. Hypertens Res 2014; 37:818-23. [DOI: 10.1038/hr.2014.94] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 11/09/2022]
|
25
|
The Soluble Guanylyl Cyclase Activator BAY 60-2770 Ameliorates Overactive Bladder in Obese Mice. J Urol 2014; 191:539-47. [DOI: 10.1016/j.juro.2013.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 11/20/2022]
|
26
|
Alexandre EC, Leiria LO, Silva FH, Mendes-Silvério CB, Calmasini FB, Davel APC, Mónica FZ, De Nucci G, Antunes E. Soluble guanylyl cyclase (sGC) degradation and impairment of nitric oxide-mediated responses in urethra from obese mice: reversal by the sGC activator BAY 60-2770. J Pharmacol Exp Ther 2014; 349:2-9. [PMID: 24421320 DOI: 10.1124/jpet.113.211029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Obesity has emerged as a major contributing risk factor for overactive bladder (OAB), but no study examined urethral smooth muscle (USM) dysfunction as a predisposing factor to obesity-induced OAB. This study investigated the USM relaxant machinery in obese mice and whether soluble guanylyl cyclase (sGC) activation with BAY 60-2770 [acid 4-({(4-carboxybutyl) [2-(5-fluoro-2-{[4-(trifluoromethyl) biphenyl-4-yl] methoxy} phenyl) ethyl] amino} methyl) benzoic] rescues the urethral reactivity through improvement of sGC-cGMP (cyclic guanosine monophosphate) signaling. Male C57BL/6 mice were fed for 12 weeks with a high-fat diet to induce obesity. Separate groups of animals were treated with BAY 60-2770 (1 mg/kg per day for 2 weeks). Functional assays and measurements of cGMP, reactive-oxygen species (ROS), and sGC protein expression in USM were determined. USM relaxations induced by NO (acidified sodium nitrite), NO donors (S-nitrosoglutathione and glyceryl trinitrate), and BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine] (sGC stimulator) were markedly reduced in obese compared with lean mice. In contrast, USM relaxations induced by BAY 60-2770 (sGC activator) were 43% greater in obese mice (P < 0.05), which was accompanied by increases in cGMP levels. Oxidation of sGC with ODQ [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one] (10 μM) potentiated BAY 60-2770-induced USM responses in the lean group. Long-term oral BAY 60-2770 administration fully prevented the impairment of USM relaxations in obese mice. Reactive-oxygen species (ROS) production was enhanced, but protein expression of β1 second guanylate cyclase subunit was reduced in USM from obese mice, both of which were restored by BAY 60-2770 treatment. In conclusion, impaired USM relaxation in obese mice is associated with ROS generation and down-regulation of sGC-cGMP signaling. Prevention of sGC degradation by BAY 60-2770 ameliorates the impairment of urethral relaxations in obese mice.
Collapse
Affiliation(s)
- Eduardo C Alexandre
- Departments of Pharmacology (E.C.A., L.O.L., F.H.S., C.B.M.S., F.B.C., F.Z.M., G.D.N., E.A.) and Anatomy, Cellular Biology, Physiology, and Biophysics (A.P.C.D.), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The soluble guanylyl cyclase activator BAY 60-2770 ameliorates detrusor dysfunction in obese mice. BMC Pharmacol Toxicol 2013. [PMCID: PMC3765547 DOI: 10.1186/2050-6511-14-s1-p18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|