1
|
The reciprocal world of MLL fusions: A personal view. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194547. [PMID: 32294539 DOI: 10.1016/j.bbagrm.2020.194547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/12/2020] [Accepted: 03/22/2020] [Indexed: 01/28/2023]
Abstract
Over the last 15 years the Diagnostic Center of Acute Leukemia (DCAL) at the Frankfurt University has diagnosed and elucidated the Mixed Lineage Leukemia (MLL) recombinome with >100 MLL fusion partners. When analyzing all these different events, balanced chromosomal translocations were found to comprise the majority of these cases (~70%), while other types of genetic rearrangements (3-way-translocations, spliced fusions, 11q inversions, interstitial deletions or insertion of chromosomal fragments into other chromosomes) account for about 30%. In nearly all those complex cases, functional fusion proteins can be produced by transcription, splicing and translation. With a few exceptions (10 out of 102 fusion genes which were per se out-of-frame), all these genetic rearrangements produced a direct MLL fusion gene, and in 94% of cases an additional reciprocal fusion gene. So far, 114 patients (out of 2454 = ~5%) have been diagnosed only with the reciprocal fusion allele, displaying no MLL-X allele. The fact that so many MLL rearrangements bear at least two fusion alleles, but also our findings that several direct MLL fusions were either out-of-frame fusions or missing, raises the question about the function and importance of reciprocal MLL fusions. Recent findings also demonstrate the presence of reciprocal MLL fusions in sarcoma patients. Here, we want to discuss the role of reciprocal MLL fusion proteins for leukemogenesis and beyond.
Collapse
|
2
|
Pallavi R, Mazzarella L, Pelicci PG. Advances in precision epigenetic treatment for acute promyelocytic leukemia. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1612238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rani Pallavi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Division of Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Hussain L, Maimaitiyiming Y, Islam K, Naranmandura H. Acute promyelocytic leukemia and variant fusion proteins: PLZF-RARα fusion protein at a glance. Semin Oncol 2019; 46:133-144. [DOI: 10.1053/j.seminoncol.2019.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022]
|
4
|
Habault J, Poyet JL. Recent Advances in Cell Penetrating Peptide-Based Anticancer Therapies. Molecules 2019; 24:E927. [PMID: 30866424 PMCID: PMC6429072 DOI: 10.3390/molecules24050927] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 12/12/2022] Open
Abstract
Cell-penetrating-peptides (CPPs) are small amino-acid sequences characterized by their ability to cross cellular membranes. They can transport various bioactive cargos inside cells including nucleic acids, large proteins, and other chemical compounds. Since 1988, natural and synthetic CPPs have been developed for applications ranging from fundamental to applied biology (cell imaging, gene editing, therapeutics delivery). In recent years, a great number of studies reported the potential of CPPs as carriers for the treatment of various diseases. Apart from a good efficacy due to a rapid and potent delivery, a crucial advantage of CPP-based therapies is the peptides low toxicity compared to most drug carriers. On the other hand, they are quite unstable and lack specificity. Higher specificity can be obtained using a cell-specific CPP to transport the therapeutic agent or using a non-specific CPP to transport a cargo with a targeted activity. CPP-cargo complexes can also be conjugated to another moiety that brings cell- or tissue-specificity. Studies based on all these approaches are showing promising results. Here, we focus on recent advances in the potential usage of CPPs in the context of cancer therapy, with a particular interest in CPP-mediated delivery of anti-tumoral proteins.
Collapse
Affiliation(s)
- Justine Habault
- INSERM U976, Institut de Recherche St Louis, 1 avenue Claude Vellefaux, 75010 Paris, France.
- Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Jean-Luc Poyet
- INSERM U976, Institut de Recherche St Louis, 1 avenue Claude Vellefaux, 75010 Paris, France.
- Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
- c-Dithem, Inserm Consortium for Discovery and Innovation in Therapy and Medicine, 75013 Paris, France.
| |
Collapse
|
5
|
Bruzzoni-Giovanelli H, Alezra V, Wolff N, Dong CZ, Tuffery P, Rebollo A. Interfering peptides targeting protein-protein interactions: the next generation of drugs? Drug Discov Today 2017; 23:272-285. [PMID: 29097277 DOI: 10.1016/j.drudis.2017.10.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/22/2017] [Accepted: 10/17/2017] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) are well recognized as promising therapeutic targets. Consequently, interfering peptides (IPs) - natural or synthetic peptides capable of interfering with PPIs - are receiving increasing attention. Given their physicochemical characteristics, IPs seem better suited than small molecules to interfere with the large surfaces implicated in PPIs. Progress on peptide administration, stability, biodelivery and safety are also encouraging the interest in peptide drug development. The concept of IPs has been validated for several PPIs, generating great expectations for their therapeutic potential. Here, we describe approaches and methods useful for IPs identification and in silico, physicochemical and biological-based strategies for their design and optimization. Selected promising in-vivo-validated examples are described and advantages, limitations and potential of IPs as therapeutic tools are discussed.
Collapse
Affiliation(s)
- Heriberto Bruzzoni-Giovanelli
- Université Paris 7 Denis Diderot, Université Sorbonne Paris Cité, Paris, France; UMRS 1160 Inserm, Paris, France; Centre d'Investigation Clinique 1427 Inserm/AP-HP Hôpital Saint Louis, Paris, France
| | - Valerie Alezra
- Université Paris-Sud, Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques, ICMMO, UMR 8182, CNRS, Université Paris-Saclay, Faculté des Sciences d'Orsay, France
| | - Nicolas Wolff
- Unité de Résonance Magnétique Nucléaire des Biomolécules, CNRS, UMR 3528, Institut Pasteur, F-75015 Paris, France
| | - Chang-Zhi Dong
- Université Paris 7 Denis Diderot, Université Sorbonne Paris Cité, Paris, France; ITODYS, UMR 7086 CNRS, Paris, France
| | - Pierre Tuffery
- Université Paris 7 Denis Diderot, Université Sorbonne Paris Cité, Paris, France; Inserm UMR-S 973, RPBS, Paris, France
| | - Angelita Rebollo
- CIMI Paris, UPMC, Inserm U1135, Hôpital Pitié Salpétrière, Paris, France.
| |
Collapse
|
6
|
Evolution of AF6-RAS association and its implications in mixed-lineage leukemia. Nat Commun 2017; 8:1099. [PMID: 29062045 PMCID: PMC5653649 DOI: 10.1038/s41467-017-01326-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/09/2017] [Indexed: 12/31/2022] Open
Abstract
Elucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors. Further, all patients with MLL-AF6 translocations express fusion proteins missing only this helix from AF6, resulting in exposure of hydrophobic residues that induce dimerization. We provide evidence that oligomerization is the dominant mechanism driving oncogenesis from rare MLL translocation partners and employ our mechanistic understanding of MLL-AF6 to examine how dimers induce leukemia. Proteomic data resolve association of dimerized MLL with gene expression modulators, and inhibiting dimerization disrupts formation of these complexes while completely abrogating leukemogenesis in mice. Oncogenic gene translocations are thus selected under pressure from protein structure/function, underscoring the complex nature of chromosomal rearrangements. Several rearrangements of the MLL gene are associated with acute leukemia, including the fusion of MLL with a RAS effector protein, AF6. Here the authors show that the truncated AF6 can induce AF6-MLL dimerization and drive its oncogenic activity.
Collapse
|
7
|
Steinhilber D, Marschalek R. How to effectively treat acute leukemia patients bearing MLL-rearrangements ? Biochem Pharmacol 2017; 147:183-190. [PMID: 28943239 DOI: 10.1016/j.bcp.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
Chromosomal translocations - leading to the expression of fusion genes - are well-studied genetic abberrations associated with the development of leukemias. Most of them represent altered transcription factors that affect transcription or epigenetics, while others - like BCR-ABL - are enhancing signaling. BCR-ABL has become the prototype for rational drug design, and drugs like Imatinib and subsequently improved drugs have a great impact on cancer treatments. By contrast, MLL-translocations in acute leukemia patients are hard to treat, display a high relapse rate and the overall survival rate is still very poor. Therefore, new treatment modalities are urgently needed. Based on the molecular insights of the most frequent MLL rearrangements, BET-, DOT1L-, SET- and MEN1/LEDGF-inhibitors have been developed and first clinical studies were initiated. Not all results of these studies have are yet available, however, a first paper reports a failure in the DOT1L-inhibitor study although it was the most promising drug based on literature data. One possible explanation is that all of the above mentioned drugs also target the cognate wildtype proteins. Here, we want to strengthen the fact that efforts should be made to develop drugs or strategies to selectively inhibit only the fusion proteins. Some examples will be given that follow exactly this guideline, and proof-of-concept experiments have already demonstrated their feasibility and effectiveness. Some of the mentioned approaches were using drugs that are already on the market, indicating that there are existing opportunities for the future which should be implemented in future therapy strategies.
Collapse
Affiliation(s)
- Dieter Steinhilber
- Institute of Pharm. Chemistry, Goethe-University, Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharm. Biology/DCAL, Goethe-University, Frankfurt/Main, Germany.
| |
Collapse
|
8
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Li MM, Ewton AA, Smith JL. Using Cytogenetic Rearrangements for Cancer Prognosis and Treatment (Pharmacogenetics). CURRENT GENETIC MEDICINE REPORTS 2013. [DOI: 10.1007/s40142-013-0011-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|