1
|
Loss of CD226 protects apolipoprotein E-deficient mice from diet-induced atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166452. [PMID: 35618182 DOI: 10.1016/j.bbadis.2022.166452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/18/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022]
Abstract
CD226 is a costimulatory molecule that regulates immune cell functions in T cells, natural killer cells, and macrophages. Because macrophage-derived foam cell formation is a crucial factor contributing to the development of atherosclerosis, we aimed to evaluate the potential roles of CD226 in the pathogenesis of atherosclerosis. The effects of CD226 on atherosclerosis were investigated in CD226 and apolipoprotein E double-knockout (CD226-/- ApoE-/-) mice fed with a high-cholesterol atherogenic diet. CD226 expression in macrophages was evaluated using flow cytometry. Histopathological analysis was performed to evaluate the atherosclerotic lesions. Inflammatory cell infiltration was detected using immunofluorescence staining. Bone marrow-derived macrophages (BMDMs) and peritoneal macrophages (PEMs) were isolated from the mice and used to explore the mechanism in vitro. The in vivo results indicated that CD226 knockdown protected against atherosclerosis in ApoE-/- mice, evidenced by reduced plaque accumulation in the brachiocephalic artery, aortic roots, and main aortic tree. CD226 gene-deficient macrophages showed reduced foam cell formation under ox-low density lipoprotein stimulation compared with wild-type (WT) cells. CD226 deficiency also decreased the expression of CD36 and scavenger receptor (SR)-A (responsible for lipoprotein uptake) but increased the expression of ATP-binding cassette transporter A1 and G1 (two transporters for cholesterol efflux). Therefore, loss of CD226 hinders foam cell formation and atherosclerosis progression, suggesting that CD226 is a promising new therapeutic target for atherosclerosis.
Collapse
|
2
|
Sun L, Gang X, Li Z, Zhao X, Zhou T, Zhang S, Wang G. Advances in Understanding the Roles of CD244 (SLAMF4) in Immune Regulation and Associated Diseases. Front Immunol 2021; 12:648182. [PMID: 33841431 PMCID: PMC8024546 DOI: 10.3389/fimmu.2021.648182] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Proteins in the signaling lymphocytic activating molecule (SLAM) family play crucial roles in regulating the immune system. CD244 (SLAMF4) is a protein in this family, and is also a member of the CD2 subset of the immunoglobulin (Ig) superfamily. CD244 is a cell surface protein expressed by NK cells, T cells, monocytes, eosinophils, myeloid-derived suppressor cells, and dendritic cells. CD244 binds to the ligand CD48 on adjacent cells and transmits stimulatory or inhibitory signals that regulate immune function. In-depth studies reported that CD244 functions in many immune-related diseases, such as autoimmune diseases, infectious diseases, and cancers, and its action is essential for the onset and progression of these diseases. The discovery of these essential roles of CD244 suggests it has potential as a prognostic indicator or therapeutic target. This review describes the molecular structure and function of CD244 and its roles in various immune cells and immune-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Souto FO, Castanheira FVS, Trevelin SC, Lima BHF, Cebinelli GCM, Turato WM, Auxiliadora-Martins M, Basile-Filho A, Alves-Filho JC, Cunha FQ. Liver X Receptor Activation Impairs Neutrophil Functions and Aggravates Sepsis. J Infect Dis 2021; 221:1542-1553. [PMID: 31783409 DOI: 10.1093/infdis/jiz635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Liver X receptors (LXRs) are nuclear receptors activated by oxidized lipids and were previously implicated in several metabolic development and inflammatory disorders. Although neutrophils express both LXR-α and LXR-β, the consequences of their activation, particularly during sepsis, remain unknown. METHODS We used the model of cecal ligation and puncture (CLP) to investigate the role of LXR activation during sepsis. RESULTS In this study, we verified that LXR activation reduces neutrophil chemotactic and killing abilities in vitro. Mice treated with LXR agonists showed higher sepsis-induced mortality, which could be associated with reduced neutrophil infiltration at the infectious foci, increased bacteremia, systemic inflammatory response, and multiorgan failure. In contrast, septic mice treated with LXR antagonist showed increased number of neutrophils in the peritoneal cavity, reduced bacterial load, and multiorgan dysfunction. More important, neutrophils from septic patients showed increased ABCA1 messenger ribonucleic acid levels (a marker of LXR activation) and impaired chemotactic response toward CXCL8 compared with cells from healthy individuals. CONCLUSIONS Therefore, our findings suggest that LXR activation impairs neutrophil functions, which might contribute to poor sepsis outcome.
Collapse
Affiliation(s)
- Fabrício O Souto
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Brazil
| | - Fernanda V S Castanheira
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center of Research of Inflammatory Diseases, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Silvia C Trevelin
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,King's College London, British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Braulio H F Lima
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Walter M Turato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Auxiliadora-Martins
- Department of Pharmacology, Surgery and Anatomy, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Anibal Basile-Filho
- Department of Pharmacology, Surgery and Anatomy, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jose Carlos Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center of Research of Inflammatory Diseases, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center of Research of Inflammatory Diseases, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Hansel C, Erschfeld S, Baues M, Lammers T, Weiskirchen R, Trautwein C, Kroy DC, Drescher HK. The Inhibitory T Cell Receptors PD1 and 2B4 Are Differentially Regulated on CD4 and CD8 T Cells in a Mouse Model of Non-alcoholic Steatohepatitis. Front Pharmacol 2019; 10:244. [PMID: 30949049 PMCID: PMC6436071 DOI: 10.3389/fphar.2019.00244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/26/2019] [Indexed: 12/26/2022] Open
Abstract
Infiltrating CD4 and CD8 T cells have been shown to worsen inflammatory liver damage in non-alcoholic steatohepatitis (NASH). Inhibitory T cell receptors such as the programmed cell death protein 1 (PD1) and the natural killer cell receptor 2B4 regulate the activity of CD4 and CD8 T cells and therefore play an important role in immune tolerance required in the liver. In this study, we investigated the expression profile of inhibitory T cell receptors on CD4 and CD8 T cells in a mouse model of NASH. Male B57BL/6J mice were fed a Western diet for 24 weeks. The expression levels of inhibitory receptors on the surface of intrahepatic and peripheral T cells were measured and correlated with markers of activation (CD107a, CD69, and CD44), metabolic disorder (serum triglycerides, serum cholesterol, γ-glutamyl transferase, hepatic triglycerides), inflammation (serum alanine aminotransferase and aspartate aminotransferase) and hepatic fibrosis (collagen 1A1, α-smooth muscle actin, hydroxyproline). Under Western diet, PD1 is exclusively upregulated on intrahepatic and peripheral CD8+ T cells, whereas the expression level on CD4 T cells is unaffected. In contrast, 2B4 is upregulated liver-specifically on both CD4 and CD8 T cells and unchanged on peripheral T cells. Upregulation of PD1 on CD8 T cells is restricted to CD8 effector memory T cells and correlates with lower levels of degranulation. Similarly, the inhibitory function of PD1 on intrahepatic CD4 T cells is shown by a lower CD69 and CD44 expression on PD1-positive CD4 T cells. In murine steatohepatitis, the upregulation of PD1 on CD8 T cells and 2B4 on CD4 and CD8 T cells potentially limits T cell-mediated liver damage. Therefore, these inhibitory T cell receptors could serve as promising targets of immune-modulatory NASH therapy.
Collapse
Affiliation(s)
- Cordula Hansel
- Department of Internal Medicine III, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Stephanie Erschfeld
- Department of Internal Medicine III, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Maike Baues
- Institute for Experimental Molecular Imaging, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy, and Clinical Chemistry (IFMPEGKC), University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Daniela C Kroy
- Department of Internal Medicine III, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Hannah K Drescher
- Department of Internal Medicine III, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Kesselmeier M, Pütter C, Volckmar AL, Baurecht H, Grallert H, Illig T, Ismail K, Ollikainen M, Silén Y, Keski-Rahkonen A, Bulik CM, Collier DA, Zeggini E, Hebebrand J, Scherag A, Hinney A. High-throughput DNA methylation analysis in anorexia nervosa confirms TNXB hypermethylation. World J Biol Psychiatry 2018; 19:187-199. [PMID: 27367046 DOI: 10.1080/15622975.2016.1190033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Patients with anorexia nervosa (AN) are ideally suited to identify differentially methylated genes in response to starvation. METHODS We examined high-throughput DNA methylation derived from whole blood of 47 females with AN, 47 lean females without AN and 100 population-based females to compare AN with both controls. To account for different cell type compositions, we applied two reference-free methods (FastLMM-EWASher, RefFreeEWAS) and searched for consensus CpG sites identified by both methods. We used a validation sample of five monozygotic AN-discordant twin pairs. RESULTS Fifty-one consensus sites were identified in AN vs. lean and 81 in AN vs. population-based comparisons. These sites have not been reported in AN methylation analyses, but for the latter comparison 54/81 sites showed directionally consistent differential methylation effects in the AN-discordant twins. For a single nucleotide polymorphism rs923768 in CSGALNACT1 a nearby site was nominally associated with AN. At the gene level, we confirmed hypermethylated sites at TNXB. We found support for a locus at NR1H3 in the AN vs. lean control comparison, but the methylation direction was opposite to the one previously reported. CONCLUSIONS We confirm genes like TNXB previously described to comprise differentially methylated sites, and highlight further sites that might be specifically involved in AN starvation processes.
Collapse
Affiliation(s)
- Miriam Kesselmeier
- a Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital , Jena , Germany
| | - Carolin Pütter
- b Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen , Essen , Germany
| | - Anna-Lena Volckmar
- c Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Hansjörg Baurecht
- d Department of Dermatology, Allergology, and Venereology , University Hospital Schleswig-Holstein , Campus Kiel, Kiel , Germany
| | - Harald Grallert
- e Research Unit of Molecular Epidemiology , Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg , Germany.,f German Center for Diabetes Research , Neuherberg , Germany
| | - Thomas Illig
- e Research Unit of Molecular Epidemiology , Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg , Germany.,g Hannover Unified Biobank , Hannover Medical School , Hannover , Germany.,h Institute of Human Genetics , Hannover Medical School , Hannover , Germany
| | - Khadeeja Ismail
- i Department of Public Health , University of Helsinki , Helsinki , Finland
| | - Miina Ollikainen
- i Department of Public Health , University of Helsinki , Helsinki , Finland
| | - Yasmina Silén
- i Department of Public Health , University of Helsinki , Helsinki , Finland
| | | | - Cynthia M Bulik
- j Department of Psychiatry , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.,k Department of Nutrition , The University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - David A Collier
- l Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London , London , UK.,m Eli Lilly and Company, Erl Wood Manor , Windlesham , UK
| | - Eleftheria Zeggini
- n Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus , Hinxton , Cambridge , UK
| | - Johannes Hebebrand
- c Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - André Scherag
- a Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital , Jena , Germany
| | - Anke Hinney
- c Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | | |
Collapse
|
6
|
Wang J, Xiao C, Wei Z, Wang Y, Zhang X, Fu Y. Activation of liver X receptors inhibit LPS-induced inflammatory response in primary bovine mammary epithelial cells. Vet Immunol Immunopathol 2018; 197:87-92. [DOI: 10.1016/j.vetimm.2018.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 11/29/2022]
|
7
|
An B, Lim JY, Jeong S, Shin DM, Choi EY, Min CK, Hong SH. CD1d is a novel cell-surface marker for human monocytic myeloid-derived suppressor cells with T cell suppression activity in peripheral blood after allogeneic hematopoietic stem cell transplantation. Biochem Biophys Res Commun 2017; 495:519-525. [PMID: 29108995 DOI: 10.1016/j.bbrc.2017.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 11/18/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that regulate immune responses in cancer and various pathological conditions. However, the phenotypic and functional heterogeneity of human MDSCs represents a major hurdle for the development of therapeutic strategies targeting or regulating MDSCs in tumor progression, inflammation, and graft-versus-host disease (GVHD). We previously shown that circulating HLA-DR-CD14+ monocytic MDSCs are a major contributor to clinical outcomes after allogeneic hematopoietic stem cell transplantation (allo-HSCT). In this study, we identified, using high-throughput screening, a set of surface markers that are strongly expressed in HLA-DR-CD14+ monocytic MDSCs isolated from the peripheral blood (PB) of patients receiving allo-HSCT. Subsequent experiments showed the consistent dominant expression of CD1d in monocytic MDSCs of allo-HSCT PB in comparison with granulocytic MDSCs. In addition, CD1d-expressing cells isolated from PB of allo-HSCT patients showed the suppressive activity of T cell proliferation and higher expression of MyD88 and IDO compared with CD1d- cells. Our results suggest that CD1d could be a valuable marker for further therapeutic evaluation of human monocytic MDSCs for immune-related diseases, including GVHD.
Collapse
Affiliation(s)
- Borim An
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji-Young Lim
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Suji Jeong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dong-Mi Shin
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Chang-Ki Min
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; Leukemia Research Institute, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
8
|
HE KUN, DAI ZHUOYA, LI PEIZHI, ZHU XIWEN, GONG JIANPING. Association between liver X receptor-α and neuron-derived orphan nuclear receptor-1 in Kupffer cells of C57BL/6 mice during inflammation. Mol Med Rep 2015; 12:6098-104. [DOI: 10.3892/mmr.2015.4155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 06/15/2015] [Indexed: 11/05/2022] Open
|
9
|
Huang L, Chen J, Cao P, Pan H, Ding C, Xiao T, Zhang P, Guo J, Su Z. Anti-obese effect of glucosamine and chitosan oligosaccharide in high-fat diet-induced obese rats. Mar Drugs 2015; 13:2732-56. [PMID: 25942093 PMCID: PMC4446603 DOI: 10.3390/md13052732] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/07/2015] [Accepted: 04/22/2015] [Indexed: 01/09/2023] Open
Abstract
Objective: This study is to evaluate the anti-obese effects of glucosamine (GLC) and chitosan oligosaccharide (COS) on high-fat diet-induced obese rats. Methods: The rats were randomly divided into twelve groups: a normal diet group (NF), a high-fat diet group (HF), Orlistat group, GLC high-, middle-, and low-dose groups (GLC-H, GLC-M, GLC-L), COS1 (COS, number-average molecular weight ≤1000) high-, middle-, and low-dose groups (COS1-H, COS1-M, COS1-L), and COS2 (COS, number-average molecular weight ≤3000) high-, middle-, and low-dose groups (COS2-H, COS2-M, COS2-L). All groups received oral treatment by gavage once daily for a period of six weeks. Results: Rats fed with COS1 gained the least weight among all the groups (P < 0.01), and these rats lost more weight than those treated with Orlistat. In addition to the COS2-H and Orlistat groups, the serum total cholesterol (CHO) and low-density lipoprotein cholesterol (LDL-C) levels were significantly reduced in all treatment groups compared to the HF group (P < 0.01). The various doses of GLC, COS1 and COS2 reduced the expression levels of PPARγ and LXRα mRNA in the white adipose tissue. Conclusions: The results above demonstrated that GLC, COS1, and COS2 improved dyslipidemia and prevented body weight gains by inhibiting the adipocyte differentiation in obese rats induced by a high-fat diet. Thus, these agents may potentially be used to treat obesity.
Collapse
Affiliation(s)
- Lanlan Huang
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jian Chen
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Peiqiu Cao
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Haitao Pan
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chen Ding
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Tiancun Xiao
- Inorganic Chemistry Laboratory, Oxford University, South Parks Road, OX1 3QR Oxford, UK.
- Guangzhou Boxabio Technology Ltd., Guangzhou Hi-Tech Development Zone, Guangzhou 510663, China.
| | - Pengfei Zhang
- Guangzhou Boxabio Technology Ltd., Guangzhou Hi-Tech Development Zone, Guangzhou 510663, China.
| | - Jiao Guo
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|