1
|
Li C, Zhang G, Mohapatra S, Callahan AJ, Loas A, Gómez‐Bombarelli R, Pentelute BL. Machine Learning Guides Peptide Nucleic Acid Flow Synthesis and Sequence Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201988. [PMID: 36270977 PMCID: PMC9731686 DOI: 10.1002/advs.202201988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Peptide nucleic acids (PNAs) are potential antisense therapies for genetic, acquired, and viral diseases. Efficiently selecting candidate PNA sequences for synthesis and evaluation from a genome containing hundreds to thousands of options can be challenging. To facilitate this process, this work leverages machine learning (ML) algorithms and automated synthesis technology to predict PNA synthesis efficiency and guide rational PNA sequence design. The training data is collected from individual fluorenylmethyloxycarbonyl (Fmoc) deprotection reactions performed on a fully automated PNA synthesizer. The optimized ML model allows for 93% prediction accuracy and 0.97 Pearson's r. The predicted synthesis scores are validated to be correlated with the experimental high-performance liquid chromatography (HPLC) crude purities (correlation coefficient R2 = 0.95). Furthermore, a general applicability of ML is demonstrated through designing synthetically accessible antisense PNA sequences from 102 315 predicted candidates targeting exon 44 of the human dystrophin gene, SARS-CoV-2, HIV, as well as selected genes associated with cardiovascular diseases, type II diabetes, and various cancers. Collectively, ML provides an accurate prediction of PNA synthesis quality and serves as a useful computational tool for informing PNA sequence design.
Collapse
Affiliation(s)
- Chengxi Li
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
- College of Chemical and Biological EngineeringZhejiang UniversityNo.866 Yuhangtang RoadHangzhouZhejiang310030P. R. China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterNo.733 Jianshe San Road, Xiaoshan DistrictHangzhouZhejiang311200P. R. China
| | - Genwei Zhang
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Somesh Mohapatra
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Alex J. Callahan
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Andrei Loas
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Rafael Gómez‐Bombarelli
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Bradley L. Pentelute
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
- The Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology500 Main StreetCambridgeMA02142USA
- Center for Environmental Health SciencesMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
- Broad Institute of MIT and Harvard415 Main StreetCambridgeMA02142USA
| |
Collapse
|
2
|
Takahashi M, Li H, Zhou J, Chomchan P, Aishwarya V, Damha MJ, Rossi JJ. Dual Mechanisms of Action of Self-Delivering, Anti-HIV-1 FANA Oligonucleotides as a Potential New Approach to HIV Therapy. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:615-625. [PMID: 31394430 PMCID: PMC6695270 DOI: 10.1016/j.omtn.2019.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/27/2022]
Abstract
Currently, the most effective and durable therapeutic option for HIV-1 infection is combination antiretroviral therapy (cART). Although cART is powerful and can delay viral evolution of drug resistance for decades, it is associated with limitations, including an inability to eradicate the virus and a potential for adverse effects. Therefore, it is imperative to discover new HIV therapeutic modalities. In this study, we designed, characterized, and evaluated the in vitro potency of 2′-deoxy-2′-fluoroarabinonucleotide (FANA) modified antisense oligonucleotides (ASOs) targeting highly conserved regions in the HIV-1 genome. Carrier-free cellular internalization of FANA ASOs resulted in strong suppression of HIV-1 replication in HIV-1-infected human primary cells. In vitro mechanistic studies suggested that the inhibitory effect of FANA ASOs can be attributed to RNase H1 activation and steric hindrance of dimerization. Using 5′-RACE PCR and sequencing analysis, we confirmed the presence of human RNase H1-mediated target RNA cleavage products in cells treated with FANA ASOs. We observed no overt cytotoxicity or immune responses upon FANA ASO treatment. Together, our results strongly suggest that FANA ASOs hold great promise for antiretroviral therapy. The dual ability of FANA ASOs to target RNA by recruiting RNase H1 and/or sterically blocking RNA dimerization further enhances their therapeutic potential.
Collapse
Affiliation(s)
- Mayumi Takahashi
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | - Haitang Li
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | - Pritsana Chomchan
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | | | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA; Irell and Manella Graduate School of Biological Science, Beckman Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
3
|
Synthesis of peptide nucleic acids containing a crosslinking agent and evaluation of their reactivities. Molecules 2015; 20:4708-19. [PMID: 25781072 PMCID: PMC6272193 DOI: 10.3390/molecules20034708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 01/05/2023] Open
Abstract
Peptide nucleic acids (PNAs) are structural mimics of nucleic acids that form stable hybrids with DNA and RNA. In addition, PNAs can invade double-stranded DNA. Due to these characteristics, PNAs are widely used as biochemical tools, for example, in antisense/antigene therapy. Interstrand crosslink formation in nucleic acids is one of the strategies for preparing a stable duplex by covalent bond formation. In this study, we have synthesized PNAs incorporating 4-amino-6-oxo-2-vinylpyrimidine (AOVP) as a crosslinking agent and evaluated their reactivities for targeting DNA and RNA.
Collapse
|
4
|
Gambari R. Peptide nucleic acids: a review on recent patents and technology transfer. Expert Opin Ther Pat 2014; 24:267-94. [PMID: 24405414 DOI: 10.1517/13543776.2014.863874] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION DNA/RNA-based drugs are considered of major interest in molecular diagnosis and nonviral gene therapy. In this field, peptide nucleic acids (PNAs, DNA analogs in which the sugar-phosphate backbone is replaced by N-(2-aminoethyl)glycine units or similar building blocks) have been demonstrated to be excellent candidates as diagnostic reagents and biodrugs. AREAS COVERED Recent (2002 - 2013) patents based on studies on development of PNA analogs, delivery systems for PNAs, applications of PNAs in molecular diagnosis, and use of PNA for innovative therapeutic protocols. EXPERT OPINION PNAs are unique reagents in molecular diagnosis and have been proven to be very active and specific for alteration of gene expression, despite the fact that solubility and uptake by target cells can be limiting factors. Accordingly, patents on PNAs have taken in great consideration delivery strategies. PNAs have been proven stable and effective in vivo, despite the fact that possible long-term toxicity should be considered. For possible clinical applications, the use of PNA molecules in combination with drugs already employed in therapy has been suggested. Considering the patents available and the results on in vivo testing on animal models, we expect in the near future relevant PNA-based clinical trials.
Collapse
Affiliation(s)
- Roberto Gambari
- University of Ferrara, Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section , Via Fossato di Mortara n.74, 44100 Ferrara , Italy +39 532 974443 ; +39 532 974500 ;
| |
Collapse
|
5
|
Webb JA, Jones CP, Parent LJ, Rouzina I, Musier-Forsyth K. Distinct binding interactions of HIV-1 Gag to Psi and non-Psi RNAs: implications for viral genomic RNA packaging. RNA (NEW YORK, N.Y.) 2013; 19:1078-88. [PMID: 23798665 PMCID: PMC3708528 DOI: 10.1261/rna.038869.113] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/13/2013] [Indexed: 05/02/2023]
Abstract
Despite the vast excess of cellular RNAs, precisely two copies of viral genomic RNA (gRNA) are selectively packaged into new human immunodeficiency type 1 (HIV-1) particles via specific interactions between the HIV-1 Gag and the gRNA psi (ψ) packaging signal. Gag consists of the matrix (MA), capsid, nucleocapsid (NC), and p6 domains. Binding of the Gag NC domain to ψ is necessary for gRNA packaging, but the mechanism by which Gag selectively interacts with ψ is unclear. Here, we investigate the binding of NC and Gag variants to an RNA derived from ψ (Psi RNA), as well as to a non-ψ region (TARPolyA). Binding was measured as a function of salt to obtain the effective charge (Zeff) and nonelectrostatic (i.e., specific) component of binding, Kd(1M). Gag binds to Psi RNA with a dramatically reduced Kd(1M) and lower Zeff relative to TARPolyA. NC, GagΔMA, and a dimerization mutant of Gag bind TARPolyA with reduced Zeff relative to WT Gag. Mutations involving the NC zinc finger motifs of Gag or changes to the G-rich NC-binding regions of Psi RNA significantly reduce the nonelectrostatic component of binding, leading to an increase in Zeff. These results show that Gag interacts with gRNA using different binding modes; both the NC and MA domains are bound to RNA in the case of TARPolyA, whereas binding to Psi RNA involves only the NC domain. Taken together, these results suggest a novel mechanism for selective gRNA encapsidation.
Collapse
Affiliation(s)
- Joseph A. Webb
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Retrovirus Research, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Christopher P. Jones
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Retrovirus Research, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Ioulia Rouzina
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Retrovirus Research, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|