1
|
Prignano LA, Stevens MJ, Vanegas JM, Rempe SB, Dempski RE. Metadynamics simulations reveal mechanisms of Na+ and Ca2+ transport in two open states of the channelrhodopsin chimera, C1C2. PLoS One 2024; 19:e0309553. [PMID: 39241014 PMCID: PMC11379304 DOI: 10.1371/journal.pone.0309553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/30/2024] [Indexed: 09/08/2024] Open
Abstract
Cation conducting channelrhodopsins (ChRs) are a popular tool used in optogenetics to control the activity of excitable cells and tissues using light. ChRs with altered ion selectivity are in high demand for use in different cell types and for other specialized applications. However, a detailed mechanism of ion permeation in ChRs is not fully resolved. Here, we use complementary experimental and computational methods to uncover the mechanisms of cation transport and valence selectivity through the channelrhodopsin chimera, C1C2, in the high- and low-conducting open states. Electrophysiology measurements identified a single-residue substitution within the central gate, N297D, that increased Ca2+ permeability vs. Na+ by nearly two-fold at peak current, but less so at stationary current. We then developed molecular models of dimeric wild-type C1C2 and N297D mutant channels in both open states and calculated the PMF profiles for Na+ and Ca2+ permeation through each protein using well-tempered/multiple-walker metadynamics. Results of these studies agree well with experimental measurements and demonstrate that the pore entrance on the extracellular side differs from original predictions and is actually located in a gap between helices I and II. Cation transport occurs via a relay mechanism where cations are passed between flexible carboxylate sidechains lining the full length of the pore by sidechain swinging, like a monkey swinging on vines. In the mutant channel, residue D297 enhances Ca2+ permeability by mediating the handoff between the central and cytosolic binding sites via direct coordination and sidechain swinging. We also found that altered cation binding affinities at both the extracellular entrance and central binding sites underly the distinct transport properties of the low-conducting open state. This work significantly advances our understanding of ion selectivity and permeation in cation channelrhodopsins and provides the insights needed for successful development of new ion-selective optogenetic tools.
Collapse
Affiliation(s)
- Lindsey A Prignano
- Department of Chemistry & Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Mark J Stevens
- Sandia National Laboratories, Albuquerque, New Mexico, United States of America
| | - Juan M Vanegas
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Susan B Rempe
- Sandia National Laboratories, Albuquerque, New Mexico, United States of America
| | - Robert E Dempski
- Department of Chemistry & Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
2
|
Zeng W, Li C, Wu R, Yang X, Wang Q, Lin B, Wei Y, Li H, Shan G, Qu L, Cang C. Optogenetic manipulation of lysosomal physiology and autophagy-dependent clearance of amyloid beta. PLoS Biol 2024; 22:e3002591. [PMID: 38652732 PMCID: PMC11068202 DOI: 10.1371/journal.pbio.3002591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/03/2024] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
Lysosomes are degradation centers of cells and intracellular hubs of signal transduction, nutrient sensing, and autophagy regulation. Dysfunction of lysosomes contributes to a variety of diseases, such as lysosomal storage diseases (LSDs) and neurodegeneration, but the mechanisms are not well understood. Altering lysosomal activity and examining its impact on the occurrence and development of disease is an important strategy for studying lysosome-related diseases. However, methods to dynamically regulate lysosomal function in living cells or animals are still lacking. Here, we constructed lysosome-localized optogenetic actuators, named lyso-NpHR3.0, lyso-ArchT, and lyso-ChR2, to achieve optogenetic manipulation of lysosomes. These new actuators enable light-dependent control of lysosomal membrane potential, pH, hydrolase activity, degradation, and Ca2+ dynamics in living cells. Notably, lyso-ChR2 activation induces autophagy through the mTOR pathway, promotes Aβ clearance in an autophagy-dependent manner in cellular models, and alleviates Aβ-induced paralysis in the Caenorhabditis elegans model of Alzheimer's disease. Our lysosomal optogenetic actuators supplement the optogenetic toolbox and provide a method to dynamically regulate lysosomal physiology and function in living cells and animals.
Collapse
Affiliation(s)
- Wenping Zeng
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Canjun Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| | - Ruikun Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xingguo Yang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qingyan Wang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Bingqian Lin
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yanan Wei
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ge Shan
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lili Qu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chunlei Cang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Neurodegenerative Disorder Research Center, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
3
|
Govorunova EG, Sineshchekov OA, Brown LS, Bondar AN, Spudich JL. Structural Foundations of Potassium Selectivity in Channelrhodopsins. mBio 2022; 13:e0303922. [PMID: 36413022 PMCID: PMC9765531 DOI: 10.1128/mbio.03039-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Potassium-selective channelrhodopsins (KCRs) are light-gated K+ channels recently found in the stramenopile protist Hyphochytrium catenoides. When expressed in neurons, KCRs enable high-precision optical inhibition of spiking (optogenetic silencing). KCRs are capable of discriminating K+ from Na+ without the conventional K+ selectivity filter found in classical K+ channels. The genome of H. catenoides also encodes a third paralog that is more permeable for Na+ than for K+. To identify structural motifs responsible for the unusual K+ selectivity of KCRs, we systematically analyzed a series of chimeras and mutants of this protein. We found that mutations of three critical residues in the paralog convert its Na+-selective channel into a K+-selective one. Our characterization of homologous proteins from other protists (Colponema vietnamica, Cafeteria burkhardae, and Chromera velia) and metagenomic samples confirmed the importance of these residues for K+ selectivity. We also show that Trp102 and Asp116, conserved in all three H. catenoides paralogs, are necessary, although not sufficient, for K+ selectivity. Our results provide the foundation for further engineering of KCRs for optogenetic needs. IMPORTANCE Recently discovered microbial light-gated ion channels (channelrhodopsins) with a higher permeability for K+ than for Na+ (potassium-selective channelrhodopsins [kalium channelrhodopsins, or KCRs]) demonstrate an alternative K+ selectivity mechanism, unrelated to well-characterized "selectivity filters" of voltage- and ligand-gated K+ channels. KCRs can be used for optogenetic inhibition of neuronal firing and potentially for the development of gene therapies to treat neurological and cardiovascular disorders. In this study, we identified structural motifs that determine the K+ selectivity of KCRs that provide the foundation for their further improvement as optogenetic tools.
Collapse
Affiliation(s)
- Elena G. Govorunova
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Oleg A. Sineshchekov
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Leonid S. Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Bucharest, Romania
- Institute of Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
4
|
Govorunova EG, Gou Y, Sineshchekov OA, Li H, Lu X, Wang Y, Brown LS, St-Pierre F, Xue M, Spudich JL. Kalium channelrhodopsins are natural light-gated potassium channels that mediate optogenetic inhibition. Nat Neurosci 2022; 25:967-974. [PMID: 35726059 PMCID: PMC9854242 DOI: 10.1038/s41593-022-01094-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/12/2022] [Indexed: 02/02/2023]
Abstract
Channelrhodopsins are used widely for optical control of neurons, in which they generate photoinduced proton, sodium or chloride influx. Potassium (K+) is central to neuron electrophysiology, yet no natural K+-selective light-gated channel has been identified. Here, we report kalium channelrhodopsins (KCRs) from Hyphochytrium catenoides. Previously known gated potassium channels are mainly ligand- or voltage-gated and share a conserved K+-selectivity filter. KCRs differ in that they are light-gated and have independently evolved an alternative K+ selectivity mechanism. The KCRs are potent, highly selective of K+ over Na+, and open in less than 1 ms following photoactivation. The permeability ratio PK/PNa of 23 makes H. catenoides KCR1 (HcKCR1) a powerful hyperpolarizing tool to suppress excitable cell firing upon illumination, demonstrated here in mouse cortical neurons. HcKCR1 enables optogenetic control of K+ gradients, which is promising for the study and potential treatment of potassium channelopathies such as epilepsy, Parkinson's disease and long-QT syndrome and other cardiac arrhythmias.
Collapse
Affiliation(s)
- Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Yueyang Gou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Xiaoyu Lu
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Yumei Wang
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - François St-Pierre
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
5
|
VanGordon MR, Prignano LA, Dempski RE, Rick SW, Rempe SB. Channelrhodopsin C1C2: Photocycle kinetics and interactions near the central gate. Biophys J 2021; 120:1835-1845. [PMID: 33705762 PMCID: PMC8204341 DOI: 10.1016/j.bpj.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Channelrhodopsins (ChR) are light-sensitive cation channels used in optogenetics, a technique that applies light to control cells (e.g., neurons) that have been modified genetically to express those channels. Although mutations are known to affect pore kinetics, little is known about how mutations induce changes at the molecular scale. To address this issue, we first measured channel opening and closing rates of a ChR chimera (C1C2) and selected variants (N297D, N297V, and V125L). Then, we used atomistic simulations to correlate those rates with changes in pore structure, hydration, and chemical interactions among key gating residues of C1C2 in both closed and open states. Overall, the experimental results show that C1C2 and its mutants do not behave like ChR2 or its analogous variants, except V125L, making C1C2 a unique channel. Our atomistic simulations confirmed that opening of the channel and initial hydration of the gating regions between helices I, II, III, and VII of the channel occurs with 1) the presence of 13-cis retinal; 2) deprotonation of a glutamic acid gating residue, E129; and 3) subsequent weakening of the central gate hydrogen bond between the same glutamic acid E129 and asparagine N297 in the central region of the pore. Also, an aspartate (D292) is the unambiguous primary proton acceptor for the retinal Schiff base in the hydrated channel.
Collapse
Affiliation(s)
- Monika R VanGordon
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana
| | - Lindsey A Prignano
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Robert E Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Steven W Rick
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana
| | - Susan B Rempe
- Sandia National Laboratories, Albuquerque, New Mexico.
| |
Collapse
|
6
|
Structure-Function Relationship of Channelrhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:35-53. [PMID: 33398806 DOI: 10.1007/978-981-15-8763-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Ion-translocating rhodopsins, especially channelrhodopsins (ChRs), have attracted broad attention as a powerful tool to modulate the membrane potential of cells with light (optogenetics). Because of recent biophysical, spectroscopic, and computational studies, including the structural determination of cation and anion ChRs, our understanding of the molecular mechanism underlying light-gated ion conduction has been greatly advanced. In this chapter, I first describe the background of rhodopsin family proteins including ChR, and how the optogenetics technology has been established from the discovery of first ChR in 2002. I later introduce the recent findings of the structure-function relationship of ChR by comparing the crystal structures of cation and anion ChRs. I further discuss the future goal in the fields of ChR research and optogenetic tool development.
Collapse
|
7
|
Cheng J, Zhang W, Zhou S, Ran X, Shang Y, Lo GV, Dou Y, Yuan S. The effect on ion channel of different protonation states of E90 in channelrhodopsin-2: a molecular dynamics simulation. RSC Adv 2021; 11:14542-14551. [PMID: 35424009 PMCID: PMC8697799 DOI: 10.1039/d1ra01879e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/13/2021] [Indexed: 11/21/2022] Open
Abstract
Channelrhodopsin-2 (ChR2) is a cationic channel protein that has been extensively studied in optogenetics. The ion channel is opened via a series of proton transfers and H-bond changes during the photocycle but the detailed mechanism is still unknown. Molecular dynamics (MD) simulations with enhanced sampling were performed on the dark-adapted state (i.e., D470) and two photocycle intermediates (P1500 and P2390) to study the proton transfer path of the Schiff base and the subsequent conformational changes. The results suggest there are two possible proton transfer pathways from the Schiff base to proton acceptors (i.e., E123 or D253), depending on the protonation of E90. If E90 is protonated in the P1500 state, the proton on the Schiff base will transfer to E123. The polyene chain of 13-cis retinal tilts and opens the channel that detours the blocking central gate (CG) and forms a narrow channel through the transmembrane helices (TM) 2, 3, 6 and 7. In contrast, if E90 deprotonates after retinal isomerization, the primary proton acceptor is D253, and an almost-open channel through TM1, 2, 3 and 7 is generated. The channel diameter is very close to the experimental value. The potential mean force (PMF) suggests that the free energy is extremely low for ions passing through this channel. With E90 protonated, the proton acceptor of RSBH+ is E123 with a narrow channel along TM3; while with E90 deprotonated, proton transfer from RSBH+ to D253 generates an approximately open channel along TM2.![]()
Collapse
Affiliation(s)
- Jie Cheng
- Chongqing Key Laboratory of Big Data for Bio Intelligence
- Chongqing University of Posts and Telecommunications
- Chongqing 40065
- China
| | - Wenying Zhang
- Chongqing Key Laboratory of Big Data for Bio Intelligence
- Chongqing University of Posts and Telecommunications
- Chongqing 40065
- China
| | - Shuangyan Zhou
- Chongqing Key Laboratory of Big Data for Bio Intelligence
- Chongqing University of Posts and Telecommunications
- Chongqing 40065
- China
| | - Xu Ran
- Chongqing Key Laboratory of Big Data for Bio Intelligence
- Chongqing University of Posts and Telecommunications
- Chongqing 40065
- China
| | - Yiwen Shang
- Chongqing Key Laboratory of Big Data for Bio Intelligence
- Chongqing University of Posts and Telecommunications
- Chongqing 40065
- China
| | - Glenn V. Lo
- Department of Chemistry and Physical Sciences
- Nicholls State University
- Thibodaux
- USA
| | - Yusheng Dou
- Department of Chemistry and Physical Sciences
- Nicholls State University
- Thibodaux
- USA
| | - Shuai Yuan
- Chongqing Key Laboratory of Big Data for Bio Intelligence
- Chongqing University of Posts and Telecommunications
- Chongqing 40065
- China
| |
Collapse
|
8
|
Octeau JC, Gangwani MR, Allam SL, Tran D, Huang S, Hoang-Trong TM, Golshani P, Rumbell TH, Kozloski JR, Khakh BS. Transient, Consequential Increases in Extracellular Potassium Ions Accompany Channelrhodopsin2 Excitation. Cell Rep 2020; 27:2249-2261.e7. [PMID: 31116972 PMCID: PMC6582980 DOI: 10.1016/j.celrep.2019.04.078] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/04/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Channelrhodopsin2 (ChR2) optogenetic excitation is widely used to study neurons, astrocytes, and circuits. Using complementary approaches in situ and in vivo, we found that ChR2 stimulation leads to significant transient elevation of extracellular potassium ions by ~5 mM. Such elevations were detected in ChR2-expressing mice, following local in vivo expression of ChR2(H134R) with adeno-associated viruses (AAVs), in different brain areas and when ChR2 was expressed in neurons or astrocytes. In particular, ChR2-mediated excitation of striatal astrocytes was sufficient to increase medium spiny neuron (MSN) excitability and immediate early gene expression. The effects on MSN excitability were recapitulated in silico with a computational MSN model and detected in vivo as increased action potential firing in awake, behaving mice. We show that transient, physiologically consequential increases in extracellular potassium ions accompany ChR2 optogenetic excitation. This coincidental effect may be important to consider during astrocyte studies employing ChR2 to interrogate neural circuits and animal behavior. Using multiple approaches, Octeau et al. discover that optogenetic excitation of ChR2-expressing cells leads to significant transient extracellular potassium ion elevations that increase neuronal excitability and immediate early gene expression in neurons following in vivo stimulation.
Collapse
Affiliation(s)
- J Christopher Octeau
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Mohitkumar R Gangwani
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Sushmita L Allam
- IBM T.J. Watson Research Center, P.O. Box 218, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
| | - Duy Tran
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Shuhan Huang
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Tuan M Hoang-Trong
- IBM T.J. Watson Research Center, P.O. Box 218, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Timothy H Rumbell
- IBM T.J. Watson Research Center, P.O. Box 218, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
| | - James R Kozloski
- IBM T.J. Watson Research Center, P.O. Box 218, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
9
|
Structural basis for ion selectivity and engineering in channelrhodopsins. Curr Opin Struct Biol 2019; 57:176-184. [PMID: 31174050 DOI: 10.1016/j.sbi.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/03/2023]
Abstract
Channelrhodopsins have become an integral part of modern neuroscience approaches due to their ability to control neuronal activity in targeted cell populations. The recent determination of several channelrhodopsin X-ray structures now enables us to study their function with unprecedented molecular precision. We will discuss how these insights can guide the engineering of the ion conducting pathway to increase its selectivity for Cl-, Ca2+, and K+ ions and improve the overall conductance. Engineering such channelrhodopsins would further increase their utility in neuroscience research and beyond by controlling a wider range of physiological events. To thoroughly address this issue, we compare channelrhodopsin structures with structural features of voltage and ligand-gated K+, Cl- and Ca2+ channels and discuss how these could be implemented in channelrhodopsins.
Collapse
|
10
|
An optimized and automated approach to quantifying channelrhodopsin photocurrent kinetics. Anal Biochem 2018; 566:160-167. [PMID: 30502319 DOI: 10.1016/j.ab.2018.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023]
Abstract
Channelrhodopsins are light-activated ion channels that enable targetable activation or inhibition of excitable cells with light. Ion conductance can generally be described by a four step photocycle, which includes two open and two closed states. While a complete understanding of channelrhodopsin function cannot be understood in the absence of kinetic modeling, model fitting requires manual fitting, which is laborious and technically complicated for non-experts. To enhance analysis of photocurrent data, this manuscript describes a fitting program where electrophysiology data can be automatically and quantitatively analyzed. Significant improvement in this program when compared to our previous version includes 1) the ability to automatically find the experiment start time using the derivative of the current signal, 2) utilizing the Object Oriented Programing (OPP) paradigm which is significantly more reliable if the code is used by people with little to no programming experience and 3) the distribution of the code is simplified to sharing a single MATLAB file, including rigorous comments throughout. To demonstrate the utility of this program, we show automated fitting of photocurrents from two member proteins: channelrhodopsin-2 and a chimera between channelrhodopsin-1 and channelrhodopsin-2 (C1C2).
Collapse
|
11
|
Optogenetic control of mitochondrial metabolism and Ca 2+ signaling by mitochondria-targeted opsins. Proc Natl Acad Sci U S A 2017; 114:E5167-E5176. [PMID: 28611221 DOI: 10.1073/pnas.1703623114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Key mitochondrial functions such as ATP production, Ca2+ uptake and release, and substrate accumulation depend on the proton electrochemical gradient (ΔμH+) across the inner membrane. Although several drugs can modulate ΔμH+, their effects are hardly reversible, and lack cellular specificity and spatial resolution. Although channelrhodopsins are widely used to modulate the plasma membrane potential of excitable cells, mitochondria have thus far eluded optogenetic control. Here we describe a toolkit of optometabolic constructs based on selective targeting of channelrhodopsins with distinct functional properties to the inner mitochondrial membrane of intact cells. We show that our strategy enables a light-dependent control of the mitochondrial membrane potential (Δψm) and coupled mitochondrial functions such as ATP synthesis by oxidative phosphorylation, Ca2+ dynamics, and respiratory metabolism. By directly modulating Δψm, the mitochondria-targeted opsins were used to control complex physiological processes such as spontaneous beats in cardiac myocytes and glucose-dependent ATP increase in pancreatic β-cells. Furthermore, our optometabolic tools allow modulation of mitochondrial functions in single cells and defined cell regions.
Collapse
|
12
|
Richards R, Dempski RE. Adjacent channelrhodopsin-2 residues within transmembranes 2 and 7 regulate cation selectivity and distribution of the two open states. J Biol Chem 2017; 292:7314-7326. [PMID: 28302720 DOI: 10.1074/jbc.m116.770321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/14/2017] [Indexed: 11/06/2022] Open
Abstract
Channelrhodopsin-2 (ChR2) is a light-activated channel that can conduct cations of multiple valencies down the electrochemical gradient. Under continuous light exposure, ChR2 transitions from a high-conducting open state (O1) to a low-conducting open state (O2) with differing ion selectivity. The molecular basis for the O1 → O2 transition and how ChR2 modulates selectivity between states is currently unresolved. To this end, we used steered molecular dynamics, electrophysiology, and kinetic modeling to identify residues that contribute to gating and selectivity in discrete open states. Analysis of steered molecular dynamics experiments identified three transmembrane residues (Val-86, Lys-93, and Asn-258) that form a putative barrier to ion translocation. Kinetic modeling of photocurrents generated from ChR2 proteins with conservative mutations at these positions demonstrated that these residues contribute to cation selectivity (Val-86 and Asn-258), the transition between the two open states (Val-86), open channel stability, and the hydrogen-bonding network (K93I and K93N). These results suggest that this approach can be used to identify residues that contribute to the open-state transitions and the discrete ion selectivity within these states. With the rise of ChR2 use in optogenetics, it will be critical to identify residues that contribute to O1 or O2 selectivity and gating to minimize undesirable effects.
Collapse
Affiliation(s)
- Ryan Richards
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Robert E Dempski
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| |
Collapse
|
13
|
Abstract
After the discovery of Channelrhodopsin, a light-gated ion channel, only a few people saw the diverse range of applications for such a protein. Now, more than 10 years later Channelrhodopsins have become widely accepted as the ultimate tool to control the membrane potential of excitable cells via illumination. The demand for more application-specific Channelrhodopsin variants started a race between protein engineers to design improved variants. Even though many engineered variants have undisputable advantages compared to wild-type variants, many users are alienated by the tremendous amount of new variants and their perplexing names. Here, we review new variants whose efficacy has already been proven in neurophysiological experiments, or variants which are likely to extend the optogenetic toolbox. Variants are described based on their mechanistic and operational properties in terms of expression, kinetics, ion selectivity, and wavelength responsivity.
Collapse
Affiliation(s)
- Jonas Wietek
- Experimental Biophysics, Humboldt University Berlin, Invalidenstrasse 42, 10115, Berlin, Germany
| | - Matthias Prigge
- Department of Neurobiology, Weizmann Institute of Science, Herzel 234, 76100, Rehovot, Israel.
| |
Collapse
|
14
|
Watanabe S, Ishizuka T, Hososhima S, Zamani A, Hoque MR, Yawo H. The regulatory mechanism of ion permeation through a channelrhodopsin derived from Mesostigma viride (MvChR1). Photochem Photobiol Sci 2016; 15:365-74. [DOI: 10.1039/c5pp00290g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MvChR2 was rather insensitive to Gd3+ because of the absence of negativity at the 116th position, which is glutamate in the case of channelrhodopsin-2 (CrChR2) or the C1C2.
Collapse
Affiliation(s)
- Shota Watanabe
- Department of Developmental Biology and Neuroscience
- Tohoku University Graduate School of Life Sciences and JST
- CREST
- Sendai 980-8577
- Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience
- Tohoku University Graduate School of Life Sciences and JST
- CREST
- Sendai 980-8577
- Japan
| | - Shoko Hososhima
- Department of Developmental Biology and Neuroscience
- Tohoku University Graduate School of Life Sciences and JST
- CREST
- Sendai 980-8577
- Japan
| | - Alemeh Zamani
- Department of Developmental Biology and Neuroscience
- Tohoku University Graduate School of Life Sciences and JST
- CREST
- Sendai 980-8577
- Japan
| | - Mohammad Razuanul Hoque
- Department of Developmental Biology and Neuroscience
- Tohoku University Graduate School of Life Sciences and JST
- CREST
- Sendai 980-8577
- Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience
- Tohoku University Graduate School of Life Sciences and JST
- CREST
- Sendai 980-8577
- Japan
| |
Collapse
|
15
|
Richards R, Dempski RE. Cysteine Substitution and Labeling Provide Insight into Channelrhodopsin-2 Ion Conductance. Biochemistry 2015; 54:5665-8. [PMID: 26322955 DOI: 10.1021/acs.biochem.5b00738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Channelrhodopsin-2 is a light-activated cation channel. However, the mechanism of ion conductance is unresolved. Here, we performed cysteine scanning mutagenesis on transmembrane domain 7 followed by labeling with a methanethiosulfonate compound. Analysis of our results shows that residues that line the putative pore and interface with adjacent transmembrane domains 1 and 3, as proposed by our channelrhodopsin-2 homology model, affect ion conductance, decay kinetics, and/or off kinetics. Combined, these results suggest that negative charges at the extracellular side of transmembrane domain 7 funnel cations into the pore.
Collapse
Affiliation(s)
- Ryan Richards
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute , Worcester, Massachusetts 01609, United States
| | - Robert E Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute , Worcester, Massachusetts 01609, United States
| |
Collapse
|
16
|
Del Val C, Royuela-Flor J, Milenkovic S, Bondar AN. Channelrhodopsins: a bioinformatics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:643-55. [PMID: 24252597 DOI: 10.1016/j.bbabio.2013.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 12/28/2022]
Abstract
Channelrhodopsins are microbial-type rhodopsins that function as light-gated cation channels. Understanding how the detailed architecture of the protein governs its dynamics and specificity for ions is important, because it has the potential to assist in designing site-directed channelrhodopsin mutants for specific neurobiology applications. Here we use bioinformatics methods to derive accurate alignments of channelrhodopsin sequences, assess the sequence conservation patterns and find conserved motifs in channelrhodopsins, and use homology modeling to construct three-dimensional structural models of channelrhodopsins. The analyses reveal that helices C and D of channelrhodopsins contain Cys, Ser, and Thr groups that can engage in both intra- and inter-helical hydrogen bonds. We propose that these polar groups participate in inter-helical hydrogen-bonding clusters important for the protein conformational dynamics and for the local water interactions. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Coral Del Val
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain.
| | - José Royuela-Flor
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Stefan Milenkovic
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, 14195 Berlin, Germany.
| |
Collapse
|
17
|
Lórenz-Fonfría VA, Heberle J. Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:626-42. [PMID: 24212055 DOI: 10.1016/j.bbabio.2013.10.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/21/2013] [Accepted: 10/30/2013] [Indexed: 12/25/2022]
Abstract
The new and vibrant field of optogenetics was founded by the seminal discovery of channelrhodopsin, the first light-gated cation channel. Despite the numerous applications that have revolutionised neurophysiology, the functional mechanism is far from understood on the molecular level. An arsenal of biophysical techniques has been established in the last decades of research on microbial rhodopsins. However, application of these techniques is hampered by the duration and the complexity of the photoreaction of channelrhodopsin compared with other microbial rhodopsins. A particular interest in resolving the molecular mechanism lies in the structural changes that lead to channel opening and closure. Here, we review the current structural and mechanistic knowledge that has been accomplished by integrating the static structure provided by X-ray crystallography and electron microscopy with time-resolved spectroscopic and electrophysiological techniques. The dynamical reactions of the chromophore are effectively coupled to structural changes of the protein, as shown by ultrafast spectroscopy. The hierarchical sequence of structural changes in the protein backbone that spans the time range from 10(-12)s to 10(-3)s prepares the channel to open and, consequently, cations can pass. Proton transfer reactions that are associated with channel gating have been resolved. In particular, glutamate 253 and aspartic acid 156 were identified as proton acceptor and donor to the retinal Schiff base. The reprotonation of the latter is the critical determinant for channel closure. The proton pathway that eventually leads to proton pumping is also discussed. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Víctor A Lórenz-Fonfría
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
18
|
Govorunova EG, Sineshchekov OA, Li H, Janz R, Spudich JL. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis. J Biol Chem 2013; 288:29911-22. [PMID: 23995841 DOI: 10.1074/jbc.m113.505495] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na(+) ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required.
Collapse
Affiliation(s)
- Elena G Govorunova
- From the Department of Biochemistry & Molecular Biology, Center for Membrane Biology and
| | | | | | | | | |
Collapse
|
19
|
Gaiko O, Dempski RE. Transmembrane domain three contributes to the ion conductance pathway of channelrhodopsin-2. Biophys J 2013; 104:1230-7. [PMID: 23528082 DOI: 10.1016/j.bpj.2013.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/11/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022] Open
Abstract
Channelrhodopsin-2 (ChR2) is a light-activated nonselective cation channel that is found in the eyespot of the unicellular green alga Chlamydomonas reinhardtii. Despite the wide employment of this protein to control the membrane potential of excitable membranes, the molecular determinants that define the unique ion conductance properties of this protein are not well understood. To elucidate the cation permeability pathway of ion conductance, we performed cysteine scanning mutagenesis of transmembrane domain three followed by labeling with methanethiosulfonate derivatives. An analysis of our experimental results as modeled onto the crystal structure of the C1C2 chimera demonstrate that the ion permeation pathway includes residues on one face of transmembrane domain three at the extracellular side of the channel that face the center of ChR2. Furthermore, we examined the role of a residue at the extracellular side of transmembrane domain three in ion conductance. We show that ion conductance is mediated, in part, by hydrogen bonding at the extracellular side of transmembrane domain three. These results provide a starting point for examining the cation permeability pathway for ChR2.
Collapse
Affiliation(s)
- Olga Gaiko
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| | | |
Collapse
|