1
|
Vasilaki E, Bai Y, Ali MM, Sundqvist A, Moustakas A, Heldin CH. ΔNp63 bookmarks and creates an accessible epigenetic environment for TGFβ-induced cancer cell stemness and invasiveness. Cell Commun Signal 2024; 22:411. [PMID: 39180088 PMCID: PMC11342681 DOI: 10.1186/s12964-024-01794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND p63 is a transcription factor with intrinsic pioneer factor activity and pleiotropic functions. Transforming growth factor β (TGFβ) signaling via activation and cooperative action of canonical, SMAD, and non-canonical, MAP-kinase (MAPK) pathways, elicits both anti- and pro-tumorigenic properties, including cell stemness and invasiveness. TGFβ activates the ΔNp63 transcriptional program in cancer cells; however, the link between TGFβ and p63 in unmasking the epigenetic landscape during tumor progression allowing chromatin accessibility and gene transcription, is not yet reported. METHODS Small molecule inhibitors, including protein kinase inhibitors and RNA-silencing, provided loss of function analyses. Sphere formation assays in cancer cells, chromatin immunoprecipitation and mRNA expression assays were utilized in order to gain mechanistic evidence. Mass spectrometry analysis coupled to co-immunoprecipitation assays revealed novel p63 interactors and their involvement in p63-dependent transcription. RESULTS The sphere-forming capacity of breast cancer cells was enhanced upon TGFβ stimulation and significantly decreased upon ΔNp63 depletion. Activation of TGFβ signaling via p38 MAPK signaling induced ΔNp63 phosphorylation at Ser 66/68 resulting in stabilized ΔNp63 protein with enhanced DNA binding properties. TGFβ stimulation altered the ratio of H3K27ac and H3K27me3 histone modification marks, pointing towards higher H3K27ac and increased p300 acetyltransferase recruitment to chromatin. By silencing the expression of ΔNp63, the TGFβ effect on chromatin remodeling was abrogated. Inhibition of H3K27me3, revealed the important role of TGFβ as the upstream signal for guiding ΔNp63 to the TGFβ/SMAD gene loci, as well as the indispensable role of ΔNp63 in recruiting histone modifying enzymes, such as p300, to these genomic regions, regulating chromatin accessibility and gene transcription. Mechanistically, TGFβ through SMAD activation induced dissociation of ΔNp63 from NURD or NCOR/SMRT histone deacetylation complexes, while promoted the assembly of ΔNp63-p300 complexes, affecting the levels of histone acetylation and the outcome of ΔNp63-dependent transcription. CONCLUSIONS ΔNp63, phosphorylated and recruited by TGFβ to the TGFβ/SMAD/ΔNp63 gene loci, promotes chromatin accessibility and transcription of target genes related to stemness and cell invasion.
Collapse
Affiliation(s)
- Eleftheria Vasilaki
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden.
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden.
| | - Yu Bai
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden
| | - Mohamad Moustafa Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden
| | - Anders Sundqvist
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, Uppsala, SE-751 24, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden.
| |
Collapse
|
2
|
Kizhakkoottu S, Ramani P, Tilakaratne WM. Role of Stem Cells in the Pathogenesis and Malignant Transformation of Oral Submucous Fibrosis. Stem Cell Rev Rep 2024; 20:1512-1520. [PMID: 38837114 DOI: 10.1007/s12015-024-10744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Pathogenesis and malignant potential of Oral submucous fibrosis(OSMF) have always been a topic of interest among the researchers. Despite OSMF being a collagen metabolic disorder, the alterations occurring in the connective tissue stroma affects the atrophic surface epithelium in later stages and progresses to malignant phenotypes. The present review aims to summarize the role of stem cells in the pathogenesis and malignant transformation of oral submucous fibrosis. MATERIALS AND METHODS A literature search was carried out using data banks like Medline and Embase, google scholar and manual method with no time frame, pertinent to the role of mucosal stem cells in OSMF and its malignisation. The relevant literature was reviewed, critically appraised by all the authors and compiled in this narrative review. RESULTS Critical appraisal and evaluation of the data extracted from the selected articles were compiled in this review. The collated results highlighted the upregulation and downregulation of various stem cell markers during the progression and malignisation of OSMF were depicted in a descriptive and detail manner in the present review. CONCLUSION We highlight the potential of mucosal stem cells in the regulation and malignisation of OSMF. However, future large-scale clinical studies will be needed to support whether manipulation of this stem cells at molecular level will be sufficient for the treatment and preventing the malignant transformation of OSMF.
Collapse
Affiliation(s)
- Suvarna Kizhakkoottu
- Department of Oral Pathology and Microbiology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India.
| | | |
Collapse
|
3
|
Bamberger C, Pankow S, Yates JR. SMG1 and CDK12 Link ΔNp63α Phosphorylation to RNA Surveillance in Keratinocytes. J Proteome Res 2021; 20:5347-5358. [PMID: 34761935 PMCID: PMC10653645 DOI: 10.1021/acs.jproteome.1c00427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor suppressor p53-like protein p63 is required for self-renewal of epidermal tissues. Loss of p63 or exposure to ultraviolet (UV) irradiation triggers terminal differentiation in keratinocytes. However, it remains unclear how p63 diverts epidermal cells from proliferation to terminal differentiation, thereby contributing to successful tissue self-renewal. Here, we used bottom-up proteomics to identify the proteome at the chromatin in normal human epidermal keratinocytes following UV irradiation and p63 depletion. We found that loss of p63 increased DNA damage and that UV irradiation recruited the cyclin-dependent kinase CDK12 and the serine/threonine protein kinase SMG1 to chromatin only in the presence of p63. A post-translational modification analysis of ΔNp63α with mass spectrometry revealed that phosphorylation of T357/S358 and S368 was dependent on SMG1, whereas CDK12 increased the phosphorylation of ΔNp63α at S66/S68 and S301. Indirect phosphorylation of ΔNp63α in the presence of SMG1 enabled ΔNp63α to bind to the tumor suppressor p53-specific DNA recognition sequence, whereas CDK12 rendered ΔNp63α less responsive to UV irradiation and was not required for specific DNA binding. CDK12 and SMG1 are known to regulate the transcription and splicing of RNAs and the decay of nonsense RNAs, respectively, and a subset of p63-specific protein-protein interactions at the chromatin also linked p63 to RNA transcription and decay. We observed that in the absence of p63, UV irradiation resulted in more ORF1p. ORF1p is the first protein product of the intronless non-LTR retrotransposon LINE-1, indicating a derailed surveillance of RNA processing and/or translation. Our results suggest that p63 phosphorylation and transcriptional activation might correspond to altered RNA processing and/or translation to protect proliferating keratinocytes from increased genotoxic stress.
Collapse
Affiliation(s)
- Casimir Bamberger
- Department for Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Sandra Pankow
- Department for Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - John R. Yates
- Department for Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
4
|
Chakraborti S, Paul RR, Pal M, Chatterjee J, Das RK. Collagen deposition correlates with loss of E-cadherin and increased p63 expression in dysplastic conditions of oral submucous fibrosis. Med Mol Morphol 2021; 55:20-26. [PMID: 34482436 DOI: 10.1007/s00795-021-00304-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022]
Abstract
This paper focuses on the status of epithelial markers, E-cadherin, and p63 in the backdrop of an abnormal amount of collagen in the sub-mucosa of dysplastic and non-dysplastic grades of OSF. Histologically confirmed OSF and normal oral mucosa samples were procured. Samples were stained by Van Gieson's stain (VG) and immunohistochemistry. The captured images were analyzed by ImageJ software to quantify their grayscale intensities. There was a gradual increase in the intensity of VG stain from normal to non-dysplastic and dysplastic OSF and the differences in their mean grayscale values were found to be significant (p < 0.00001). The intensity of E-cadherin was found to be the highest in non-dysplastic conditions and lowest in dysplastic conditions. The intensity difference of E-cadherin between normal and non-dysplastic OSF was found to be significant (p < 0.00001). The grayscale scale intensity values for p63 in whole epithelium depicted significant differences between normal and diseased conditions but for its intensity, in basal cells, significant differences were found between non-dysplastic and other classes of tissues. There was a positive correlation observed between VG and p63 staining intensity. The diseased oral epithelium demonstrated greater deposition of sub-epithelial collagen fibers along with subsequent loss of E-cadherin and an increased p63 expression.
Collapse
Affiliation(s)
- Sourangshu Chakraborti
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ranjan Rashmi Paul
- Guru Nanak Institute of Dental Sciences and Research, Kolkata, West Bengal, India
| | - Mousumi Pal
- Guru Nanak Institute of Dental Sciences and Research, Kolkata, West Bengal, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology (IIT), Kharagpur, West Bengal, India
| | - Raunak Kumar Das
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Pokorná Z, Vysloužil J, Hrabal V, Vojtěšek B, Coates PJ. The foggy world(s) of p63 isoform regulation in normal cells and cancer. J Pathol 2021; 254:454-473. [PMID: 33638205 DOI: 10.1002/path.5656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
The p53 family member p63 exists as two major protein variants (TAp63 and ΔNp63) with distinct expression patterns and functional properties. Whilst downstream target genes of p63 have been studied intensively, how p63 variants are themselves controlled has been relatively neglected. Here, we review advances in understanding ΔNp63 and TAp63 regulation, highlighting their distinct pathways. TAp63 has roles in senescence and metabolism, and in germ cell genome maintenance, where it is activated post-transcriptionally by phosphorylation cascades after DNA damage. The function and regulation of TAp63 in mesenchymal and haematopoietic cells is less clear but may involve epigenetic control through DNA methylation. ΔNp63 functions to maintain stem/progenitor cells in various epithelia and is overexpressed in squamous and certain other cancers. ΔNp63 is transcriptionally regulated through multiple enhancers in concert with chromatin modifying proteins. Many signalling pathways including growth factors, morphogens, inflammation, and the extracellular matrix influence ΔNp63 levels, with inconsistent results reported. There is also evidence for reciprocal regulation, including ΔNp63 activating its own transcription. ΔNp63 is downregulated during cell differentiation through transcriptional regulation, while post-transcriptional events cause proteasomal degradation. Throughout the review, we identify knowledge gaps and highlight discordances, providing potential explanations including cell-context and cell-matrix interactions. Identifying individual p63 variants has roles in differential diagnosis and prognosis, and understanding their regulation suggests clinically approved agents for targeting p63 that may be useful combination therapies for selected cancer patients. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zuzana Pokorná
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jan Vysloužil
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Václav Hrabal
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Borˇivoj Vojtěšek
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Philip J Coates
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
6
|
Rangel-Huerta E, Guzman A, Maldonado E. The dynamics of epidermal stratification during post-larval development in zebrafish. Dev Dyn 2020; 250:175-190. [PMID: 32877571 DOI: 10.1002/dvdy.249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/08/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The epidermis, as a defensive barrier, is a consistent trait throughout animal evolution. During post-larval development, the zebrafish epidermis thickens by stratification or addition of new cell layers. Epidermal basal stem cells, expressing the transcription factor p63, are known to be involved in this process. Zebrafish post-larval epidermal stratification is a tractable system to study how stem cells participate in organ growth. METHODS We used immunohistochemistry, in combination with EdU cell proliferation detection, to study zebrafish epidermal stratification. For this procedure, we selected a window of post-larval stages (5-8 mm of standard length or SL, which normalizes age by size). Simultaneously, we used markers for asymmetric cell division and the Notch signaling pathway. RESULTS We found that epidermal stratification is the consequence of several events, including changes in cell shape, active cell proliferation and asymmetrical cell divisions. We identified a subset of highly proliferative epidermal cells with reduced levels of p63, which differed from the basal stem cells with high levels of p63. Additionally, we described different mechanisms that participate in the stratification process, including the phosphorylation of p63, asymmetric cell division regulated by the Par3 and LGN proteins, and expression of Notch genes.
Collapse
Affiliation(s)
- Emma Rangel-Huerta
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Puerto Morelos, Quintana Roo, Mexico.,Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, UNAM, Puerto Morelos, Quintana Roo, Mexico
| | - Aida Guzman
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Puerto Morelos, Quintana Roo, Mexico.,Estudio Técnico Especializado en Histopatología, Escuela Nacional Preparatoria, ENP, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, Mexico
| | - Ernesto Maldonado
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Puerto Morelos, Quintana Roo, Mexico
| |
Collapse
|
7
|
Loss of oral mucosal stem cell markers in oral submucous fibrosis and their reactivation in malignant transformation. Int J Oral Sci 2020; 12:23. [PMID: 32826859 PMCID: PMC7442837 DOI: 10.1038/s41368-020-00090-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
The integrity of the basal stem cell layer is critical for epithelial homoeostasis. In this paper, we review the expression of oral mucosal stem cell markers (OM-SCMs) in oral submucous fibrosis (OSF), oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC) to understand the role of basal cells in potentiating cancer stem cell behaviour in OSF. While the loss of basal cell clonogenicity triggers epithelial atrophy in OSF, the transition of the epithelium from atrophic to hyperplastic and eventually neoplastic involves the reactivation of basal stemness. The vacillating expression patterns of OM-SCMs confirm the role of keratins 5, 14, 19, CD44, β1-integrin, p63, sex-determining region Y box (SOX2), octamer-binding transcription factor 4 (Oct-4), c-MYC, B-cell-specific Moloney murine leukaemia virus integration site 1 (Bmi-1) and aldehyde dehydrogenase 1 (ALDH1) in OSF, OPMDs and OSCC. The downregulation of OM-SCMs in the atrophic epithelium of OSF and their upregulation during malignant transformation are illustrated with relevant literature in this review.
Collapse
|
8
|
Inhibition of TGF-β signaling supports high proliferative potential of diverse p63 + mouse epithelial progenitor cells in vitro. Sci Rep 2017; 7:6089. [PMID: 28729719 PMCID: PMC5519764 DOI: 10.1038/s41598-017-06470-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/13/2017] [Indexed: 12/21/2022] Open
Abstract
Mouse models have been used to provide primary cells to study physiology and pathogenesis of epithelia. However, highly efficient simple approaches to propagate mouse primary epithelial cells remain challenging. Here, we show that pharmacological inhibition of TGF-β signaling enables long-term expansion of p63+ epithelial progenitor cells in low Ca2+ media without the need of progenitor cell-purification steps or support by a feeder cell layer. We find that TGF-β signaling is operative in mouse primary keratinocytes in conventional cultures as determined by the nuclear Smad2/3 localization. Accordingly, TGF-β signaling inhibition in crude preparations of mouse epidermis robustly increases proliferative capacity of p63+ epidermal progenitor cells, while preserving their ability of differentiation in response to Ca2+ stimulation. Notably, inhibition of TGF-β signaling also enriches and expands other p63+ epithelial progenitor cells in primary crude cultures of multiple epithelia, including the cornea, oral and lingual epithelia, salivary gland, esophagus, thymus, and bladder. We anticipate that this simple and efficient approach will facilitate the use of mouse models for studying a wide range of epithelia by providing highly enriched populations of diverse p63+ epithelial progenitor cells in quantity.
Collapse
|
9
|
Nyati S, Schinske-Sebolt K, Pitchiaya S, Chekhovskiy K, Chator A, Chaudhry N, Dosch J, Van Dort ME, Varambally S, Kumar-Sinha C, Nyati MK, Ray D, Walter NG, Yu H, Ross BD, Rehemtulla A. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling. Sci Signal 2015; 8:ra1. [PMID: 25564677 DOI: 10.1126/scisignal.2005379] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transforming growth factor-β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β-mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion.
Collapse
Affiliation(s)
- Shyam Nyati
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109, USA. Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Sethuramasundaram Pitchiaya
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, MI 48109, USA. Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katerina Chekhovskiy
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Areeb Chator
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nauman Chaudhry
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph Dosch
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcian E Van Dort
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA. Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mukesh Kumar Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, MI 48109, USA. Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongtao Yu
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brian Dale Ross
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109, USA. Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alnawaz Rehemtulla
- Center for Molecular Imaging, University of Michigan, Ann Arbor, MI 48109, USA. Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
DeCastro AJ, Cherukuri P, Balboni A, DiRenzo J. ΔNP63α transcriptionally activates chemokine receptor 4 (CXCR4) expression to regulate breast cancer stem cell activity and chemotaxis. Mol Cancer Ther 2014; 14:225-35. [PMID: 25376609 DOI: 10.1158/1535-7163.mct-14-0194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ΔNP63α, the predominant TP63 isoform expressed in diverse epithelial tissues, including the mammary gland, is required for the preservation of stem cells and has been implicated in tumorigenesis and metastasis. Despite data characterizing ΔNP63α as a master regulator of stem cell activity, identification of the targets underlying these effects is incompletely understood. Recently, ΔNP63α was identified as a key regulator in the promotion of proinflammatory programs in squamous cell carcinoma of the head and neck. Inflammation has been implicated as a potent driver of cancer stem cell phenotypes and metastasis. In this study, we sought to identify novel targets of ΔNP63α that confer cancer stem cell and prometastatic properties. Data presented here identify the gene encoding the chemokine receptor 4 (CXCR4) as a transcriptional target of ΔNP63α. Our data indicate that ΔNP63α enhances CXCR4 expression in breast cancer cells via its binding at two regions within the CXCR4 promoter. The CXCR4 antagonist AMD3100 was used to demonstrate that the pro-stem cell activity of ΔNP63α is mediated through its regulation of CXCR4. Importantly, we show that ΔNP63α promotes the chemotaxis of breast cancer cells towards the CXCR4 ligand SDF1α, a process implicated in the trafficking of breast cancer cells to sites of metastasis. This study highlights CXCR4 as a previously unidentified target of ΔNP63α, which plays a significant role in mediating ΔNP63α-dependent stem cell activity and chemotaxis toward SDF1α. Our findings suggest that ΔNP63α regulation of CXCR4 may have strong implications in the regulation of cancer stem cells and metastasis.
Collapse
Affiliation(s)
- Andrew J DeCastro
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Program in Experimental and Molecular Medicine, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Pratima Cherukuri
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Amanda Balboni
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. Program in Experimental and Molecular Medicine, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - James DiRenzo
- Department of Pharmacology and Toxicology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
| |
Collapse
|