1
|
Phosphorylation within Intrinsic Disordered Region Discriminates Histone Variant macroH2A1 Splicing Isoforms-macroH2A1.1 and macroH2A1.2. BIOLOGY 2021; 10:biology10070659. [PMID: 34356514 PMCID: PMC8301376 DOI: 10.3390/biology10070659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/02/2023]
Abstract
Simple Summary MacroH2A1, a histone H2A variant, is present as two alternative splicing isoforms, macroH2A1.1 and macroH2A1.2, which are finely regulated through several mechanisms, including post-translational modifications (PTM). In this article, the authors provide the PTM pattern of macroH2A1.1 and macroH2A1.2 in the same experimental setting through mass spec analysis. They report a different phosphorylation level in their intrinsically disordered linker region, which can be responsible for their different biological role, as computational analysis shows. Abstract Background: Gene expression in eukaryotic cells can be governed by histone variants, which replace replication-coupled histones, conferring unique chromatin properties. MacroH2A1 is a histone H2A variant containing a domain highly similar to H2A and a large non-histone (macro) domain. MacroH2A1, in turn, is present in two alternatively exon-spliced isoforms: macroH2A1.1 and macroH2A1.2, which regulate cell plasticity and proliferation in a remarkably distinct manner. The N-terminal and the C-terminal tails of H2A histones stem from the nucleosome core structure and can be target sites for several post-translational modifications (PTMs). MacroH2A1.1 and macroH2A1.2 isoforms differ only in a few amino acids and their ability to bind NAD-derived metabolites, a property allegedly conferring their different functions in vivo. Some of the modifications on the macroH2A1 variant have been identified, such as phosphorylation (T129, S138) and methylation (K18, K123, K239). However, no study to our knowledge has analyzed extensively, and in parallel, the PTM pattern of macroH2A1.1 and macroH2A1.2 in the same experimental setting, which could facilitate the understanding of their distinct biological functions in health and disease. Methods: We used a mass spectrometry-based approach to identify the sites for phosphorylation, acetylation, and methylation in green fluorescent protein (GFP)-tagged macroH2A1.1 and macroH2A1.2 expressed in human hepatoma cells. The impact of selected PTMs on macroH2A1.1 and macroH2A1.2 structure and function are demonstrated using computational analyses. Results: We identified K7 as a new acetylation site in both macroH2A1 isoforms. Quantitative comparison of histone marks between the two isoforms revealed significant differences in the levels of phosphorylated T129 and S170. Our computational analysis provided evidence that the phosphorylation status in the intrinsically disordered linker region in macroH2A1 isoforms might represent a key regulatory element contributing to their distinct biological responses. Conclusions: Taken together, our results report different PTMs on the two macroH2A1 splicing isoforms as responsible for their distinct features and distribution in the cell.
Collapse
|
2
|
Bhagavat R, Srinivasan N, Chandra N. Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites. Proteins 2017; 85:1699-1712. [PMID: 28547747 DOI: 10.1002/prot.25328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/04/2017] [Accepted: 05/20/2017] [Indexed: 12/14/2022]
Abstract
Nucleoside triphosphate (NTP) ligands are of high biological importance and are essential for all life forms. A pre-requisite for them to participate in diverse biochemical processes is their recognition by diverse proteins. It is thus of great interest to understand the basis for such recognition in different proteins. Towards this, we have used a structural bioinformatics approach and analyze structures of 4677 NTP complexes available in Protein Data Bank (PDB). Binding sites were extracted and compared exhaustively using PocketMatch, a sensitive in-house site comparison algorithm, which resulted in grouping the entire dataset into 27 site-types. Each of these site-types represent a structural motif comprised of two or more residue conservations, derived using another in-house tool for superposing binding sites, PocketAlign. The 27 site-types could be grouped further into 9 super-types by considering partial similarities in the sites, which indicated that the individual site-types comprise different combinations of one or more site features. A scan across PDB using the 27 structural motifs determined the motifs to be specific to NTP binding sites, and a computational alanine mutagenesis indicated that residues identified to be highly conserved in the motifs are also most contributing to binding. Alternate orientations of the ligand in several site-types were observed and rationalized, indicating the possibility of some residues serving as anchors for NTP recognition. The presence of multiple site-types and the grouping of multiple folds into each site-type is strongly suggestive of convergent evolution. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. Proteins 2017; 85:1699-1712. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Raghu Bhagavat
- Department of Biochemistry, Molecular Biophysics Unit, National Mathematics Initiative, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Narayanaswamy Srinivasan
- Department of Biochemistry, Molecular Biophysics Unit, National Mathematics Initiative, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Molecular Biophysics Unit, National Mathematics Initiative, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| |
Collapse
|
3
|
Vasylenko T, Liou YF, Chiou PC, Chu HW, Lai YS, Chou YL, Huang HL, Ho SY. SCMBYK: prediction and characterization of bacterial tyrosine-kinases based on propensity scores of dipeptides. BMC Bioinformatics 2016; 17:514. [PMID: 28155663 PMCID: PMC5260027 DOI: 10.1186/s12859-016-1371-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Bacterial tyrosine-kinases (BY-kinases), which play an important role in numerous cellular processes, are characterized as a separate class of enzymes and share no structural similarity with their eukaryotic counterparts. However, in silico methods for predicting BY-kinases have not been developed yet. Since these enzymes are involved in key regulatory processes, and are promising targets for anti-bacterial drug design, it is desirable to develop a simple and easily interpretable predictor to gain new insights into bacterial tyrosine phosphorylation. This study proposes a novel SCMBYK method for predicting and characterizing BY-kinases. Results A dataset consisting of 797 BY-kinases and 783 non-BY-kinases was established to design the SCMBYK predictor, which achieved training and test accuracies of 97.55 and 96.73%, respectively. Furthermore, the leave-one-phylum-out method was used to predict specific bacterial phyla hosts of target sequences, gaining 97.39% average test accuracy. After analyzing SCMBYK-derived propensity scores, four characteristics of BY-kinases were determined: 1) BY-kinases tend to be composed of α-helices; 2) the amino-acid content of extracellular regions of BY-kinases is expected to be dominated by residues such as Val, Ile, Phe and Tyr; 3) BY-kinases structurally resemble nuclear proteins; 4) different domains play different roles in triggering BY-kinase activity. Conclusions The SCMBYK predictor is an effective method for identification of possible BY-kinases. Furthermore, it can be used as a part of a novel drug repurposing method, which recognizes putative BY-kinases and matches them to approved drugs. Among other results, our analysis revealed that azathioprine could suppress the virulence of M. tuberculosis, and thus be considered as a potential antibiotic for tuberculosis treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1371-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamara Vasylenko
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yi-Fan Liou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Po-Chin Chiou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsiao-Wei Chu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yung-Sung Lai
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Ling Chou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hui-Ling Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,College of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan.
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,College of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
4
|
Liu Y, Munteanu CR, Fernández Blanco E, Tan Z, Santos Del Riego A, Pazos A. Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices. Mol Inform 2015; 34:736-41. [PMID: 27491034 DOI: 10.1002/minf.201500064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/06/2015] [Indexed: 01/14/2023]
Abstract
The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development.
Collapse
Affiliation(s)
- Yong Liu
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruna, Campus de Elviña s/n, 15071, A Coruña, Spain, phone/fax: +34-981167000/+34-981167160.,Faculty of Veterinary Medicine and Animal Science, Autonomous University of the State of Mexico, Toluca, 50090, México.,Key Laboratory of Subtropical Agro-ecological Engineering, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, 410125, P. R. China
| | - Cristian R Munteanu
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruna, Campus de Elviña s/n, 15071, A Coruña, Spain, phone/fax: +34-981167000/+34-981167160.
| | - Enrique Fernández Blanco
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruna, Campus de Elviña s/n, 15071, A Coruña, Spain, phone/fax: +34-981167000/+34-981167160
| | - Zhiliang Tan
- Key Laboratory of Subtropical Agro-ecological Engineering, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, 410125, P. R. China
| | - Antonino Santos Del Riego
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruna, Campus de Elviña s/n, 15071, A Coruña, Spain, phone/fax: +34-981167000/+34-981167160
| | - Alejandro Pazos
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruna, Campus de Elviña s/n, 15071, A Coruña, Spain, phone/fax: +34-981167000/+34-981167160
| |
Collapse
|
5
|
Joseph AP, Bhat P, Das S, Srinivasan N. Re-analysis of cryoEM data on HCV IRES bound to 40S subunit of human ribosome integrated with recent structural information suggests new contact regions between ribosomal proteins and HCV RNA. RNA Biol 2015; 11:891-905. [PMID: 25268799 DOI: 10.4161/rna.29545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we combine available high resolution structural information on eukaryotic ribosomes with low resolution cryo-EM data on the Hepatitis C Viral RNA (IRES) human ribosome complex. Aided further by the prediction of RNA-protein interactions and restrained docking studies, we gain insights on their interaction at the residue level. We identified the components involved at the major and minor contact regions, and propose that there are energetically favorable local interactions between 40S ribosomal proteins and IRES domains. Domain II of the IRES interacts with ribosomal proteins S5 and S25 while the pseudoknot and the downstream domain IV region bind to ribosomal proteins S26, S28 and S5. We also provide support using UV cross-linking studies to validate our proposition of interaction between the S5 and IRES domains II and IV. We found that domain IIIe makes contact with the ribosomal protein S3a (S1e). Our model also suggests that the ribosomal protein S27 interacts with domain IIIc while S7 has a weak contact with a single base RNA bulge between junction IIIabc and IIId. The interacting residues are highly conserved among mammalian homologs while IRES RNA bases involved in contact do not show strict conservation. IRES RNA binding sites for S25 and S3a show the best conservation among related viral IRESs. The new contacts identified between ribosomal proteins and RNA are consistent with previous independent studies on RNA-binding properties of ribosomal proteins reported in literature, though information at the residue level is not available in previous studies.
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- Molecular Biophysics Unit. Indian Institute of Science, Bangalore, India; Present address: Science and Technology Facilities Council, RAL, Harwell, Didcot, UK
| | - Prasanna Bhat
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
6
|
Parca L, Ferré F, Ausiello G, Helmer-Citterich M. Nucleos: a web server for the identification of nucleotide-binding sites in protein structures. Nucleic Acids Res 2013; 41:W281-5. [PMID: 23703207 PMCID: PMC3692072 DOI: 10.1093/nar/gkt390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nucleos is a web server for the identification of nucleotide-binding sites in protein structures. Nucleos compares the structure of a query protein against a set of known template 3D binding sites representing nucleotide modules, namely the nucleobase, carbohydrate and phosphate. Structural features, clustering and conservation are used to filter and score the predictions. The predicted nucleotide modules are then joined to build whole nucleotide-binding sites, which are ranked by their score. The server takes as input either the PDB code of the query protein structure or a user-submitted structure in PDB format. The output of Nucleos is composed of ranked lists of predicted nucleotide-binding sites divided by nucleotide type (e.g. ATP-like). For each ranked prediction, Nucleos provides detailed information about the score, the template structure and the structural match for each nucleotide module composing the nucleotide-binding site. The predictions on the query structure and the template-binding sites can be viewed directly on the web through a graphical applet. In 98% of the cases, the modules composing correct predictions belong to proteins with no homology relationship between each other, meaning that the identification of brand-new nucleotide-binding sites is possible using information from non-homologous proteins. Nucleos is available at http://nucleos.bio.uniroma2.it/nucleos/.
Collapse
Affiliation(s)
- Luca Parca
- Department of Biology, Centre for Molecular Bioinformatics, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| | | | | | | |
Collapse
|