1
|
Rotwein P. Characterizing the complexity of Australian marsupial insulin-like growth factor 1 genes. Mol Cell Endocrinol 2019; 488:52-69. [PMID: 30871962 PMCID: PMC6996716 DOI: 10.1016/j.mce.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/15/2023]
Abstract
Insulin-like growth factor 1 (IGF1) actions are essential for somatic growth and tissue repair. IGF1 gene regulation is controlled by many inputs, with growth hormone playing a major role. In most mammals, the 6-exon IGF1/Igf1 gene produces multiple transcripts via independent activity of its promoters plus alternative RNA splicing and differential polyadenylation. Here, by analyzing public genomic and RNA-sequencing repositories, I have characterized three Australian marsupial IGF1 genes. Koala, Tasmanian devil, and wallaby IGF1 are more complicated than other mammals, as they contain up to 11 exons, and encode multiple mRNAs and predicted protein precursors, including potentially novel isoforms. Moreover, just two of multiple growth hormone-stimulated transcriptional enhancers found in other IGF1/Igf1 loci are detected in these species. These observations define Australian marsupial IGF1 genes and demonstrate that comprehensive interrogation of genomic and RNA-sequencing resources is an effective strategy for characterizing genes and gene expression in otherwise experimentally intractable organisms.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, TX 79905, USA
| |
Collapse
|
2
|
Rotwein P. Insulinlike Growth Factor 1 Gene Variation in Vertebrates. Endocrinology 2018; 159:2288-2305. [PMID: 29697760 PMCID: PMC6692883 DOI: 10.1210/en.2018-00259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022]
Abstract
IGF1-a small, single-chain, secreted peptide in mammals-is essential for normal somatic growth and is involved in a variety of other physiological and pathophysiological processes. IGF1 expression appears to be controlled by several different signaling mechanisms in mammals, with GH playing a key role by activating an inducible transcriptional pathway via the Jak2 protein kinase and the Stat5b transcription factor. Here, to understand aspects of Igf1 gene regulation over a substantially longer timeline than is discernible in mammals, Igf1 genes have been examined in 21 different nonmammalian vertebrates representing five different classes and ranging over ∼500 million years of evolutionary history. Parts of vertebrate Igf1 genes resemble components found in mammals. Conserved exons encoding the mature IGF1 protein are detected in all 21 species studied and are separated by a large intron, as seen in mammals; the single promoter contains putative regulatory elements that are similar to those functionally mapped in human IGF1 promoter 1. In contrast, GH-activated Stat5b-binding enhancers found in mammalian IGF1 loci are completely absent, there is no homolog of promoter 2 or exon 2 in any nonmammalian vertebrate, and different types of "extra" exons not present in mammals are found in birds, reptiles, and teleosts. These data collectively define properties of Igf1 genes and IGF1 proteins that were likely present in the earliest vertebrates and support the contention that common structural and regulatory features in Igf1 genes have a long evolutionary history.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
- Correspondence: Peter Rotwein, MD, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, Texas 79905. E-mail:
| |
Collapse
|
3
|
Rotwein P. Diversification of the insulin-like growth factor 1 gene in mammals. PLoS One 2017; 12:e0189642. [PMID: 29240807 PMCID: PMC5730178 DOI: 10.1371/journal.pone.0189642] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Insulin-like growth factor 1 (IGF1), a small, secreted peptide growth factor, is involved in a variety of physiological and patho-physiological processes, including somatic growth, tissue repair, and metabolism of carbohydrates, proteins, and lipids. IGF1 gene expression appears to be controlled by several different signaling cascades in the few species in which it has been evaluated, with growth hormone playing a major role by activating a pathway involving the Stat5b transcription factor. Here, genes encoding IGF1 have been evaluated in 25 different mammalian species representing 15 different orders and ranging over ~180 million years of evolutionary diversification. Parts of the IGF1 gene have been fairly well conserved. Like rat Igf1 and human IGF1, 21 of 23 other genes are composed of 6 exons and 5 introns, and all 23 also contain recognizable tandem promoters, each with a unique leader exon. Exon and intron lengths are similar in most species, and DNA sequence conservation is moderately high in orthologous exons and proximal promoter regions. In contrast, putative growth hormone-activated Stat5b-binding enhancers found in analogous locations in rodent Igf1 and in human IGF1 loci, have undergone substantial variation in other mammals, and a processed retro-transposed IGF1 pseudogene is found in the sloth locus, but not in other mammalian genomes. Taken together, the fairly high level of organizational and nucleotide sequence similarity in the IGF1 gene among these 25 species supports the contention that some common regulatory pathways had existed prior to the beginning of mammalian speciation.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
- * E-mail:
| |
Collapse
|
4
|
Rotwein P. Variation in the Insulin-Like Growth Factor 1 Gene in Primates. Endocrinology 2017; 158:804-814. [PMID: 28324014 PMCID: PMC5460808 DOI: 10.1210/en.2016-1920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/13/2017] [Indexed: 12/21/2022]
Abstract
Insulin-like growth factor 1 (IGF1) is a multifunctional peptide that is involved in a wide range of physiological and pathophysiological processes in many animal species, ranging from somatic growth in children to metabolism and tissue regeneration and repair in adults. The IGF1 gene is under multifactorial regulation in the few species in which it has been studied, with major control being exerted by growth hormone through a gene expression pathway involving inducible binding of the STAT5b transcription factor to dispersed enhancer elements. In this study, using resources available in public genomic databases, genes encoding IGF1 have been analyzed in a cohort of six nonhuman primate species representing >60 million years of evolutionary diversification from a common ancestor: chimpanzee, gorilla, macaque, olive baboon, marmoset, and mouse lemur. The IGF1 gene has been well conserved among these primates. Similar to human IGF1, each gene appears to be composed of six exons and five introns, and contains recognizable tandem promoters, each with a unique leader exon. Exon and intron lengths are very similar, and DNA sequence conservation is high, not only in orthologous exons and promoter regions, but also in putative growth hormone-activated STAT5b-binding enhancers that are found in analogous locations in IGF1 intron 3 and in 5' distal intergenic DNA. Taken together, the high level of organizational and nucleotide sequence similarity in the IGF1 gene and locus among these seven species supports the contention that common regulatory paradigms had existed prior to the onset of primate speciation >85 million years ago.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
5
|
Mukherjee A, Alzhanov D, Rotwein P. Defining human insulin-like growth factor I gene regulation. Am J Physiol Endocrinol Metab 2016; 311:E519-29. [PMID: 27406741 PMCID: PMC5005972 DOI: 10.1152/ajpendo.00212.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/08/2016] [Indexed: 11/22/2022]
Abstract
Growth hormone (GH) plays an essential role in controlling somatic growth and in regulating multiple physiological processes in humans and other species. Insulin-like growth factor I (IGF-I), a conserved, secreted 70-amino acid peptide, is a critical mediator of many of the biological effects of GH. Previous studies have demonstrated that GH rapidly and potently promotes IGF-I gene expression in rodents and in some other mammals through the transcription factor STAT5b, leading to accumulation of IGF-I mRNAs and production of IGF-I. Despite this progress, very little is known about how GH or other trophic factors control human IGF1 gene expression, in large part because of the absence of any cellular model systems that robustly express IGF-I. Here, we have addressed mechanisms of regulation of human IGF-I by GH after generating cells in which the IGF1 chromosomal locus has been incorporated into a mouse cell line. Using this model, we found that physiological levels of GH rapidly stimulate human IGF1 gene transcription and identify several potential transcriptional enhancers in chromatin that bind STAT5b in a GH-regulated way. Each of the putative enhancers also activates a human IGF1 gene promoter in reconstitution experiments in the presence of the GH receptor, STAT5b, and GH. Thus we have developed a novel experimental platform that now may be used to determine how human IGF1 gene expression is controlled under different physiological and pathological conditions.
Collapse
Affiliation(s)
- Aditi Mukherjee
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Damir Alzhanov
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas
| |
Collapse
|
6
|
Ouni M, Castell AL, Rothenbuhler A, Linglart A, Bougnères P. Higher methylation of the IGF1 P2 promoter is associated with idiopathic short stature. Clin Endocrinol (Oxf) 2016. [PMID: 26218795 DOI: 10.1111/cen.12867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Idiopathic short stature (ISS) has a strong familial component, but genetics explains only part of it. Indeed, environmental factors act on human growth either directly or through epigenetic factors that remain to be determined. Given the importance of the GH/IGF1 axis for child growth, we suspected that such epigenetic factors could involve the CG methylation at the IGF1 gene P2 promoter, which was recently shown to be a transcriptional regulator for IGF1 gene and a major contributor to GH sensitivity. OBJECTIVE Explore whether the methylation of the two IGF1 low-CG-rich promoters (P1 and P2) is associated with ISS. SUBJECTS AND METHODS A total of 94 children with ISS were compared with 119 age-matched children of normal height for the methylation of CGs located within the IGF1 promoters measured with bisulphite PCR pyrosequencing. RESULTS The methylation of 5 CGs of the P2 promoter was higher in ISS children, notably CG-137 (49 ± 4% in ISS vs 46 ± 4 % in control children, P = 9 × 10-5 ). This was also true for CG-611 of the P1 promoter (93 ± 3% vs 91 ± 3% P = 10-4 ). The CG methylation of the IGF1 promoters thus takes place among the multifactorial factors that are associated with ISS.
Collapse
Affiliation(s)
- Meriem Ouni
- Institut National de la Santé et de la Recherche Médicale U986, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Anne-Laure Castell
- Department of Pediatric Endocrinology and Diabetes, I3E Pole, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Anya Rothenbuhler
- Department of Pediatric Endocrinology and Diabetes, I3E Pole, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Agnès Linglart
- Department of Pediatric Endocrinology and Diabetes, I3E Pole, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- Institut National de la Santé et de la Recherche Médicale U986, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
- Department of Pediatric Endocrinology and Diabetes, I3E Pole, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| |
Collapse
|
7
|
McKnight RA, Yost CC, Yu X, Wiedmeier JE, Callaway CW, Brown AS, Lane RH, Fung CM. Intrauterine growth restriction perturbs nucleosome depletion at a growth hormone-responsive element in the mouse IGF-1 gene. Physiol Genomics 2015; 47:634-43. [DOI: 10.1152/physiolgenomics.00082.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/13/2015] [Indexed: 01/08/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is a common human pregnancy complication. IUGR offspring carry significant postnatal risk for early-onset metabolic syndrome, which is associated with persistent reduction in IGF-1 protein expression. We have previously shown that preadolescent IUGR male mice have decreased hepatic IGF-1 mRNA and circulating IGF-1 protein at postnatal day 21, the age when growth hormone (GH) normally upregulates hepatic IGF-1 expression. Here we studied nucleosome occupancy and CpG methylation at a putative growth hormone-responsive element in intron 2 (in2GHRE) of the hepatic IGF-1 gene in normal, sham-operated, and IUGR mice. Nucleosome occupancy and CpG methylation were determined in embryonic stem cells (ESCs) and in liver at postnatal days 14, 21, and 42. For CpG methylation, additional time points out to 2 yr were analyzed. We confirmed the putative mouse in2GHRE was GH-responsive, and in normal mice, a single nucleosome was displaced from the hepatic in2GHRE by postnatal day 21, which exposed two STAT5b DNA binding sites. Nucleosome displacement correlated with developmentally programmed CpG demethylation. Finally, IUGR significantly altered the nucleosome-depleted region (NDR) at the in2GHRE of IGF-1 on postnatal day 21, with either complete absence of the NDR or with a shifted NDR exposing only one of two STAT5b DNA binding sites. An NDR shift was also seen in offspring of sham-operated mothers. We conclude that prenatal insult such as IUGR or anesthesia/surgery could perturb the proper formation of a well-positioned NDR at the mouse hepatic IGF-1 in2GHRE necessary for transitioning to an open chromatin state.
Collapse
Affiliation(s)
- Robert A. McKnight
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christian C. Yost
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Xing Yu
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Julia E. Wiedmeier
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christopher W. Callaway
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Ashley S. Brown
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Robert H. Lane
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Camille M. Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| |
Collapse
|
8
|
Alzhanov D, Mukherjee A, Rotwein P. Identifying growth hormone-regulated enhancers in the Igf1 locus. Physiol Genomics 2015; 47:559-68. [PMID: 26330488 DOI: 10.1152/physiolgenomics.00062.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/27/2015] [Indexed: 11/22/2022] Open
Abstract
Growth hormone (GH) plays a central role in regulating somatic growth and in controlling multiple physiological processes in humans and other vertebrates. A key agent in many GH actions is the secreted peptide, IGF-I. As established previously, GH stimulates IGF-I gene expression via the Stat5b transcription factor, leading to production of IGF-I mRNAs and proteins. However, the precise mechanisms by which GH-activated Stat5b promotes IGF-I gene transcription have not been defined. Unlike other GH-regulated genes, there are no Stat5b sites near either of the two IGF-I gene promoters. Although dispersed GH-activated Stat5b binding elements have been mapped in rodent Igf1 gene chromatin, it is unknown how these distal sites might function as potential transcriptional enhancers. Here we have addressed mechanisms of regulation of IGF-I gene transcription by GH by generating cell lines in which the rat Igf1 chromosomal locus has been incorporated into the mouse genome. Using these cells we find that physiological levels of GH rapidly and potently activate Igf1 gene transcription while stimulating physical interactions in chromatin between inducible Stat5b-binding elements and the Igf1 promoters. We have thus developed a robust experimental platform for elucidating how dispersed transcriptional enhancers control Igf1 gene expression under different biological conditions.
Collapse
Affiliation(s)
- Damir Alzhanov
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon; and
| | - Aditi Mukherjee
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon; and
| | - Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| |
Collapse
|
9
|
Ouni M, Gunes Y, Belot MP, Castell AL, Fradin D, Bougnères P. The IGF1 P2 promoter is an epigenetic QTL for circulating IGF1 and human growth. Clin Epigenetics 2015; 7:22. [PMID: 25789079 PMCID: PMC4363053 DOI: 10.1186/s13148-015-0062-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/19/2015] [Indexed: 12/28/2022] Open
Abstract
Background Even if genetics play an important role, individual variation in stature remains unexplained at the molecular level. Indeed, genome-wide association study (GWAS) have revealed hundreds of variants that contribute to the variability of height but could explain only a limited part of it, and no single variant accounts for more than 0.3% of height variance. At the interface of genetics and environment, epigenetics contributes to phenotypic diversity. Quantifying the impact of epigenetic variation on quantitative traits, an emerging challenge in humans, has not been attempted for height. Since insulin-like growth factor 1 (IGF1) controls postnatal growth, we tested whether the CG methylation of the two promoters (P1 and P2) of the IGF1 gene is a potential epigenetic contributor to the individual variation in circulating IGF1 and stature in growing children. Results Child height was closely correlated with serum IGF1. The methylation of a cluster of six CGs located within the proximal part of the IGF1 P2 promoter showed a strong negative association with serum IGF1 and growth. The highest association was for CG-137 methylation, which contributed 13% to the variance of height and 10% to serum IGF1. CG methylation (studied in children undergoing surgery) was approximately 50% lower in liver and growth plates, indicating that the IGF1 promoters are tissue-differentially methylated regions (t-DMR). CG methylation was inversely correlated with the transcriptional activity of the P2 promoter in mononuclear blood cells and in transfection experiments, suggesting that the observed association of methylation with the studied traits reflects true biological causality. Conclusions Our observations introduce epigenetics among the individual determinants of child growth and serum IGF1. The P2 promoter of the IGF1 gene is the first epigenetic quantitative trait locus (QTLepi) reported in humans. The CG methylation of the P2 promoter takes place among the multifactorial factors explaining the variation in human stature. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0062-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meriem Ouni
- Institut National de la Santé et de la Recherche Médicale U986, Bicêtre Hospital, Paris Sud University, 80 rue du Général Leclerc Le Kremlin-Bicêtre, Paris, 94276 France
| | - Yasemin Gunes
- Institut National de la Santé et de la Recherche Médicale U986, Bicêtre Hospital, Paris Sud University, 80 rue du Général Leclerc Le Kremlin-Bicêtre, Paris, 94276 France
| | - Marie-Pierre Belot
- Institut National de la Santé et de la Recherche Médicale U986, Bicêtre Hospital, Paris Sud University, 80 rue du Général Leclerc Le Kremlin-Bicêtre, Paris, 94276 France
| | - Anne-Laure Castell
- Department of Pediatric Endocrinology and Diabetes, I3E Pole, Bicêtre Hospital, Paris Sud University, rue du Général Leclerc Le Kremlin-Bicêtre, Paris, 94276 France
| | - Delphine Fradin
- Institut National de la Santé et de la Recherche Médicale U986, Bicêtre Hospital, Paris Sud University, 80 rue du Général Leclerc Le Kremlin-Bicêtre, Paris, 94276 France
| | - Pierre Bougnères
- Institut National de la Santé et de la Recherche Médicale U986, Bicêtre Hospital, Paris Sud University, 80 rue du Général Leclerc Le Kremlin-Bicêtre, Paris, 94276 France ; Department of Pediatric Endocrinology and Diabetes, I3E Pole, Bicêtre Hospital, Paris Sud University, rue du Général Leclerc Le Kremlin-Bicêtre, Paris, 94276 France
| |
Collapse
|
10
|
Varco-Merth B, Rotwein P. Differential effects of STAT proteins on growth hormone-mediated IGF-I gene expression. Am J Physiol Endocrinol Metab 2014; 307:E847-55. [PMID: 25205818 PMCID: PMC4216947 DOI: 10.1152/ajpendo.00324.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Growth hormone (GH) plays a key role regulating somatic growth and in controlling metabolism and other physiological processes in humans and other animal species. GH acts by binding to the extracellular part of its transmembrane receptor, leading to induction of multiple intracellular signal transduction pathways that culminate in changes in gene and protein expression. A key agent in GH-stimulated growth is the latent transcription factor signal transducer and activator of transcription (STAT) 5B, one of four STAT proteins induced by the GH receptor in cultured cells and in vivo. As shown by genetic and biochemical studies, GH-activated STAT5B promotes transcription of the gene encoding the critical growth peptide, insulin-like growth factor-I (IGF-I), and natural null mutations of STAT5B in humans lead to growth failure accompanied by diminished IGF-I expression. Here we have examined the possibility that other GH-activated STATs can enhance IGF-I gene transcription, and thus potentially contribute to GH-regulated somatic growth. We find that human STAT5A is nearly identical to STAT5B in its biochemical and functional responses to GH but that STAT1 and STAT3 show a weaker profile of in vitro binding to STAT DNA elements from the IGF-I gene than STAT5B, and are less potent inducers of gene transcription through these elements. Taken together, our results offer a molecular explanation for why STAT5B is a key in vivo mediator of GH-activated IGF-I gene transcription and thus of GH-regulated somatic growth.
Collapse
Affiliation(s)
- Ben Varco-Merth
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
11
|
Santhanam M, Chia DJ. Hepatic-specific accessibility of Igf1 gene enhancers is independent of growth hormone signaling. Mol Endocrinol 2013; 27:2080-92. [PMID: 24109593 DOI: 10.1210/me.2013-1181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The diverse roles of IGF-1 in physiology include acting as the endocrine intermediate to elicit the anabolic actions of GH. The majority of serum IGF-1 is synthesized in liver, where GH stimulates Igf1 gene transcription via the transcription factor, signal transducer and activator of transcription (Stat)5b. We and others have identified multiple Stat5-binding domains at the Igf1 locus that function in gene regulation, but it remains unclear whether the roles of these domains are tissue specific. Survey of the chromatin landscape of regulatory domains can provide insight about mechanisms of gene regulation, with chromatin accessibility regarded as a hallmark feature of regulatory domains. We prepared chromatin from liver, kidney, and spleen of C57BL/6 mice, and used formaldehyde-associated isolation of regulatory elements to assess chromatin accessibility at the major Igf1 promoter and 7 -binding enhancers. Whereas the promoters of other prototypical tissue-specific genes are open in a tissue-specific way, the major Igf1 promoter is open in all 3 tissues, albeit moderately more so in liver. In contrast, chromatin accessibility at Igf1 Stat5-binding domains is essentially restricted to liver, indicating that the enhancers are driving extensive differences in tissue expression. Furthermore, studies with Ghrhr(lit/lit) mice reveal that prior GH exposure is not necessary to establish open chromatin at these domains. Lastly, formaldehyde-associated isolation of regulatory elements of human liver samples confirms open chromatin at IGF1 Promoter 1, but unexpectedly, homologous Stat5-binding motifs are not accessible. We conclude that robust GH-stimulated hepatic Igf1 gene transcription utilizes tissue-specific mechanisms of epigenetic regulation that are established independent of GH signaling.
Collapse
Affiliation(s)
- Mahalakshmi Santhanam
- Division of Pediatric Endocrinology & Diabetes, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1616, New York, NY 10029.
| | | |
Collapse
|
12
|
Castell AL, Sadoul JL, Bouvattier C. L’axe GH-IGF-I dans la croissance. ANNALES D'ENDOCRINOLOGIE 2013; 74 Suppl 1:S33-41. [DOI: 10.1016/s0003-4266(13)70019-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Oberbauer AM. The Regulation of IGF-1 Gene Transcription and Splicing during Development and Aging. Front Endocrinol (Lausanne) 2013; 4:39. [PMID: 23533068 PMCID: PMC3607797 DOI: 10.3389/fendo.2013.00039] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/12/2013] [Indexed: 12/17/2022] Open
Abstract
It is commonly known that the insulin-like growth factor-I gene contains six exons that can be differentially spliced to create multiple transcript variants. Further, there are two mutually exclusive leader exons each having multiple promoter sites that are variably used. The mature IGF-I protein derived from the multiplicity of transcripts does not differ suggesting a regulatory role for the various transcript isoforms. The variant forms possess different stabilities, binding partners, and activity indicating a pivotal role for the isoforms. Research has demonstrated differential expression of the IGF-I mRNA transcripts in response to steroids, growth hormone, and developmental cues. Many studies of different tissues have focused on assessing the presence, or putative action, of the transcript isoforms with little consideration of the transcriptional mechanisms that generate the variants or the translational use of the transcript isoforms. Control points for the latter include epigenetic regulation of splicing and promoter usage in response to development or injury, RNA binding proteins and microRNA effects on transcript stability, and preferential use of two leader exons by GH and other hormones. This review will detail the current knowledge of the mechanical, hormonal, and developmental stimuli regulating IGF-1 promoter usage and splicing machinery used to create the variants.
Collapse
Affiliation(s)
- A. M. Oberbauer
- Department of Animal Science, University of CaliforniaDavis, CA, USA
- *Correspondence: A. M. Oberbauer, Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95688, USA. e-mail:
| |
Collapse
|