1
|
Jin X, Zhang Y, Wang H, Zhang Y. Expression and Clinical Values of Serum miR-155 and miR-224 in Chinese Patients with HCV Infection. Int J Gen Med 2022; 15:1393-1403. [PMID: 35173476 PMCID: PMC8843352 DOI: 10.2147/ijgm.s344345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background To investigate the expression of serum miR-155 and miR-224 among patients with hepatitis C virus (HCV) infection and analyze their clinical values. Methods A total of 116 patients suffering from HCV infection admitted to our hospital and 70 healthy subjects were selected. According to the diagnostic results, patients with HCV infection were divided into 48 cases of chronic hepatitis C (CHC), 43 cases of liver cirrhosis and 25 cases of hepatocellular carcinoma (HCC). The expression signature for miR-155 and miR-224 was detected in serum samples. ROC curve and Pearson correlation test were conducted to investigate their diagnostic value and correlation. Results The expression extent for serum miR-155 and miR-224 increased along with the increase of malignancy (all P < 0.05). According to ROC curve, the area under the curve (0.918, 95% CI: 0.856–0.974) of miR-155 and miR-224 combined in the diagnosis of HCC was the largest, and its sensitivity and specificity were 93.0% and 86.2%. There is a positive relationship for expression level between miR-155 and miR-224 in CHC and HCC group (all P < 0.001). Conclusion miR-155 and miR-224 are remarkably increased in patients suffering from HCV infection. The combination of miR-155 and miR-224 has a good diagnostic value for HCC caused by HCV infection.
Collapse
Affiliation(s)
- Xiaochun Jin
- Department of Anesthesiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, People’s Republic of China
| | - Ying Zhang
- Department of Anesthesiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, People’s Republic of China
| | - Hui Wang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Hui Wang, Department of Neurology, First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215000, People’s Republic of China, Tel/Fax +8613913594769, Email
| | - Youtao Zhang
- Center of Clinical Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Correspondence: Youtao Zhang, Center of Clinical Laboratory, First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215000, People’s Republic of China, Tel/Fax +8617710114047, Email
| |
Collapse
|
2
|
Harel S, Sanchez V, Moamer A, Sanchez-Galan JE, Abid Hussein MN, Mayaki D, Blanchette M, Hussain SNA. ETS1, ELK1, and ETV4 Transcription Factors Regulate Angiopoietin-1 Signaling and the Angiogenic Response in Endothelial Cells. Front Physiol 2021; 12:683651. [PMID: 34381375 PMCID: PMC8350579 DOI: 10.3389/fphys.2021.683651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/05/2021] [Indexed: 12/03/2022] Open
Abstract
Background Angiopoietin-1 (Ang-1) is the main ligand of Tie-2 receptors. It promotes endothelial cell (EC) survival, migration, and differentiation. Little is known about the transcription factors (TFs) in ECs that are downstream from Tie-2 receptors. Objective The main objective of this study is to identify the roles of the ETS family of TFs in Ang-1 signaling and the angiogenic response. Methods In silico enrichment analyses that were designed to predict TF binding sites of the promotors of eighty-six Ang-1-upregulated genes showed significant enrichment of ETS1, ELK1, and ETV4 binding sites in ECs. Human umbilical vein endothelial cells (HUVECs) were exposed for different time periods to recombinant Ang-1 protein and mRNA levels of ETS1, ELK1, and ETV4 were measured with qPCR and intracellular localization of these transcription factors was assessed with immunofluorescence. Electrophoretic mobility shift assays and reporter assays were used to assess activation of ETS1, ELK1, and ETV4 in response to Ang-1 exposure. The functional roles of these TFs in Ang-1-induced endothelial cell survival, migration, differentiation, and gene regulation were evaluated by using a loss-of-function approach (transfection with siRNA oligos). Results Ang-1 exposure increased ETS1 mRNA levels but had no effect on ELK1 or ETV4 levels. Immunostaining revealed that in control ECs, ETS1 has nuclear localization whereas ELK1 and ETV4 are localized to the nucleus and the cytosol. Ang-1 exposure increased nuclear intensity of ETS1 protein and enhanced nuclear mobilization of ELK1 and ETV4. Selective siRNA knockdown of ETS1, ELK1, and ETV4 showed that these TFs are required for Ang-1-induced EC survival and differentiation of cells, while ETS1 and ETV4 are required for Ang-1-induced EC migration. Moreover, ETS1, ELK1, and ETV4 knockdown inhibited Ang-1-induced upregulation of thirteen, eight, and nine pro-angiogenesis genes, respectively. Conclusion We conclude that ETS1, ELK1, and ETV4 transcription factors play significant angiogenic roles in Ang-1 signaling in ECs.
Collapse
Affiliation(s)
- Sharon Harel
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Critical Care, McGill University Health Centre, Montreal, QC, Canada.,Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Veronica Sanchez
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Critical Care, McGill University Health Centre, Montreal, QC, Canada.,Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Alaa Moamer
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Critical Care, McGill University Health Centre, Montreal, QC, Canada.,Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Javier E Sanchez-Galan
- School of Computer Science, McGill Centre for Bioinformatics, McGill University, Montreal, QC, Canada
| | - Mohammad N Abid Hussein
- School of Engineering and Technology (SET), Aldar University College, Dubai, United Arab Emirates
| | - Dominique Mayaki
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Critical Care, McGill University Health Centre, Montreal, QC, Canada.,Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Mathieu Blanchette
- School of Computer Science, McGill Centre for Bioinformatics, McGill University, Montreal, QC, Canada
| | - Sabah N A Hussain
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Critical Care, McGill University Health Centre, Montreal, QC, Canada.,Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Fishel ML, Wu X, Devlin CM, Logsdon DP, Jiang Y, Luo M, He Y, Yu Z, Tong Y, Lipking KP, Maitra A, Rajeshkumar NV, Scandura G, Kelley MR, Ivan M. Apurinic/apyrimidinic endonuclease/redox factor-1 (APE1/Ref-1) redox function negatively regulates NRF2. J Biol Chem 2014; 290:3057-68. [PMID: 25492865 DOI: 10.1074/jbc.m114.621995] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease/redox factor-1 (APE1/Ref-1) (henceforth referred to as Ref-1) is a multifunctional protein that in addition to its base excision DNA repair activity exerts redox control of multiple transcription factors, including nuclear factor κ-light chain enhancer of activated B cells (NF-κB), STAT3, activator protein-1 (AP-1), hypoxia-inducible factor-1 (HIF-1), and tumor protein 53 (p53). In recent years, Ref-1 has emerged as a promising therapeutic target in cancer, particularly in pancreatic ductal carcinoma. Although a significant amount of research has centered on Ref-1, no wide-ranging approach had been performed on the effects of Ref-1 inhibition and transcription factor activity perturbation. Starting with a broader approach, we identified a previously unsuspected effect on the nuclear factor erythroid-related factor 2 (NRF2), a critical regulator of cellular defenses against oxidative stress. Based on genetic and small molecule inhibitor-based methodologies, we demonstrated that repression of Ref-1 potently activates NRF2 and its downstream targets in a dose-dependent fashion, and that the redox, rather than the DNA repair function of Ref-1 is critical for this effect. Intriguingly, our results also indicate that this pathway does not involve reactive oxygen species. The link between Ref-1 and NRF2 appears to be present in all cells tested in vitro, noncancerous and cancerous, including patient-derived tumor samples. In particular, we focused on understanding the implications of the novel interaction between these two pathways in primary pancreatic ductal adenocarcinoma tumor cells and provide the first evidence that this mechanism has implications for overcoming the resistance against experimental drugs targeting Ref-1 activity, with clear translational implications.
Collapse
Affiliation(s)
- Melissa L Fishel
- From the Departments of Pediatrics, Wells Center for Pediatric Research, Pharmacology and Toxicology,
| | - Xue Wu
- Microbiology and Immunology
| | | | | | - Yanlin Jiang
- From the Departments of Pediatrics, Wells Center for Pediatric Research
| | - Meihua Luo
- From the Departments of Pediatrics, Wells Center for Pediatric Research, Pharmacology and Toxicology
| | - Ying He
- From the Departments of Pediatrics, Wells Center for Pediatric Research
| | | | | | - Kelsey P Lipking
- Pathology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| | - Anirban Maitra
- the Departments of Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - N V Rajeshkumar
- the Departments of Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | - Mark R Kelley
- From the Departments of Pediatrics, Wells Center for Pediatric Research, Pharmacology and Toxicology
| | | |
Collapse
|