1
|
Liu M, Wang J, Umeda I, Wang Z, Kumar S, Zheng Y. Harnessing filamentous fungi and fungal-bacterial co-culture for biological treatment and valorization of hydrothermal liquefaction aqueous phase from corn stover. BIORESOURCE TECHNOLOGY 2024; 409:131240. [PMID: 39122129 DOI: 10.1016/j.biortech.2024.131240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
To promote the sustainability of hydrothermal liquefaction (HTL) for biofuel production, fungal fermentation was investigated to treat HTL aqueous phase (HTLAP) from corn stover. The most promising fungus, Aspergillus niger demonstrated superior tolerance to HTLAP and capability to produce oxalic acid as a value-added product. The fungal-bacterial co-culture of A. niger and Rhodococcus jostii was beneficial at low COD (chemical oxygen demand) loading of 3800 mg/L in HTLAP, achieving 69% COD removal while producing 0.5 g/L oxalic acid and 11% lipid content in microbial biomass. However, higher COD loading of 4500, 6040, and 7800 mg/L significantly inhibited R. jostii, but promoted A. niger growth with increased oxalic acid production while COD removal remained similar (58-65%). Additionally, most total organic carbon (TOC) in HTLAP was transformed into oxalic acid, representing 46-56% of the consumed TOC. These findings highlighted the potential of fungi for bio-upcycling of HTLAP into value-added products.
Collapse
Affiliation(s)
- Meicen Liu
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| | - Jiefu Wang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA 24060, USA
| | - Isamu Umeda
- Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA 23529, USA
| | - Zhiwu Wang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA 24060, USA
| | - Sandeep Kumar
- Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA 23529, USA
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
2
|
Wang X, Jarmusch SA, Frisvad JC, Larsen TO. Current status of secondary metabolite pathways linked to their related biosynthetic gene clusters in Aspergillus section Nigri. Nat Prod Rep 2023; 40:237-274. [PMID: 35587705 DOI: 10.1039/d1np00074h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: up to the end of 2021Aspergilli are biosynthetically 'talented' micro-organisms and therefore the natural products community has continually been interested in the wealth of biosynthetic gene clusters (BGCs) encoding numerous secondary metabolites related to these fungi. With the rapid increase in sequenced fungal genomes combined with the continuous development of bioinformatics tools such as antiSMASH, linking new structures to unknown BGCs has become much easier when taking retro-biosynthetic considerations into account. On the other hand, in most cases it is not as straightforward to prove proposed biosynthetic pathways due to the lack of implemented genetic tools in a given fungal species. As a result, very few secondary metabolite biosynthetic pathways have been characterized even amongst some of the most well studied Aspergillus spp., section Nigri (black aspergilli). This review will cover all known biosynthetic compound families and their structural diversity known from black aspergilli. We have logically divided this into sub-sections describing major biosynthetic classes (polyketides, non-ribosomal peptides, terpenoids, meroterpenoids and hybrid biosynthesis). Importantly, we will focus the review on metabolites which have been firmly linked to their corresponding BGCs.
Collapse
Affiliation(s)
- Xinhui Wang
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Scott A Jarmusch
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Jens C Frisvad
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Thomas O Larsen
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Mendes GDO, Dyer T, Csetenyi L, Gadd GM. Rock phosphate solubilization by abiotic and fungal-produced oxalic acid: reaction parameters and bioleaching potential. Microb Biotechnol 2022; 15:1189-1202. [PMID: 33710773 PMCID: PMC8966028 DOI: 10.1111/1751-7915.13792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/20/2021] [Indexed: 11/29/2022] Open
Abstract
Oxalic acid-producing fungi play an important role in biogeochemical transformations of rocks and minerals and possess biotechnological potential for extraction of valuable elements from primary or waste ores and other solid matrices. This research investigates the extraction of phosphate from rock phosphate (RP) by oxalic acid. Reaction parameters were derived using pure oxalic acid solutions to solubilize RP. It was found that the oxalic acid concentration was the main factor driving reaction kinetics. Excess oxalic acid could retard the reaction due to calcium oxalate encrustation on RP surfaces. However, complete P extraction was reached at stoichiometric proportions of apatite and oxalic acid. This reaction reached completion after 168 h, although most of the P (up to 75%) was released in less than 1 h. Most of the Ca released from the apatite formed sparingly soluble calcium oxalate minerals, with a predominance of whewellite over weddellite. Bioleaching of RP employing biomass-free spent culture filtrates containing oxalic acid (100 mM) produced by Aspergillus niger extracted ~ 74% of the P contained in the RP. These findings contribute to a better understanding of the reaction between apatite and oxalic acid and provide insights for potential applications of this process for biotechnological production of phosphate fertilizer.
Collapse
Affiliation(s)
- Gilberto de Oliveira Mendes
- Laboratório de Microbiologia e FitopatologiaInstituto de Ciências AgráriasUniversidade Federal de UberlândiaRod. LMG‐746, km 1, Bloco 1A‐MC, Sala 315Monte CarmeloMG38500‐000Brazil
- Geomicrobiology GroupSchool of Life SciencesUniversity of DundeeDundeeDD1 5EHUK
| | - Thomas Dyer
- Concrete Technology GroupDepartment of Civil EngineeringUniversity of DundeeDundeeDD1 4HNUK
| | - Laszlo Csetenyi
- Concrete Technology GroupDepartment of Civil EngineeringUniversity of DundeeDundeeDD1 4HNUK
| | - Geoffrey Michael Gadd
- Geomicrobiology GroupSchool of Life SciencesUniversity of DundeeDundeeDD1 5EHUK
- State Key Laboratory of Heavy Oil ProcessingBeijing Key Laboratory of Oil and Gas Pollution ControlDepartment of Environmental Science and EngineeringCollege of Chemical Engineering and EnvironmentChina University of Petroleum18 Fuxue RoadChangping DistrictBeijing102249China
| |
Collapse
|
4
|
Schuler E, Demetriou M, Shiju NR, Gruter GM. Towards Sustainable Oxalic Acid from CO 2 and Biomass. CHEMSUSCHEM 2021; 14:3636-3664. [PMID: 34324259 PMCID: PMC8519076 DOI: 10.1002/cssc.202101272] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Indexed: 05/19/2023]
Abstract
To quickly and drastically reduce CO2 emissions and meet our ambitions of a circular future, we need to develop carbon capture and storage (CCS) and carbon capture and utilization (CCU) to deal with the CO2 that we produce. While we have many alternatives to replace fossil feedstocks for energy generation, for materials such as plastics we need carbon. The ultimate circular carbon feedstock would be CO2 . A promising route is the electrochemical reduction of CO2 to formic acid derivatives that can subsequently be converted into oxalic acid. Oxalic acid is a potential new platform chemical for material production as useful monomers such as glycolic acid can be derived from it. This work is part of the European Horizon 2020 project "Ocean" in which all these steps are developed. This Review aims to highlight new developments in oxalic acid production processes with a focus on CO2 -based routes. All available processes are critically assessed and compared on criteria including overall process efficiency and triple bottom line sustainability.
Collapse
Affiliation(s)
- Eric Schuler
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdamThe Netherlands
| | - Marilena Demetriou
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdamThe Netherlands
| | - N. Raveendran Shiju
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdamThe Netherlands
| | - Gert‐Jan M. Gruter
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdamThe Netherlands
- Avantium Chemicals BVZekeringstraat 291014 BVAmsterdamThe Netherlands
| |
Collapse
|
5
|
Yang L, Henriksen MM, Hansen RS, Lübeck M, Vang J, Andersen JE, Bille S, Lübeck PS. Metabolic engineering of Aspergillus niger via ribonucleoprotein-based CRISPR-Cas9 system for succinic acid production from renewable biomass. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:206. [PMID: 33317620 PMCID: PMC7737382 DOI: 10.1186/s13068-020-01850-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Succinic acid has great potential to be a new bio-based building block for deriving a number of value-added chemicals in industry. Bio-based succinic acid production from renewable biomass can provide a feasible approach to partially alleviate the dependence of global manufacturing on petroleum refinery. To improve the economics of biological processes, we attempted to explore possible solutions with a fungal cell platform. In this study, Aspergillus niger, a well-known industrial production organism for bio-based organic acids, was exploited for its potential for succinic acid production. RESULTS With a ribonucleoprotein (RNP)-based CRISPR-Cas9 system, consecutive genetic manipulations were realized in engineering of the citric acid-producing strain A. niger ATCC 1015. Two genes involved in production of two byproducts, gluconic acid and oxalic acid, were disrupted. In addition, an efficient C4-dicarboxylate transporter and a soluble NADH-dependent fumarate reductase were overexpressed. The resulting strain SAP-3 produced 17 g/L succinic acid while there was no succinic acid detected at a measurable level in the wild-type strain using a synthetic substrate. Furthermore, two cultivation parameters, temperature and pH, were investigated for their effects on succinic acid production. The highest amount of succinic acid was obtained at 35 °C after 3 days, and low culture pH had inhibitory effects on succinic acid production. Two types of renewable biomass were explored as substrates for succinic acid production. After 6 days, the SAP-3 strain was capable of producing 23 g/L and 9 g/L succinic acid from sugar beet molasses and wheat straw hydrolysate, respectively. CONCLUSIONS In this study, we have successfully applied the RNP-based CRISPR-Cas9 system in genetic engineering of A. niger and significantly improved the succinic acid production in the engineered strain. The studies on cultivation parameters revealed the impacts of pH and temperature on succinic acid production and the future challenges in strain development. The feasibility of using renewable biomass for succinic acid production by A. niger has been demonstrated with molasses and wheat straw hydrolysate.
Collapse
Affiliation(s)
- Lei Yang
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark.
| | - Mikkel Møller Henriksen
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| | - Rasmus Syrach Hansen
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| | - Mette Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| | - Jesper Vang
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
- Disease Data Intelligence, Department of Health Technology Bioinformatics, Technical University of Denmark, Bldg. 208, 2800, KemitorvetKgs. Lyngby, Denmark
| | - Julie Egelund Andersen
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Signe Bille
- Section of Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Peter Stephensen Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450, Copenhagen SV, Denmark
| |
Collapse
|
6
|
Frisvad JC, Møller LLH, Larsen TO, Kumar R, Arnau J. Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl Microbiol Biotechnol 2018; 102:9481-9515. [PMID: 30293194 PMCID: PMC6208954 DOI: 10.1007/s00253-018-9354-1] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
This review presents an update on the current knowledge of the secondary metabolite potential of the major fungal species used in industrial biotechnology, i.e., Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. These species have a long history of safe use for enzyme production. Like most microorganisms that exist in a challenging environment in nature, these fungi can produce a large variety and number of secondary metabolites. Many of these compounds present several properties that make them attractive for different industrial and medical applications. A description of all known secondary metabolites produced by these species is presented here. Mycotoxins are a very limited group of secondary metabolites that can be produced by fungi and that pose health hazards in humans and other vertebrates when ingested in small amounts. Some mycotoxins are species-specific. Here, we present scientific basis for (1) the definition of mycotoxins including an update on their toxicity and (2) the clarity on misclassification of species and their mycotoxin potential reported in literature, e.g., A. oryzae has been wrongly reported as an aflatoxin producer, due to misclassification of Aspergillus flavus strains. It is therefore of paramount importance to accurately describe the mycotoxins that can potentially be produced by a fungal species that is to be used as a production organism and to ensure that production strains are not capable of producing mycotoxins during enzyme production. This review is intended as a reference paper for authorities, companies, and researchers dealing with secondary metabolite assessment, risk evaluation for food or feed enzyme production, or considerations on the use of these species as production hosts.
Collapse
Affiliation(s)
- Jens C Frisvad
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark.
| | - Lars L H Møller
- Department of Product Safety, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark
| | - Ravi Kumar
- Department of Genomics and Bioinformatics, Novozymes Inc., 1445 Drew Ave., Davis, CA, 95618, USA
| | - José Arnau
- Department of Fungal Strain Technology and Strain Approval Support, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| |
Collapse
|
7
|
Brandl J, Aguilar-Pontes MV, Schäpe P, Noerregaard A, Arvas M, Ram AFJ, Meyer V, Tsang A, de Vries RP, Andersen MR. A community-driven reconstruction of the Aspergillus niger metabolic network. Fungal Biol Biotechnol 2018; 5:16. [PMID: 30275963 PMCID: PMC6158834 DOI: 10.1186/s40694-018-0060-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/17/2018] [Indexed: 11/17/2022] Open
Abstract
Background Aspergillus niger is an important fungus used in industrial applications for enzyme and acid production. To enable rational metabolic engineering of the species, available information can be collected and integrated in a genome-scale model to devise strategies for improving its performance as a host organism. Results In this paper, we update an existing model of A. niger metabolism to include the information collected from 876 publications, thereby expanding the coverage of the model by 940 reactions, 777 metabolites and 454 genes. In the presented consensus genome-scale model of A. niger iJB1325 , we integrated experimental data from publications and patents, as well as our own experiments, into a consistent network. This information has been included in a standardized way, allowing for automated testing and continuous improvements in the future. This repository of experimental data allowed the definition of 471 individual test cases, of which the model complies with 373 of them. We further re-analyzed existing transcriptomics and quantitative physiology data to gain new insights on metabolism. Additionally, the model contains 3482 checks on the model structure, thereby representing the best validated genome-scale model on A. niger developed until now. Strain-specific model versions for strains ATCC 1015 and CBS 513.88 have been created containing all data used for model building, thereby allowing users to adopt the models and check the updated version against the experimental data. The resulting model is compliant with the SBML standard and therefore enables users to easily simulate it using their preferred software solution. Conclusion Experimental data on most organisms are scattered across hundreds of publications and several repositories.To allow for a systems level understanding of metabolism, the data must be integrated in a consistent knowledge network. The A. niger iJB1325 model presented here integrates the available data into a highly curated genome-scale model to facilitate the simulation of flux distributions, as well as the interpretation of other genome-scale data by providing the metabolic context. Electronic supplementary material The online version of this article (10.1186/s40694-018-0060-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julian Brandl
- 1Technical University of Denmark, Soeltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Maria Victoria Aguilar-Pontes
- 2Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Paul Schäpe
- 6Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Anders Noerregaard
- 1Technical University of Denmark, Soeltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Mikko Arvas
- 3VTT Technical Research Centre of Finland, Tietotie 2, 02044 Espoo, Finland.,7Present Address: Finnish Red Cross Blood Service, Helsinki, Finland
| | - Arthur F J Ram
- 5Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Vera Meyer
- 6Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Adrian Tsang
- 4Concordia University, 7141 Sherbrooke Street West, H4B1R6 Montreal, Québec Canada
| | - Ronald P de Vries
- 2Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Mikael R Andersen
- 1Technical University of Denmark, Soeltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Effect of medium pH on chemical selectivity of oxalic acid biosynthesis by Aspergillus niger W78C in submerged batch cultures with sucrose as a carbon source. CHEMICAL PAPERS 2017; 72:1089-1093. [PMID: 29681682 PMCID: PMC5908826 DOI: 10.1007/s11696-017-0354-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/28/2017] [Indexed: 01/08/2023]
Abstract
The pH of the medium is the key environmental parameter of chemical selectivity of oxalic acid biosynthesis by Aspergillus niger. The activity of the enzyme oxaloacetate hydrolase, which is responsible for decomposition of oxaloacetate to oxalate and acetate inside the cell of the fungus, is highest at pH 6. In the present study, the influence of pH in the range of 3–7 on oxalic acid secretion by A. niger W78C from sucrose was investigated. The highest oxalic acid concentration, 64.3 g dm−3, was reached in the medium with pH 6. The chemical selectivity of the process was 58.6% because of the presence of citric and gluconic acids in the cultivation broth in the amount of 15.3 and 30.2 g dm−3, respectively. Both an increase and a decrease of medium pH caused a decrease of oxalic acid concentration. The obtained results confirm that pH 6 of the carbohydrate medium is appropriate for oxalic acid synthesis by A. niger, but the chemical selectivity of the process described in this paper was high in comparison to values reported previously in the literature.
Collapse
|
9
|
Yang L, Lübeck M, Lübeck PS. Aspergillus as a versatile cell factory for organic acid production. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2016.11.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Mai HTN, Lee KM, Choi SS. Enhanced oxalic acid production from corncob by a methanol-resistant strain of Aspergillus niger using semi solid-sate fermentation. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites. G3-GENES GENOMES GENETICS 2015; 6:193-204. [PMID: 26566947 PMCID: PMC4704718 DOI: 10.1534/g3.115.024067] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations.
Collapse
|
12
|
Frisvad JC. Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front Microbiol 2015; 5:773. [PMID: 25628613 PMCID: PMC4290622 DOI: 10.3389/fmicb.2014.00773] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 12/17/2014] [Indexed: 11/17/2022] Open
Abstract
Aspergillus, Penicillium, and Talaromyces are among the most chemically inventive of all fungi, producing a wide array of secondary metabolites (exometabolites). The three genera are holophyletic in a cladistic sense and polythetic classes in an anagenetic or functional sense, and contain 344, 354, and 88 species, respectively. New developments in classification, cladification, and nomenclature have meant that the species, series, and sections suggested are natural groups that share many extrolites, including exometabolites, exoproteins, exocarbohydrates, and exolipids in addition to morphological features. The number of exometabolites reported from these species is very large, and genome sequencing projects have shown that a large number of additional exometabolites may be expressed, given the right conditions (“cryptic” gene clusters for exometabolites). The exometabolites are biosynthesized via shikimic acid, tricarboxylic acid cycle members, nucleotides, carbohydrates or as polyketides, non-ribosomal peptides, terpenes, or mixtures of those. The gene clusters coding for these compounds contain genes for the biosynthetic building blocks, the linking of these building blocks, tailoring enzymes, resistance for own products, and exporters. Species within a series or section in Aspergillus, Penicillium, and Talaromyces have many exometabolites in common, seemingly acquired by cladogenesis, but some the gene clusters for autapomorphic exometabolites may have been acquired by horizontal gene transfer. Despite genome sequencing efforts, and the many breakthroughs these will give, it is obvious that epigenetic factors play a large role in evolution and function of chemodiversity, and better methods for characterizing the epigenome are needed. Most of the individual species of the three genera produce a consistent and characteristic profile of exometabolites, but growth medium variations, stimulation by exometabolites from other species, and variations in abiotic intrinsic and extrinsic environmental factors such as pH, temperature, redox potential, and water activity will add significantly to the number of biosynthetic families expressed in anyone species. An example of the shared exometabolites in a natural group such as Aspergillus section Circumdati series Circumdati is that most, but not all species produce penicillic acids, aspyrones, neoaspergillic acids, xanthomegnins, melleins, aspergamides, circumdatins, and ochratoxins, in different combinations.
Collapse
Affiliation(s)
- Jens C Frisvad
- Section of Eukaryotic Biotechnology, Department of Systems Biology, Technical University of Denmark Kongens Lyngby, Denmark
| |
Collapse
|
13
|
|
14
|
|
15
|
Aguilar-Pontes MV, de Vries RP, Zhou M. (Post-)genomics approaches in fungal research. Brief Funct Genomics 2014; 13:424-39. [PMID: 25037051 DOI: 10.1093/bfgp/elu028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To date, hundreds of fungal genomes have been sequenced and many more are in progress. This wealth of genomic information has provided new directions to study fungal biodiversity. However, to further dissect and understand the complicated biological mechanisms involved in fungal life styles, functional studies beyond genomes are required. Thanks to the developments of current -omics techniques, it is possible to produce large amounts of fungal functional data in a high-throughput fashion (e.g. transcriptome, proteome, etc.). The increasing ease of creating -omics data has also created a major challenge for downstream data handling and analysis. Numerous databases, tools and software have been created to meet this challenge. Facing such a richness of techniques and information, hereby we provide a brief roadmap on current wet-lab and bioinformatics approaches to study functional genomics in fungi.
Collapse
|
16
|
Budak SO, Zhou M, Brouwer C, Wiebenga A, Benoit I, Di Falco M, Tsang A, de Vries RP. A genomic survey of proteases in Aspergilli. BMC Genomics 2014; 15:523. [PMID: 24965873 PMCID: PMC4102723 DOI: 10.1186/1471-2164-15-523] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/18/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide range of biochemical properties. Several Aspergilli have the ability to produce a variety of proteases, but no comprehensive comparative study has been carried out on protease productivity in this genus so far. RESULTS We have performed a combined analysis of comparative genomics, proteomics and enzymology tests on seven Aspergillus species grown on wheat bran and sugar beet pulp. Putative proteases were identified by homology search and Pfam domains. These genes were then clusters based on orthology and extracellular proteases were identified by protein subcellular localization prediction. Proteomics was used to identify the secreted enzymes in the cultures, while protease essays with and without inhibitors were performed to determine the overall protease activity per protease class. All this data was then integrated to compare the protease productivities in Aspergilli. CONCLUSIONS Genomes of Aspergillus species contain a similar proportion of protease encoding genes. According to comparative genomics, proteomics and enzymatic experiments serine proteases make up the largest group in the protease spectrum across the species. In general wheat bran gives higher induction of proteases than sugar beet pulp. Interesting differences of protease activity, extracellular enzyme spectrum composition, protein occurrence and abundance were identified for species. By combining in silico and wet-lab experiments, we present the intriguing variety of protease productivity in Aspergilli.
Collapse
Affiliation(s)
- Sebnem Ozturkoglu Budak
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Faculty of Agriculture, Department of Dairy Technology, University of Ankara, Ankara, Turkey
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Miaomiao Zhou
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Carlo Brouwer
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
| | - Ad Wiebenga
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Isabelle Benoit
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Marcos Di Falco
- />Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Adrian Tsang
- />Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Ronald P de Vries
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Workman M, Andersen MR, Thykaer J. Integrated Approaches for Assessment of Cellular Performance in Industrially Relevant Filamentous Fungi. Ind Biotechnol (New Rochelle N Y) 2013. [DOI: 10.1089/ind.2013.0025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mhairi Workman
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Mikael R. Andersen
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Jette Thykaer
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|