1
|
Riquelme-Guzmán C, Sandoval-Guzmán T. The salamander limb: a perfect model to understand imperfect integration during skeletal regeneration. Biol Open 2024; 13:bio060152. [PMID: 38319134 PMCID: PMC10868587 DOI: 10.1242/bio.060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Limb regeneration in salamanders is achieved by a complex coordination of various biological processes and requires the proper integration of new tissue with old. Among the tissues found inside the limb, the skeleton is the most prominent component, which serves as a scaffold and provides support for locomotion in the animal. Throughout the years, researchers have studied the regeneration of the appendicular skeleton in salamanders both after limb amputation and as a result of fracture healing. The final outcome has been widely seen as a faithful re-establishment of the skeletal elements, characterised by a seamless integration into the mature tissue. The process of skeletal integration, however, is not well understood, and several works have recently provided evidence of commonly occurring flawed regenerates. In this Review, we take the reader on a journey through the course of bone formation and regeneration in salamanders, laying down a foundation for critically examining the mechanisms behind skeletal integration. Integration is a phenomenon that could be influenced at various steps of regeneration, and hence, we assess the current knowledge in the field and discuss how early events, such as tissue histolysis and patterning, influence the faithful regeneration of the appendicular skeleton.
Collapse
Affiliation(s)
- Camilo Riquelme-Guzmán
- Department of Internal Medicine 3, Center for Healthy Aging, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine 3, Center for Healthy Aging, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
2
|
Kondiboyina V, Duerr TJ, Monaghan JR, Shefelbine SJ. Material properties in regenerating axolotl limbs using inverse finite element analysis. J Mech Behav Biomed Mater 2024; 150:106341. [PMID: 38160643 PMCID: PMC11495890 DOI: 10.1016/j.jmbbm.2023.106341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The extracellular mechanical environment plays an important role in the skeletal development process. Characterization of the material properties of regenerating tissues that recapitulate development, provides insights into the mechanical environment experienced by the cells and the maturation of the matrix. In this study, we estimated the viscoelastic material properties of regenerating forelimbs in the axolotl (Ambystoma mexicanum) at three different regeneration stages: 27 days post-amputation (mid-late bud) and 41 days post-amputation (palette stage), and fully-grown time points. A stress-relaxation indentation test followed by two-term Prony series viscoelastic inverse finite element analysis was used to obtain material parameters. Glycosaminoglycan (GAG) content was estimated using a 1,9- dimethyl methylene blue assay. RESULTS The instantaneous and equilibrium shear moduli significantly increased with regeneration while the short-term stress relaxation time significantly decreased with limb regeneration. The long-term stress relaxation time in the fully-grown time point was significantly lower than 27 and 41 DPA groups. The GAG content was not significantly different between 27 and 41 DPA but the GAG content of cartilage in the fully-grown group was significantly greater than in 27 and 41 DPA. CONCLUSIONS The mechanical environment of the proliferating cells changes drastically during limb regeneration. Understanding how the tissue's mechanical properties change during limb regeneration is critical for linking molecular-level matrix production of the cells to tissue-level behavior and mechanical signals.
Collapse
Affiliation(s)
| | | | | | - Sandra J Shefelbine
- Dept. of Bioengineering, Northeastern University, Boston, MA, USA; Dept. Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
3
|
Vieira WA, Raymond M, Kelley K, Cherubino MA, Sahin H, McCusker CD. Integration failure of regenerated limb tissue is associated with incongruencies in positional information in the Mexican axolotl. Front Cell Dev Biol 2023; 11:1152510. [PMID: 37333984 PMCID: PMC10272535 DOI: 10.3389/fcell.2023.1152510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction: Little is known about how the newly regenerated limb tissues in the Mexican axolotl seamlessly integrate with the remaining stump tissues to form a functional structure, and why this doesn't occur in some regenerative scenarios. In this study, we evaluate the phenomenological and transcriptional characteristics associated with integration failure in ectopic limb structures generated by treating anterior-located ectopic blastemas with Retinoic Acid (RA) and focusing on the "bulbus mass" tissue that forms between the ectopic limb and the host site. We additionally test the hypothesis that the posterior portion of the limb base contains anterior positional identities. Methods: The positional identity of the bulbus mass was evaluated by assaying regenerative competency, the ability to induce new pattern in the Accessory Limb Model (ALM) assay, and by using qRTPCR to quantify the relative expression of patterning genes as the bulbus mass deintegrates from the host site. We additionally use the ALM and qRTPCR to analyze the distribution of anterior and posterior positional identities along the proximal/distal limb axis of uninjured and regenerating limbs. Results: The bulbus mass regenerates limb structures with decreased complexity when amputated and is able to induce complex ectopic limb structure only when grafted into posterior-located ALMs. Expressional analysis shows significant differences in FGF8, BMP2, TBX5, Chrdl1, HoxA9, and HoxA11 expression between the bulbus mass and the host site when deintegration is occuring. Grafts of posterior skin from the distal limb regions into posterior ALMs at the base of the limb induce ectopic limb structures. Proximally-located blastemas express significantly less HoxA13 and Ptch1, and significantly more Alx4 and Grem1 than distally located blastemas. Discussion: These findings show that the bulbus mass has an anterior-limb identity and that the expression of limb patterning genes is mismatched between the bulbus mass and the host limb. Our findings additionally show that anterior positional information is more abundant at the limb base, and that anterior patterning genes are more abundantly expressed in proximally located blastemas compared to blastemas in the more distal regions of the limb. These experiments provide valuable insight into the underlying causes of integration failure and further map the distribution of positional identities in the mature limb.
Collapse
|
4
|
Riquelme-Guzmán C, Sandoval-Guzmán T. Methods for Studying Appendicular Skeletal Biology in Axolotls. Methods Mol Biol 2023; 2562:155-163. [PMID: 36272073 DOI: 10.1007/978-1-0716-2659-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The axolotl is a great model for studying cartilage, bone and joint regeneration, fracture healing, and evolution. Stainings such as Alcian Blue/Alizarin Red have become workhorses in skeletal analyses, but additional methods complement the detection of different skeletal matrices. Here we describe protocols for studying skeletal biology in axolotls, particularly Alcian Blue/Alizarin Red staining, microcomputed tomography (μCT) scan and live staining of calcified tissue. In addition, we describe a method for decalcification of skeletal elements to ease sectioning.
Collapse
Affiliation(s)
- Camilo Riquelme-Guzmán
- Medical Faculty: Department of Internal Medicine 3, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Medical Faculty: Department of Internal Medicine 3, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Comellas E, Farkas JE, Kleinberg G, Lloyd K, Mueller T, Duerr TJ, Muñoz JJ, Monaghan JR, Shefelbine SJ. Local mechanical stimuli correlate with tissue growth in axolotl salamander joint morphogenesis. Proc Biol Sci 2022; 289:20220621. [PMID: 35582804 PMCID: PMC9114971 DOI: 10.1098/rspb.2022.0621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 01/04/2023] Open
Abstract
Movement-induced forces are critical to correct joint formation, but it is unclear how cells sense and respond to these mechanical cues. To study the role of mechanical stimuli in the shaping of the joint, we combined experiments on regenerating axolotl (Ambystoma mexicanum) forelimbs with a poroelastic model of bone rudiment growth. Animals either regrew forelimbs normally (control) or were injected with a transient receptor potential vanilloid 4 (TRPV4) agonist during joint morphogenesis. We quantified growth and shape in regrown humeri from whole-mount light sheet fluorescence images of the regenerated limbs. Results revealed significant differences in morphology and cell proliferation between groups, indicating that TRPV4 desensitization has an effect on joint shape. To link TRPV4 desensitization with impaired mechanosensitivity, we developed a finite element model of a regenerating humerus. Local tissue growth was the sum of a biological contribution proportional to chondrocyte density, which was constant, and a mechanical contribution proportional to fluid pressure. Computational predictions of growth agreed with experimental outcomes of joint shape, suggesting that interstitial pressure driven from cyclic mechanical stimuli promotes local tissue growth. Predictive computational models informed by experimental findings allow us to explore potential physical mechanisms involved in tissue growth to advance our understanding of the mechanobiology of joint morphogenesis.
Collapse
Affiliation(s)
- Ester Comellas
- Serra Húnter Fellow, Department of Physics, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA USA
| | | | - Giona Kleinberg
- Department of Bioengineering, Northeastern University, Boston, MA USA
| | - Katlyn Lloyd
- Department of Bioengineering, Northeastern University, Boston, MA USA
| | - Thomas Mueller
- Department of Bioengineering, Northeastern University, Boston, MA USA
| | | | - Jose J. Muñoz
- Department of Mathematics, Laboratori de Càlcul Numeric (LaCàN), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
- Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
| | - James R. Monaghan
- Department of Biology, Northeastern University, Boston, MA USA
- Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, MA USA
| | - Sandra J. Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA USA
- Department of Bioengineering, Northeastern University, Boston, MA USA
| |
Collapse
|
6
|
Bothe V, Schneider I, Fröbisch NB. A Morphological and Histological Investigation of Imperfect Lungfish Fin Regeneration. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.784828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regeneration, the replacement of body parts in a living animal, has excited scientists for centuries and our knowledge of vertebrate appendage regeneration has increased significantly over the past decades. While the ability of amniotes to regenerate body parts is very limited, members of other vertebrate clades have been shown to have rather high regenerative capacities. Among tetrapods (four-limbed vertebrates), only salamanders show unparalleled capacities of epimorphic tissue regeneration including replacement of organ and body parts in an apparently perfect fashion. The closest living relatives of Tetrapoda, the lungfish, show regenerative abilities that are comparable to those of salamanders and recent studies suggest that these high regenerative capacities may indeed be ancestral for bony fish (osteichthyans) including tetrapods. While great progress has been made in recent years in understanding the cellular and molecular mechanisms deployed during appendage regeneration, comparatively few studies have investigated gross morphological and histological features of regenerated fins and limbs. Likewise, rather little is known about how fin regeneration compares morphologically to salamander limb regeneration. In this study, we investigated the morphology and histology of regenerated fins in all three modern lungfish families. Data from histological serial sections, 3D reconstructions, and x-ray microtomography scans were analyzed to assess morphological features, quality and pathologies in lungfish fin regenerates. We found several anomalies resulting from imperfect regeneration in regenerated fins in all investigated lungfish species, including fusion of skeletal elements, additional or fewer elements, and distal branching. The similarity of patterns in regeneration abnormalities compared to salamander limb regeneration lends further support to the hypothesis that high regenerative capacities are plesiomorphic for sarcopterygians.
Collapse
|
7
|
Maturating Articular Cartilage Can Induce Ectopic Joint-Like Structures in Neonatal Mice. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Osteoarthritis is a huge health burden to our society. Seeking for potential ways to induce regeneration of articular cartilage (AC) that is intrinsically limited, we focused on the interaction between two opposing joints. To evaluate the role of the interaction of opposing regions of AC for joint maturation, we amputated digits at the distal interphalangeal level without injuring the articular surface of the intermediate phalanx (P2) and observed that the zonal organization of AC was defective. We then removed the P2 bone without injuring the articular surface of the proximal phalanx (P1), and the remaining part of the digit was amputated near the distal interphalangeal level. The distribution pattern of type II collagen and proteoglycan 4 (PRG4) suggested that maturation of AC in P1 was delayed. These two experiments suggested that an interaction between the opposing AC in a joint is necessary for maturation of the zonal organization of AC in neonatal digits. To test if an interaction of the joints is sufficient to induce articular cartilage, a proximal fragment of P2 was resected, inverted, and put back into the original location. Newly formed cartilage was induced at the interface region between the AC of the inverted graft and the cut edge of the distal part of P2. Type II collagen and PRG4 were expressed in the ectopic cartilage in a similar manner to normal AC, indicating that neonatal AC can induce ectopic joint-like structures in mice comparable with what has been reported in newts and frogs. These results suggest that the neonatal joint could be a source of inductive signals for regeneration of AC.
Lay Summary
In this study, we experimentally show that neonatal mice appear to have the capacity to regenerate articular cartilage (AC) in digits. It is already known that mice can regenerate a digit tip after amputation, but do not regenerate in response to amputations at more proximal levels. Therefore, it has been thought that mammalian joint structures are non-regenerative. However, we found that normal digit AC can induce AC-like structures in a non-joint region when it is placed next to the cut edge of a bone, suggesting that the normal AC has regenerative capacity in certain situations in neonatal mice.
Future Works
Joint disorders are a huge health problem of our society. The results of this study suggest that neonatal AC could be a potential source of inductive signals for regeneration of AC. The discovery of these inductive signals will aid in developing regenerative therapies of a joint in human.
Collapse
|
8
|
Bothe V, Mahlow K, Fröbisch NB. A histological study of normal and pathological limb regeneration in the Mexican axolotl Ambystoma mexicanum. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:116-128. [PMID: 32394624 DOI: 10.1002/jez.b.22950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 01/13/2023]
Abstract
Salamanders show unparalleled capacities of tissue regeneration amongst tetrapods (four-legged vertebrates), being able to repair and renew lost or damage body parts, such as tails, jaws, and limbs in a seemingly perfect fashion. Despite countless studies on axolotl (Ambystoma mexicanum) regeneration, only a few studies have thus far compared gross morphological and histological features of the original and regenerated limb skeleton. Therein, most studies have focused on nerves or muscles, while even fewer have provided detailed information about bones and cartilage. This study compares skeletal tissue structures of original and regenerated limbs with respect to tissue level histology. Histological serial sections of 55 axolotl larvae were generated, including 29 limbs that were severed by conspecifics, and 26 that were subject to targeted amputations. Amputations were executed in several larval stages (48, 52, and 53) and at different limb positions (humeral midshaft, above the mesopod). In addition, 3D reconstructions were prepared based on X-ray microtomography scans. The results demonstrate that regenerated forelimbs show a diversity of limb and digit abnormalities as a result of imperfect regeneration. Furthermore, abnormalities were more severe and more frequent in regenerated forelimbs caused by natural bites as compared with regenerated forelimbs after amputation. The results indicate that abnormalities occur frequently after regeneration in larval axolotls contradicting the notion of regeneration generally resulting in perfect limbs.
Collapse
Affiliation(s)
- Vivien Bothe
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Kristin Mahlow
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Nadia B Fröbisch
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
10
|
Elliott SA, Alvarado AS. Planarians and the History of Animal Regeneration: Paradigm Shifts and Key Concepts in Biology. Methods Mol Biol 2018; 1774:207-239. [PMID: 29916157 DOI: 10.1007/978-1-4939-7802-1_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Regeneration has captured human imagination for much of recorded history. Its sociological influence is evident in ancient and modern folklore, art, politics, and even language. In many ways, the study of regeneration helped establish the field of biology as a legitimate scientific discipline. Furthermore, regeneration research yielded critical insights that challenged flawed scientific models and uncovered fundamental principles underpinning the workings of life on this planet. This chapter details some ways in which the study of animal regeneration-with special emphasis on planarian regeneration-influenced the evolution of thought in biology. This includes contributions to the discovery of stem cells, the nature of heredity, and key concepts in pattern formation.
Collapse
|
11
|
Salva JE, Merrill AE. Signaling networks in joint development. Dev Dyn 2016; 246:262-274. [PMID: 27859991 DOI: 10.1002/dvdy.24472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Here we review studies identifying regulatory networks responsible for synovial, cartilaginous, and fibrous joint development. Synovial joints, characterized by the fluid-filled synovial space between the bones, are found in high-mobility regions and are the most common type of joint. Cartilaginous joints such as the intervertebral disc unite adjacent bones through either a hyaline cartilage or a fibrocartilage intermediate. Fibrous joints, which include the cranial sutures, form a direct union between bones through fibrous connective tissue. We describe how the distinct morphologic and histogenic characteristics of these joint classes are established during embryonic development. Collectively, these studies reveal that despite the heterogeneity of joint strength and mobility, joint development throughout the skeleton utilizes common signaling networks via long-range morphogen gradients and direct cell-cell contact. This suggests that different joint types represent specialized variants of homologous developmental modules. Identifying the unifying aspects of the signaling networks between joint classes allows a more complete understanding of the signaling code for joint formation, which is critical to improving strategies for joint regeneration and repair. Developmental Dynamics 246:262-274, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna E Salva
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
12
|
McCusker CD, Diaz-Castillo C, Sosnik J, Phan A, Gardiner DM. Histological image data of limb skeletal tissue from larval and adult Ambystoma mexicanum. Data Brief 2016; 8:1206-8. [PMID: 27547798 PMCID: PMC4982924 DOI: 10.1016/j.dib.2016.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/07/2016] [Accepted: 07/14/2016] [Indexed: 11/19/2022] Open
Abstract
The data presented in this article are related to the article entitled “Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs” [1]. Here we present image data of the post-embryonic development of the forelimb skeletal tissue of Ambystoma Mexicanum. Histological staining was performed on sections from the intact limbs of young (6.5 cm) and old (25 cm) animals, and on dissected skeletal tissues (cartilage, bone, and periosteum) from these animals.
Collapse
Affiliation(s)
- Catherine D. McCusker
- Department of Biology, University of Massachusetts Boston, MA 02125, USA
- Corresponding author.
| | - Carlos Diaz-Castillo
- Department of Developmental and Cell Biology, University of California at Irvine, CA 92602, USA
| | - Julian Sosnik
- Department of Interdisciplinary Engineering, Wentworth Institute of Technology, Boston, MA 02115, USA
| | - Anne Phan
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - David M. Gardiner
- Department of Developmental and Cell Biology, University of California at Irvine, CA 92602, USA
| |
Collapse
|
13
|
Farkas JE, Freitas PD, Bryant DM, Whited JL, Monaghan JR. Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration. Development 2016; 143:2724-31. [PMID: 27317805 DOI: 10.1242/dev.133363] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/08/2016] [Indexed: 02/01/2023]
Abstract
The Mexican axolotl (Ambystoma mexicanum) is capable of fully regenerating amputated limbs, but denervation of the limb inhibits the formation of the post-injury proliferative mass called the blastema. The molecular basis behind this phenomenon remains poorly understood, but previous studies have suggested that nerves support regeneration via the secretion of essential growth-promoting factors. An essential nerve-derived factor must be found in the blastema, capable of rescuing regeneration in denervated limbs, and its inhibition must prevent regeneration. Here, we show that the neuronally secreted protein Neuregulin-1 (NRG1) fulfills all these criteria in the axolotl. Immunohistochemistry and in situ hybridization of NRG1 and its active receptor ErbB2 revealed that they are expressed in regenerating blastemas but lost upon denervation. NRG1 was localized to the wound epithelium prior to blastema formation and was later strongly expressed in proliferating blastemal cells. Supplementation by implantation of NRG1-soaked beads rescued regeneration to digits in denervated limbs, and pharmacological inhibition of NRG1 signaling reduced cell proliferation, blocked blastema formation and induced aberrant collagen deposition in fully innervated limbs. Taken together, our results show that nerve-dependent NRG1/ErbB2 signaling promotes blastemal proliferation in the regenerating limb and may play an essential role in blastema formation, thus providing insight into the longstanding question of why nerves are required for axolotl limb regeneration.
Collapse
Affiliation(s)
- Johanna E Farkas
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Polina D Freitas
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Donald M Bryant
- Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Jessica L Whited
- Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
14
|
McCusker CD, Diaz-Castillo C, Sosnik J, Q Phan A, Gardiner DM. Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs. Dev Biol 2016; 416:26-33. [PMID: 27316294 DOI: 10.1016/j.ydbio.2016.05.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 02/08/2023]
Abstract
The Mexican Axolotl is one of the few tetrapod species that is capable of regenerating complete skeletal elements in injured adult limbs. Whether the skeleton (bone and cartilage) plays a role in the patterning and contribution to the skeletal regenerate is currently unresolved. We tested the induction of pattern formation, the effect on cell proliferation, and contributions of skeletal tissues (cartilage, bone, and periosteum) to the regenerating axolotl limb. We found that bone tissue grafts from transgenic donors expressing GFP fail to induce pattern formation and do not contribute to the newly regenerated skeleton. Periosteum tissue grafts, on the other hand, have both of these activities. These observations reveal that skeletal tissue does not contribute to the regeneration of skeletal elements; rather, these structures are patterned by and derived from cells of non-skeletal connective tissue origin.
Collapse
Affiliation(s)
| | - Carlos Diaz-Castillo
- Department of Developmental and Cell Biology, University of California at Irvine, CA 92602, USA
| | - Julian Sosnik
- Department of Interdisciplinary Engineering, Wentworth Institute of Technology, Boston, MA 02115, USA
| | - Anne Q Phan
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - David M Gardiner
- Department of Developmental and Cell Biology, University of California at Irvine, CA 92602, USA
| |
Collapse
|
15
|
Quijano LM, Lynch KM, Allan CH, Badylak SF, Ahsan T. Looking Ahead to Engineering Epimorphic Regeneration of a Human Digit or Limb. TISSUE ENGINEERING. PART B, REVIEWS 2016; 22:251-62. [PMID: 26603349 PMCID: PMC4892205 DOI: 10.1089/ten.teb.2015.0401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023]
Abstract
Approximately 2 million people have had limb amputations in the United States due to disease or injury, with more than 185,000 new amputations every year. The ability to promote epimorphic regeneration, or the regrowth of a biologically based digit or limb, would radically change the prognosis for amputees. This ambitious goal includes the regrowth of a large number of tissues that need to be properly assembled and patterned to create a fully functional structure. We have yet to even identify, let alone address, all the obstacles along the extended progression that limit epimorphic regeneration in humans. This review aims to present introductory fundamentals in epimorphic regeneration to facilitate design and conduct of research from a tissue engineering and regenerative medicine perspective. We describe the clinical scenario of human digit healing, featuring published reports of regenerative potential. We then broadly delineate the processes of epimorphic regeneration in nonmammalian systems and describe a few mammalian regeneration models. We give particular focus to the murine digit tip, which allows for comparative studies of regeneration-competent and regeneration-incompetent outcomes in the same animal. Finally, we describe a few forward-thinking opportunities for promoting epimorphic regeneration in humans.
Collapse
Affiliation(s)
- Lina M. Quijano
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Kristen M. Lynch
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Christopher H. Allan
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tabassum Ahsan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| |
Collapse
|
16
|
Tsutsumi R, Yamada S, Agata K. Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis. REGENERATION (OXFORD, ENGLAND) 2016; 3:26-38. [PMID: 27499877 PMCID: PMC4857750 DOI: 10.1002/reg2.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 01/08/2023]
Abstract
A functional joint requires integration of multiple tissues: the apposing skeletal elements should form an interlocking structure, and muscles should insert into skeletal tissues via tendons across the joint. Whereas newts can regenerate functional joints after amputation, Xenopus laevis regenerates a cartilaginous rod without joints, a "spike." Previously we reported that the reintegration mechanism between the remaining and regenerated tissues has a significant effect on regenerating joint morphogenesis during elbow joint regeneration in newt. Based on this insight into the importance of reintegration, we amputated frogs' limbs at the elbow joint and found that frogs could regenerate a functional elbow joint between the remaining tissues and regenerated spike. During regeneration, the regenerating cartilage was partially connected to the remaining articular cartilage to reform the interlocking structure of the elbow joint at the proximal end of the spike. Furthermore, the muscles of the remaining part inserted into the regenerated spike cartilage via tendons. This study might open up an avenue for analyzing molecular and cellular mechanisms of joint regeneration using Xenopus.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Department of Biophysics, Graduate School of Science Kyoto University Kyoto Japan
| | - Shigehito Yamada
- Human Health Science, Graduate School of Medicine Kyoto University Kyoto Japan; Congenital Anomaly Research Center, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science Kyoto University Kyoto Japan
| |
Collapse
|
17
|
McCusker CD, Athippozhy A, Diaz-Castillo C, Fowlkes C, Gardiner DM, Voss SR. Positional plasticity in regenerating Amybstoma mexicanum limbs is associated with cell proliferation and pathways of cellular differentiation. BMC DEVELOPMENTAL BIOLOGY 2015; 15:45. [PMID: 26597593 PMCID: PMC4657325 DOI: 10.1186/s12861-015-0095-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023]
Abstract
Background The endogenous ability to dedifferentiate, re-pattern, and re-differentiate adult cells to repair or replace damaged or missing structures is exclusive to only a few tetrapod species. The Mexican axolotl is one example of these species, having the capacity to regenerate multiple adult structures including their limbs by generating a group of progenitor cells, known as the blastema, which acquire pattern and differentiate into the missing tissues. The formation of a limb regenerate is dependent on cells in the connective tissues that retain memory of their original position in the limb, and use this information to generate the pattern of the missing structure. Observations from recent and historic studies suggest that blastema cells vary in their potential to pattern distal structures during the regeneration process; some cells are plastic and can be reprogrammed to obtain new positional information while others are stable. Our previous studies showed that positional information has temporal and spatial components of variation; early bud (EB) and apical late bud (LB) blastema cells are plastic while basal-LB cells are stable. To identify the potential cellular and molecular basis of this variation, we compared these three cell populations using histological and transcriptional approaches. Results Histologically, the basal-LB sample showed greater tissue organization than the EB and apical-LB samples. We also observed that cell proliferation was more abundant in EB and apical-LB tissue when compared to basal-LB and mature stump tissue. Lastly, we found that genes associated with cellular differentiation were expressed more highly in the basal-LB samples. Conclusions Our results characterize histological and transcriptional differences between EB and apical-LB tissue compared to basal-LB tissue. Combined with our results from a previous study, we hypothesize that the stability of positional information is associated with tissue organization, cell proliferation, and pathways of cellular differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0095-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Antony Athippozhy
- Department of Biology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40506, USA.
| | - Carlos Diaz-Castillo
- Department of Developmental and Cellular Biology, University of California, Irvine, CA, 92602, USA.
| | - Charless Fowlkes
- Donald Bren School of Information and Computer Science, University of California, Irvine, CA, 92602, USA.
| | - David M Gardiner
- Department of Developmental and Cellular Biology, University of California, Irvine, CA, 92602, USA.
| | - S Randal Voss
- Department of Biology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40506, USA.
| |
Collapse
|
18
|
Phan AQ, Lee J, Oei M, Flath C, Hwe C, Mariano R, Vu T, Shu C, Dinh A, Simkin J, Muneoka K, Bryant SV, Gardiner DM. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum). ACTA ACUST UNITED AC 2015; 2:182-201. [PMID: 27499874 PMCID: PMC4857728 DOI: 10.1002/reg2.40] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/21/2015] [Accepted: 07/21/2015] [Indexed: 12/12/2022]
Abstract
Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain‐of‐function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position‐specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position‐specific, developmental‐stage‐specific, and heparan sulfate‐dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals.
Collapse
Affiliation(s)
- Anne Q Phan
- Department of Developmental and Cell Biology University of California Irvine Irvine California 92697-2305 USA
| | - Jangwoo Lee
- Department of Developmental and Cell Biology University of California Irvine Irvine California 92697-2305 USA
| | - Michelle Oei
- Department of Developmental and Cell Biology University of California Irvine Irvine California 92697-2305 USA
| | - Craig Flath
- Department of Developmental and Cell Biology University of California Irvine Irvine California 92697-2305 USA
| | - Caitlyn Hwe
- Department of Developmental and Cell Biology University of California Irvine Irvine California 92697-2305 USA
| | - Rachele Mariano
- Department of Developmental and Cell Biology University of California Irvine Irvine California 92697-2305 USA
| | - Tiffany Vu
- Department of Developmental and Cell Biology University of California Irvine Irvine California 92697-2305 USA
| | - Cynthia Shu
- Department of Developmental and Cell Biology University of California Irvine Irvine California 92697-2305 USA
| | - Andrew Dinh
- Department of Developmental and Cell Biology University of California Irvine Irvine California 92697-2305 USA
| | - Jennifer Simkin
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118, USA
| | - Ken Muneoka
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118, USA
| | - Susan V Bryant
- Department of Developmental and Cell Biology University of California Irvine Irvine California 92697-2305 USA
| | - David M Gardiner
- Department of Developmental and Cell Biology University of California Irvine Irvine California 92697-2305 USA
| |
Collapse
|
19
|
Mitogawa K, Makanae A, Satoh A, Satoh A. Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration. PLoS One 2015; 10:e0133375. [PMID: 26186213 PMCID: PMC4506045 DOI: 10.1371/journal.pone.0133375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 06/25/2015] [Indexed: 11/18/2022] Open
Abstract
Axolotls (Ambystoma mexicanum) can completely regenerate lost limbs, whereas Xenopus laevis frogs cannot. During limb regeneration, a blastema is first formed at the amputation plane. It is thought that this regeneration blastema forms a limb by mechanisms similar to those of a developing embryonic limb bud. Furthermore, Xenopus laevis frogs can form a blastema after amputation; however, the blastema results in a terminal cone-shaped cartilaginous structure called a "spike." The causes of this patterning defect in Xenopus frog limb regeneration were explored. We hypothesized that differences in chondrogenesis may underlie the patterning defect. Thus, we focused on chondrogenesis. Chondrogenesis marker genes, type I and type II collagen, were compared in regenerative and nonregenerative environments. There were marked differences between axolotls and Xenopus in the expression pattern of these chondrogenesis-associated genes. The relative deficit in the chondrogenic capacity of Xenopus blastema cells may account for the absence of total limb regenerative capacity.
Collapse
Affiliation(s)
- Kazumasa Mitogawa
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- Research Fellow of Japan Society for the Promotion of Science, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Aki Makanae
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
| | - Ayano Satoh
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Akira Satoh
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
- * E-mail:
| |
Collapse
|
20
|
Regeneration of the Epiphysis Including the Articular Cartilage in the Injured Knees of the Lizard Podarcis muralis. J Dev Biol 2015. [DOI: 10.3390/jdb3020071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
21
|
Tsutsumi R, Inoue T, Yamada S, Agata K. Reintegration of the regenerated and the remaining tissues during joint regeneration in the newt Cynops pyrrhogaster. ACTA ACUST UNITED AC 2015; 2:26-36. [PMID: 27499865 PMCID: PMC4895332 DOI: 10.1002/reg2.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 02/05/2023]
Abstract
Urodele amphibians, such as newts, can regenerate a functional limb, including joints, after amputation at any level along the proximal−distal axis of the limb. The blastema can regenerate the limb morphology largely independently of the stump after proximal−distal identity has been established, but the remaining and regenerated tissues must be structurally reintegrated (matched in size and shape). Here we used newt joint regeneration as a model to investigate reintegration, because a functionally interlocking joint requires structural integration between its opposing skeletal elements. After forelimbs were amputated at the elbow joint, the joint was regenerated between the remaining and regenerated skeletal elements. The regenerated cartilage was thick around the amputated joint to make a reciprocally interlocking joint structure with the remaining bone. Furthermore, during regeneration, the extracellular matrix of the remaining tissues was lost, suggesting that the remaining tissues might contribute to the morphogenesis of regenerating cartilage. Our results showed that the area of the regenerated cartilage matched the area of the apposed remaining cartilage, thus contributing to formation of a functional structure.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Department of Biophysics Graduate School of Science Kyoto University Kyoto Japan
| | - Takeshi Inoue
- Department of Biophysics Graduate School of Science Kyoto University Kyoto Japan
| | - Shigehito Yamada
- Human Health Science Graduate School of Medicine Kyoto University Kyoto Japan; Congenital Anomaly Research Center Graduate School of Medicine Kyoto University Kyoto Japan
| | - Kiyokazu Agata
- Department of Biophysics Graduate School of Science Kyoto University Kyoto Japan
| |
Collapse
|
22
|
Farkas JE, Monaghan JR. Housing and maintenance of Ambystoma mexicanum, the Mexican axolotl. Methods Mol Biol 2015; 1290:27-46. [PMID: 25740475 DOI: 10.1007/978-1-4939-2495-0_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The aim of this paper is to assemble a significant amount of information on Ambystoma mexicanum, the axolotl salamander, to assist in the basic knowledge needed to raise, breed, and study most aspects of axolotl biology. It is important to understand the basic biology of the axolotl in order to make informed decisions on their proper care and use in experiments. Therefore, we will provide necessary information to the non-herpetologist that will assist in their study of this unique and fascinating animal. We also aim to provide a resource on the general anatomy, behavior, and experimental tips specific to the Mexican axolotl that will be of use to most axolotl laboratories. Axolotls have been actively researched since the 1860s, giving testament to their relatively straightforward maintenance and their versatility as an animal model for development and regeneration. Interest in using the axolotl in laboratory research has grown tremendously over the past decade, so dedicated resources to support the study of this species are needed and encouraged.
Collapse
Affiliation(s)
- Johanna E Farkas
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115-5000, USA
| | | |
Collapse
|
23
|
Lobo D, Feldman EB, Shah M, Malone TJ, Levin M. A bioinformatics expert system linking functional data to anatomical outcomes in limb regeneration. REGENERATION (OXFORD, ENGLAND) 2014; 1:37-56. [PMID: 25729585 PMCID: PMC4339036 DOI: 10.1002/reg2.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/12/2014] [Accepted: 06/02/2014] [Indexed: 01/23/2023]
Abstract
Amphibians and molting arthropods have the remarkable capacity to regenerate amputated limbs, as described by an extensive literature of experimental cuts, amputations, grafts, and molecular techniques. Despite a rich history of experimental efforts, no comprehensive mechanistic model exists that can account for the pattern regulation observed in these experiments. While bioinformatics algorithms have revolutionized the study of signaling pathways, no such tools have heretofore been available to assist scientists in formulating testable models of large-scale morphogenesis that match published data in the limb regeneration field. Major barriers preventing an algorithmic approach are the lack of formal descriptions for experimental regenerative information and a repository to centralize storage and mining of functional data on limb regeneration. Establishing a new bioinformatics of shape would significantly accelerate the discovery of key insights into the mechanisms that implement complex regeneration. Here, we describe a novel mathematical ontology for limb regeneration to unambiguously encode phenotype, manipulation, and experiment data. Based on this formalism, we present the first centralized formal database of published limb regeneration experiments together with a user-friendly expert system tool to facilitate its access and mining. These resources are freely available for the community and will assist both human biologists and artificial intelligence systems to discover testable, mechanistic models of limb regeneration.
Collapse
Affiliation(s)
- Daniel Lobo
- Center for Regenerative and Developmental Biology and Department of BiologyTufts University200 Boston Avenue, Suite 4600MedfordMA02155U.S.A.
| | - Erica B. Feldman
- Center for Regenerative and Developmental Biology and Department of BiologyTufts University200 Boston Avenue, Suite 4600MedfordMA02155U.S.A.
| | - Michelle Shah
- Center for Regenerative and Developmental Biology and Department of BiologyTufts University200 Boston Avenue, Suite 4600MedfordMA02155U.S.A.
| | - Taylor J. Malone
- Center for Regenerative and Developmental Biology and Department of BiologyTufts University200 Boston Avenue, Suite 4600MedfordMA02155U.S.A.
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of BiologyTufts University200 Boston Avenue, Suite 4600MedfordMA02155U.S.A.
| |
Collapse
|
24
|
Medina-Castellanos E, Esquivel-Naranjo EU, Heil M, Herrera-Estrella A. Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride. FRONTIERS IN PLANT SCIENCE 2014; 5:659. [PMID: 25484887 PMCID: PMC4240048 DOI: 10.3389/fpls.2014.00659] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/04/2014] [Indexed: 05/17/2023]
Abstract
The response to mechanical damage is crucial for the survival of multicellular organisms, enabling their adaptation to hostile environments. Trichoderma atroviride, a filamentous fungus of great importance in the biological control of plant diseases, responds to mechanical damage by activating regenerative processes and asexual reproduction (conidiation). During this response, reactive oxygen species (ROS) are produced by the NADPH oxidase complex. To understand the underlying early signaling events, we evaluated molecules such as extracellular ATP (eATP) and Ca(2+) that are known to trigger wound-induced responses in plants and animals. Concretely, we investigated the activation of mitogen-activated protein kinase (MAPK) pathways by eATP, Ca(2+), and ROS. Indeed, application of exogenous ATP and Ca(2+) triggered conidiation. Furthermore, eATP promoted the Nox1-dependent production of ROS and activated a MAPK pathway. Mutants in the MAPK-encoding genes tmk1 and tmk3 were affected in wound-induced conidiation, and phosphorylation of both Tmk1 and Tmk3 was triggered by eATP. We conclude that in this fungus, eATP acts as a damage-associated molecular pattern (DAMP). Our data indicate the existence of an eATP receptor and suggest that in fungi, eATP triggers pathways that converge to regulate asexual reproduction genes that are required for injury-induced conidiation. By contrast, Ca(2+) is more likely to act as a downstream second messenger. The early steps of mechanical damage response in T. atroviride share conserved elements with those known from plants and animals.
Collapse
Affiliation(s)
| | | | - Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV-IrapuatoIrapuato, México
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodeversidad, CINVESTAV-IrapuatoIrapuato, México
- *Correspondence: Alfredo Herrera-Estrella, Laboratorio Nacional de Genómica para la Biodeversidad, CINVESTAV-Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato 36821, Guanajuato, México e-mail:
| |
Collapse
|
25
|
Nerve independent limb induction in axolotls. Dev Biol 2013; 381:213-26. [PMID: 23769980 DOI: 10.1016/j.ydbio.2013.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/18/2013] [Accepted: 05/10/2013] [Indexed: 02/04/2023]
Abstract
Urodele amphibians can regenerate their limbs. During limb regeneration, dermal fibroblasts are transformed into undifferentiated cells called blastema cells. These dermis-blastema cells show multipotency. Such so-called endogenous reprogramming of cell differentiation is one of the main targets of amphibian limb regeneration studies. It is well recognized that nerve presence controls the initiation of limb regeneration. Accordingly, nerve factors have been sought in amphibian limb regeneration. To investigate it, a relatively new study system called the accessory limb model (ALM) was developed. Using ALM, two signaling cascades (Fgf and Gdf5 signaling) came under focus. In the present study, Growth and differentiation factor-5 (Gdf5) application to wounded skin initiated limb regeneration responses and resulted in induction of a blastema-like structure in the absence of a nerve. However, the Gdf5-induced structure showed defects as a regeneration blastema, such as absence of detectable Prrx1 expression by in situ hybridization. The defects could be remedied by additional Fibroblasts growth factor (Fgf) inputs. These two inputs (Gdf5 and Fgfs) were sufficient to substitute for the nerve functions in the induction of limb regeneration. Indeed, Fgf2, Fgf8, and Gdf5 applications with the contralateral skin graft resulted in limb formation without nerve supply. Furthermore, acquisition of cartilage differentiation potential of dermal fibroblasts was tested in an in vivo and in vitro combination assay. Dermal fibroblasts cultured with Gdf5 were difficult to participate in cartilage formation when the cultured cells were grafted into cartilage forming region. In contrast, dermal fibroblasts cultured with Fgf2 and Fgf8 became easier to participate into cartilage formation in the same procedure. These results contribute to our understanding of molecular mechanisms of the early phase of amphibian limb regeneration.
Collapse
|