1
|
Genome-Wide Association Study of Nucleotide Variants Associated with Resistance to Nine Antimicrobials in Mycoplasma bovis. Microorganisms 2022; 10:microorganisms10071366. [PMID: 35889084 PMCID: PMC9320666 DOI: 10.3390/microorganisms10071366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Antimicrobial resistance (AMR) studies of Mycoplasma bovis have generally focused on specific loci versus using a genome-wide association study (GWAS) approach. A GWAS approach, using two different models, was applied to 194 Mycoplasma bovis genomes. Both a fixed effects linear model (FEM) and a linear mixed model (LMM) identified associations between nucleotide variants (NVs) and antimicrobial susceptibility testing (AST) phenotypes. The AMR phenotypes represented fluoroquinolones, tetracyclines, phenicols, and macrolides. Both models identified known and novel NVs associated (Bonferroni adjusted p < 0.05) with AMR. Fluoroquinolone resistance was associated with multiple NVs, including previously identified mutations in gyrA and parC. NVs in the 30S ribosomal protein 16S were associated with tetracycline resistance, whereas NVs in 5S rRNA, 23S rRNA, and 50S ribosomal proteins were associated with phenicol and macrolide resistance. For all antimicrobial classes, resistance was associated with NVs in genes coding for ABC transporters and other membrane proteins, tRNA-ligases, peptidases, and transposases, suggesting a NV-based multifactorial model of AMR in M. bovis. This study was the largest collection of North American M. bovis isolates used with a GWAS for the sole purpose of identifying novel and non-antimicrobial-target NVs associated with AMR.
Collapse
|
2
|
Gaurivaud P, Tardy F. The Mycoplasma spp. ‘Releasome’: A New Concept for a Long-Known Phenomenon. Front Microbiol 2022; 13:853440. [PMID: 35495700 PMCID: PMC9051441 DOI: 10.3389/fmicb.2022.853440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The bacterial secretome comprises polypeptides expressed at the cell surface or released into the extracellular environment as well as the corresponding secretion machineries. Despite their reduced coding capacities, Mycoplasma spp. are able to produce and release several components into their environment, including polypeptides, exopolysaccharides and extracellular vesicles. Technical difficulties in purifying these elements from the complex broth media used to grow mycoplasmas have recently been overcome by optimizing growth conditions and switching to chemically defined culture media. However, the secretion pathways responsible for the release of these structurally varied elements are still poorly described in mycoplasmas. We propose the use of the term ‘releasome,’ instead of secretome, to refer to molecules released by mycoplasmas into their environment. The aim of this review is to more precisely delineate the elements that should be considered part of the mycoplasmal releasome and their role in the interplay of mycoplasmas with host cells and tissues.
Collapse
|
3
|
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021; 12:788-817. [PMID: 33704021 PMCID: PMC7954426 DOI: 10.1080/21505594.2021.1889813] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.
Collapse
Affiliation(s)
- Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
4
|
Li Y, Wang R, Sun W, Song Z, Bai F, Zheng H, Xin J. Comparative genomics analysis of Mycoplasma capricolum subsp. capripneumoniae 87001. Genomics 2019; 112:615-620. [PMID: 31071461 DOI: 10.1016/j.ygeno.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022]
Abstract
Mycoplasma capricolum subsp. capripneumoniae (Mccp), belongs to Mycoplasma mycoides cluster and is a causal pathogen of contagious caprine pleuropneumonia (CCPP). This paper presents the complete annotated genome sequence of Mccp Strain 87001-a strain that was isolated from pneumonia affected goats on a farm in China, and comparative genomics analysis of five Mccp genomes in addition to comparative genomics within Mycoplasma mycoides cluster. The Mccp strain 87001 genome consists of a single circular chromosome 1017333 bp in length and encodes 898 open reading frames (orfs) averaging 944 bp in length. Fifty eight potential virulence genes were identified, including variable surface lipoproteins, hemolysin A, and P60 surface lipoprotein. Comparative genomic analysis revealed eight virulence genes and four extracellular genes which remained unchanged in five Mccp genomes for forty years, which can be used as potential target for drug development and vaccine design. We revealed 183 Mccp unique genes as markers to distinguish Mccp with other mycoplasma strains from goats, and different virulence factors contributing to host specificity and different syndrome of bovine pathogens and caprine pathogens.
Collapse
Affiliation(s)
- Yuan Li
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin 150001, China
| | - Rui Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Wenjing Sun
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin 150001, China
| | - Zhiqiang Song
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin 150001, China
| | - Fan Bai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China.
| | - Jiuqing Xin
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin 150001, China.
| |
Collapse
|
5
|
Rasheed MA, Qi J, Zhu X, Chenfei H, Menghwar H, Khan FA, Zhao G, Zubair M, Hu C, Chen Y, Chen H, Guo A. Comparative Genomics of Mycoplasma bovis Strains Reveals That Decreased Virulence with Increasing Passages Might Correlate with Potential Virulence-Related Factors. Front Cell Infect Microbiol 2017; 7:177. [PMID: 28553620 PMCID: PMC5426083 DOI: 10.3389/fcimb.2017.00177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/24/2017] [Indexed: 12/29/2022] Open
Abstract
Mycoplasma bovis is an important cause of bovine respiratory disease worldwide. To understand its virulence mechanisms, we sequenced three attenuated M. bovis strains, P115, P150, and P180, which were passaged in vitro 115, 150, and 180 times, respectively, and exhibited progressively decreasing virulence. Comparative genomics was performed among the wild-type M. bovis HB0801 (P1) strain and the P115, P150, and P180 strains, and one 14.2-kb deleted region covering 14 genes was detected in the passaged strains. Additionally, 46 non-sense single-nucleotide polymorphisms and indels were detected, which confirmed that more passages result in more mutations. A subsequent collective bioinformatics analysis of paralogs, metabolic pathways, protein-protein interactions, secretory proteins, functionally conserved domains, and virulence-related factors identified 11 genes that likely contributed to the increased attenuation in the passaged strains. These genes encode ascorbate-specific phosphotransferase system enzyme IIB and IIA components, enolase, L-lactate dehydrogenase, pyruvate kinase, glycerol, and multiple sugar ATP-binding cassette transporters, ATP binding proteins, NADH dehydrogenase, phosphate acetyltransferase, transketolase, and a variable surface protein. Fifteen genes were shown to be enriched in 15 metabolic pathways, and they included the aforementioned genes encoding pyruvate kinase, transketolase, enolase, and L-lactate dehydrogenase. Hydrogen peroxide (H2O2) production in M. bovis strains representing seven passages from P1 to P180 decreased progressively with increasing numbers of passages and increased attenuation. However, eight mutants specific to eight individual genes within the 14.2-kb deleted region did not exhibit altered H2O2 production. These results enrich the M. bovis genomics database, and they increase our understanding of the mechanisms underlying M. bovis virulence.
Collapse
Affiliation(s)
- Muhammad A Rasheed
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Department of Biosciences, COMSATS Institute of Information TechnologySahiwal, Pakistan
| | - Jingjing Qi
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural SciencesShanghai, China
| | - Xifang Zhu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - He Chenfei
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Harish Menghwar
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Farhan A Khan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Muhammad Zubair
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Yingyu Chen
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural UniversityWuhan, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
6
|
Levipan HA, Avendaño-Herrera R. Different Phenotypes of Mature Biofilm in Flavobacterium psychrophilum Share a Potential for Virulence That Differs from Planktonic State. Front Cell Infect Microbiol 2017; 7:76. [PMID: 28361040 PMCID: PMC5350093 DOI: 10.3389/fcimb.2017.00076] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/27/2017] [Indexed: 12/31/2022] Open
Abstract
Flavobacterium psychrophilum is the etiological agent of bacterial coldwater disease and the rainbow trout fry syndrome in salmonid aquaculture worldwide. However, there have been few studies into the capacity of F. psychrophilum to form biofilms and how these cellular accretions differ from planktonic cells or how they affect potential virulence. We evaluated the biofilm formation by three Chilean isolates of F. psychrophilum (LM-02-Fp, LM-06-Fp, and LM-13-Fp) and two non-Chilean strains (JIP02/86 and NCMB1947T), and compared biofilm and planktonic states to obtain insights into expression differences of virulence- and biofilm-related genes (VBRGs). Our findings are based on scanning confocal laser microscopy (SCLM) and LIVE/DEAD staining, enzymatic reactions, reverse transcription-quantitative PCR (RT-qPCR) of genes encoding putative virulence factors, and transcriptomes (RNA-Seq). The LM-02-Fp and NCMB1947T strains were the strongest and weakest biofilm producers, respectively. The strong-biofilm producer showed different physiological cell states distributed in different layers of mature biofilms, whereas the NCMB1947T biofilms consisted of cells arranged in a monolayer. WGA-binding exopolysaccharides would be the main components of their corresponding extracellular matrices. Transcriptomes of F. psychrophilum NCMB1947T and LM-02-Fp were clustered by state (biofilm vs. planktonic) rather than by strain, indicating important state-dependent differences in gene expression. Analysis of differentially expressed genes between states identified putative VBRGs involved in polysaccharide biosynthesis, lateral gene transfer, membrane transport (e.g., for drugs and Fe3+), sensory mechanisms, and adhesion, and indicated that about 60-100% of VBRGs involved in these processes was significantly upregulated in the biofilm state. Conversely, upregulated motility-related genes in the biofilm state were not identified, whereas a lower fraction of proteolysis-related genes (33%) was upregulated in biofilms. In summary, F. psychrophilum strains that produce different biofilm phenotypes show global transcriptional activity in the mature biofilm state that differs significantly from their planktonic counterparts. Also, different biofilm phenotypes share a genetic potential for virulence that is transcriptionally enhanced with respect to free-living cells. Our results suggest that the F. psychrophilum biofilm lifestyle acts as a reservoir for a given set of putative virulence factors, and recommend a deeper understanding of which could help prevent recurring infections in salmonid farms.
Collapse
Affiliation(s)
- Héctor A Levipan
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andres BelloViña del Mar, Chile; Interdisciplinary Center for Aquaculture ResearchConcepción, Chile
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andres BelloViña del Mar, Chile; Interdisciplinary Center for Aquaculture ResearchConcepción, Chile; Centro de Investigación Marina QuintayValparaíso, Chile
| |
Collapse
|
7
|
Tsarmpopoulos I, Gourgues G, Blanchard A, Vashee S, Jores J, Lartigue C, Sirand-Pugnet P. In-Yeast Engineering of a Bacterial Genome Using CRISPR/Cas9. ACS Synth Biol 2016; 5:104-9. [PMID: 26592087 DOI: 10.1021/acssynbio.5b00196] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One remarkable achievement in synthetic biology was the reconstruction of mycoplasma genomes and their cloning in yeast where they can be modified using available genetic tools. Recently, CRISPR/Cas9 editing tools were developed for yeast mutagenesis. Here, we report their adaptation for the engineering of bacterial genomes cloned in yeast. A seamless deletion of the mycoplasma glycerol-3-phosphate oxidase-encoding gene (glpO) was achieved without selection in one step, using 90 nt paired oligonucleotides as templates to drive recombination. Screening of the resulting clones revealed that more than 20% contained the desired deletion. After manipulation, the overall integrity of the cloned mycoplasma genome was verified by multiplex PCR and PFGE. Finally, the edited genome was back-transplanted into a mycoplasma recipient cell. In accordance with the deletion of glpO, the mutant mycoplasma was affected in the production of H2O2. This work paves the way to high-throughput manipulation of natural or synthetic genomes in yeast.
Collapse
Affiliation(s)
| | | | | | - Sanjay Vashee
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, 20850 Maryland United States,
| | - Joerg Jores
- International Livestock Research Institute (ILRI),
PO Box 30709, 00100 Nairobi, Kenya
- Institute
of Veterinary Bacteriology, University of Bern, Laenggass-Straße
122, CH-3001 Bern, Switzerland
| | | | | |
Collapse
|
8
|
Suzuki Y, Assad-Garcia N, Kostylev M, Noskov VN, Wise KS, Karas BJ, Stam J, Montague MG, Hanly TJ, Enriquez NJ, Ramon A, Goldgof GM, Richter RA, Vashee S, Chuang RY, Winzeler EA, Hutchison CA, Gibson DG, Smith HO, Glass JI, Venter JC. Bacterial genome reduction using the progressive clustering of deletions via yeast sexual cycling. Genome Res 2015; 25:435-44. [PMID: 25654978 PMCID: PMC4352883 DOI: 10.1101/gr.182477.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The availability of genetically tractable organisms with simple genomes is critical for the rapid, systems-level understanding of basic biological processes. Mycoplasma bacteria, with the smallest known genomes among free-living cellular organisms, are ideal models for this purpose, but the natural versions of these cells have genome complexities still too great to offer a comprehensive view of a fundamental life form. Here we describe an efficient method for reducing genomes from these organisms by identifying individually deletable regions using transposon mutagenesis and progressively clustering deleted genomic segments using meiotic recombination between the bacterial genomes harbored in yeast. Mycoplasmal genomes subjected to this process and transplanted into recipient cells yielded two mycoplasma strains. The first simultaneously lacked eight singly deletable regions of the genome, representing a total of 91 genes and ∼10% of the original genome. The second strain lacked seven of the eight regions, representing 84 genes. Growth assay data revealed an absence of genetic interactions among the 91 genes under tested conditions. Despite predicted effects of the deletions on sugar metabolism and the proteome, growth rates were unaffected by the gene deletions in the seven-deletion strain. These results support the feasibility of using single-gene disruption data to design and construct viable genomes lacking multiple genes, paving the way toward genome minimization. The progressive clustering method is expected to be effective for the reorganization of any mega-sized DNA molecules cloned in yeast, facilitating the construction of designer genomes in microbes as well as genomic fragments for genetic engineering of higher eukaryotes.
Collapse
Affiliation(s)
- Yo Suzuki
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA;
| | - Nacyra Assad-Garcia
- Synthetic Biology Group, J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Maxim Kostylev
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Vladimir N Noskov
- Synthetic Biology Group, J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Kim S Wise
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA; Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, USA
| | - Bogumil J Karas
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Jason Stam
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Michael G Montague
- Synthetic Biology Group, J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Timothy J Hanly
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Nico J Enriquez
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Adi Ramon
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Gregory M Goldgof
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA; University of California, San Diego, School of Medicine, La Jolla, California 92093, USA
| | - R Alexander Richter
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Sanjay Vashee
- Synthetic Biology Group, J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Ray-Yuan Chuang
- Synthetic Biology Group, J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Elizabeth A Winzeler
- University of California, San Diego, School of Medicine, La Jolla, California 92093, USA
| | - Clyde A Hutchison
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Daniel G Gibson
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Hamilton O Smith
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - John I Glass
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA; Synthetic Biology Group, J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - J Craig Venter
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, USA; Synthetic Biology Group, J. Craig Venter Institute, Rockville, Maryland 20850, USA
| |
Collapse
|
9
|
Wu L, Xu J, Yuan W, Wu B, Wang H, Liu G, Wang X, Du J, Cai S. The reversal effects of 3-bromopyruvate on multidrug resistance in vitro and in vivo derived from human breast MCF-7/ADR cells. PLoS One 2014; 9:e112132. [PMID: 25372840 PMCID: PMC4221289 DOI: 10.1371/journal.pone.0112132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/13/2014] [Indexed: 12/31/2022] Open
Abstract
Purpose P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. Methods The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer’s instructions. Results 3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds), paclitaxel (85 folds), daunorubicin (201 folds), and epirubicin (171 folds)] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates) in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied. Conclusion We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the intracellular level of ATP and HK-II bioactivity, the inhibition of ATPase activity, and the slight decrease in P-glycoprotein expression in MCF-7/ADR cells.
Collapse
Affiliation(s)
- Long Wu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jun Xu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Weiqi Yuan
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Baojian Wu
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Hao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guang Zhou 510275, P. R. China
| | - Guangquan Liu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Xiaoxiong Wang
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jun Du
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guang Zhou 510275, P. R. China
- * E-mail: (JD); (SHC)
| | - Shaohui Cai
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
- * E-mail: (JD); (SHC)
| |
Collapse
|
10
|
Reyes L, Eiler-McManis E, Rodrigues PH, Chadda AS, Wallet SM, Bélanger M, Barrett AG, Alvarez S, Akin D, Dunn WA, Progulske-Fox A. Deletion of lipoprotein PG0717 in Porphyromonas gingivalis W83 reduces gingipain activity and alters trafficking in and response by host cells. PLoS One 2013; 8:e74230. [PMID: 24069284 PMCID: PMC3772042 DOI: 10.1371/journal.pone.0074230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/29/2013] [Indexed: 01/10/2023] Open
Abstract
P. gingivalis (Pg), a causative agent of chronic generalized periodontitis, has been implicated in promoting cardiovascular disease. Expression of lipoprotein gene PG0717 of Pg strain W83 was found to be transiently upregulated during invasion of human coronary artery endothelial cells (HCAEC), suggesting this protein may be involved in virulence. We characterized the virulence phenotype of a PG0717 deletion mutant of pg W83. There were no differences in the ability of W83Δ717 to adhere and invade HCAEC. However, the increased proportion of internalized W83 at 24 hours post-inoculation was not observed with W83∆717. Deletion of PG0717 also impaired the ability of W83 to usurp the autophagic pathway in HCAEC and to induce autophagy in Saos-2 sarcoma cells. HCAEC infected with W83Δ717 also secreted significantly greater amounts of MCP-1, IL-8, IL-6, GM-CSF, and soluble ICAM-1, VCAM-1, and E-selectin when compared to W83. Further characterization of W83Δ717 revealed that neither capsule nor lipid A structure was affected by deletion of PG0717. Interestingly, the activity of both arginine (Rgp) and lysine (Kgp) gingipains was reduced in whole-cell extracts and culture supernatant of W83Δ717. RT-PCR revealed a corresponding decrease in transcription of rgpB but not rgpA or kgp. Quantitative proteome studies of the two strains revealed that both RgpA and RgpB, along with putative virulence factors peptidylarginine deiminase and Clp protease were significantly decreased in the W83Δ717. Our results suggest that PG0717 has pleiotropic effects on W83 that affect microbial induced manipulation of host responses important for microbial clearance and infection control.
Collapse
Affiliation(s)
- Leticia Reyes
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Eileen Eiler-McManis
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Paulo H. Rodrigues
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Amandeep S. Chadda
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Shannon M. Wallet
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Myriam Bélanger
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Amanda G. Barrett
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Sophie Alvarez
- Donald Danforth Plant Science Center, proteomics & mass spectrometry Core, St. Louis, Missouri, United States of America
| | - Debra Akin
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - William A. Dunn
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ann Progulske-Fox
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| |
Collapse
|