1
|
Ghasemian K, Broer I, Schön J, Killisch R, Kolp N, Springer A, Huckauf J. Oral and Subcutaneous Immunization with a Plant-Produced Mouse-Specific Zona Pellucida 3 Peptide Presented on Hepatitis B Core Antigen Virus-like Particles. Vaccines (Basel) 2023; 11:vaccines11020462. [PMID: 36851339 PMCID: PMC9963689 DOI: 10.3390/vaccines11020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
A short mouse-specific peptide from zona pellucida 3 (mZP3, amino acids 328-342) has been shown to be associated with antibody-mediated contraception. In this study, we investigated the production of mZP3 in the plant, as an orally applicable host, and examined the immunogenicity of this small peptide in the BALB/c mouse model. The mZP3 peptide was inserted into the major immunodominant region of the hepatitis B core antigen and was produced in Nicotiana benthamiana plants via Agrobacterium-mediated transient expression. Soluble HBcAg-mZP3 accumulated at levels up to 2.63 mg/g leaf dry weight (LDW) containing ~172 µg/mg LDW mZP3 peptide. Sucrose gradient analysis and electron microscopy indicated the assembly of the HBcAg-mZP3 virus-like particles (VLPs) in the soluble protein fraction. Subcutaneously administered mZP3 peptide displayed on HBcAg VLPs was immunogenic in BALB/c mice at a relatively low dosage (5.5 µg mZP3 per dose) and led to the generation of mZP3-specific antibodies that bound to the native zona pellucida of wild mice. Oral delivery of dried leaves expressing HBcAg-mZP3 also elicited mZP3-specific serum IgG and mucosal IgA that cross-reacted with the zona pellucida of wild mice. According to these results, it is worthwhile to investigate the efficiency of plants producing HBcAg-mZP3 VLPs as immunogenic edible baits in reducing the fertility of wild mice through inducing antibodies that cross-react to the zona pellucida.
Collapse
Affiliation(s)
- Khadijeh Ghasemian
- Department of Agrobiotechnology and Risk Assessment for Bio and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Inge Broer
- Department of Agrobiotechnology and Risk Assessment for Bio and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Jennifer Schön
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), 10315 Berlin, Germany
| | - Richard Killisch
- BIOSERV, Analytik und Medizinprodukte GmbH, 18059 Rostock, Germany
| | - Nadine Kolp
- BIOSERV, Analytik und Medizinprodukte GmbH, 18059 Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, 18057 Rostock, Germany
| | - Jana Huckauf
- Department of Agrobiotechnology and Risk Assessment for Bio and Gene Technology, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
- Correspondence:
| |
Collapse
|
2
|
Choudhary P, Khajavinia A, Mohammadi R, Ng SH, Bérubé N, Yalamati D, Haddadi A, Wilson HL. A Single-Dose Intramuscular Nanoparticle Vaccine With or Without Prior Intrauterine Priming Triggers Specific Uterine and Colostral Mucosal Antibodies and Systemic Immunity in Gilts but Not Passive Protection for Suckling Piglets. Front Vet Sci 2022; 9:931232. [PMID: 35990278 PMCID: PMC9383261 DOI: 10.3389/fvets.2022.931232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
An effective single-dose vaccine that protects the dam and her suckling offspring against infectious disease would be widely beneficial to livestock animals. We assessed whether a single-dose intramuscular (i.m.) porcine epidemic diarrhea virus (PEDV) vaccine administered to the gilt 30 days post-breeding could generate mucosal and systemic immunity and sufficient colostral and mature milk antibodies to protect suckling piglets against infectious challenge. The vaccine was comprised of polymeric poly-(lactide-co-glycolide) (PGLA)-nanoparticle (NP) encapsulating recombinant PEDV spike protein 1 (PEDVS1) associated with ARC4 and ARC7 adjuvants, a muramyl dipeptide analog and a monophosphoryl lipid A (MPLA) analog, respectively (NP-PEDVS1). To establish whether prior mucosal exposure could augment the i.m. immune response and/or contribute to mucosal tolerance, gilts were immunized with the NP-PEDVS1 vaccine via the intrauterine route at breeding, followed by the i.m. vaccine 30 days later. Archived colostrum from gilts that were challenged with low-dose PEDV plus alum was used as positive reference samples for neutralizing antibodies and passive protection. On day 100 of gestation (70 days post i.m. immunization), both vaccinated groups showed significant PEDVS1-specific IgG and IgA in the serum, as well as in uterine tissue collected on the day of euthanasia. Anti-PEDVS1 colostral IgG antibody titers collected at farrowing were significantly higher relative to the negative control gilts indicating that the NP vaccine was effective in contributing to the colostral antibodies. The PEDVS1-specific colostral IgA and anti-PEDVS1 IgG and IgA antibodies in the mature milk collected 6 days after farrowing were low for both vaccinated groups. No statistical differences between the vaccinated groups were observed, suggesting that the i.u. priming vaccine did not induce mucosal tolerance. Piglets born to either group of vaccinated gilts did not receive sufficient neutralizing antibodies to protect them against infectious PEDV at 3 days of age. In summary, a single i.m. NP vaccine administered 30 days after breeding and a joint i.u./i.m. vaccine administered at breeding and 30 days post-breeding induced significant anti-PEDVS1 immunity in systemic and mucosal sites but did not provide passive protection in suckling offspring.
Collapse
Affiliation(s)
- Pooja Choudhary
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amir Khajavinia
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ramin Mohammadi
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nathalie Bérubé
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Azita Haddadi
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Heather L. Wilson
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Vaccinology and Immunotherapeutics Program at the School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Heather L. Wilson
| |
Collapse
|
3
|
Pyrski M, Mieloch AA, Plewiński A, Basińska-Barczak A, Gryciuk A, Bociąg P, Murias M, Rybka JD, Pniewski T. Parenteral-Oral Immunization with Plant-Derived HBcAg as a Potential Therapeutic Vaccine against Chronic Hepatitis B. Vaccines (Basel) 2019; 7:E211. [PMID: 31835350 PMCID: PMC6963566 DOI: 10.3390/vaccines7040211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic hepatitis B (CHB) is the cause of severe liver damage, cirrhosis, and hepatocellular carcinoma for over 240 million people worldwide. Nowadays, several types of treatment are being investigated, including immunotherapy using hepatitis B core antigen (HBcAg) assembled into highly immunogenic capsid-like particles (CLPs). Immunogenicity of plant-produced and purified HBcAg, administered parenterally or intranasally, was previously reported. In this study, a novel parenteral-oral vaccination scheme is proposed using plant-derived HBcAg preparations. The antigen for injection was obtained via transient expression in Nicotiana benthamiana. HBcAg-producing transgenic lettuce was lyophilized and used as an orally delivered booster. The intracellular location of plant-produced HBcAg CLPs implies additional protection in the digestive tract during oral immunization. BALB/c mice were intramuscularly primed with 10 µg of the purified antigen and orally boosted twice with 5 or 200 ng of HBcAg. A long-lasting and significant systemic response after boosting with 200 ng HBcAg was induced, with anti-HBc titer of 25,000. Concomitantly, an insignificant mucosal response was observed, with an S-IgA titer of only 500. The profile of IgG isotypes indicates a predominant Th1 type of immune response, supplemented by Th2, after injection-oral vaccination. The results demonstrate that a low dose of parenteral-oral immunization with plant-derived HBcAg can elicit a specific and efficient response. This study presents a potential new pathway of CHB treatment.
Collapse
Affiliation(s)
- Marcin Pyrski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (M.P.); (A.B.-B.); (A.G.); (P.B.)
| | - Adam Aron Mieloch
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland; (A.A.M.); (A.P.)
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Adam Plewiński
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland; (A.A.M.); (A.P.)
| | - Aneta Basińska-Barczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (M.P.); (A.B.-B.); (A.G.); (P.B.)
| | - Aleksandra Gryciuk
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (M.P.); (A.B.-B.); (A.G.); (P.B.)
| | - Piotr Bociąg
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (M.P.); (A.B.-B.); (A.G.); (P.B.)
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland;
| | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland; (A.A.M.); (A.P.)
| | - Tomasz Pniewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (M.P.); (A.B.-B.); (A.G.); (P.B.)
| |
Collapse
|
4
|
Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut. Dev Cell 2019; 51:7-20.e6. [PMID: 31474562 PMCID: PMC6783362 DOI: 10.1016/j.devcel.2019.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/06/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
The guts of neonatal mammals and stomachless fish have a limited capacity for luminal protein digestion, which allows oral acquisition of antibodies and antigens. However, how dietary protein is absorbed during critical developmental stages when the gut is still immature is unknown. Here, we show that specialized intestinal cells, which we call lysosome-rich enterocytes (LREs), internalize dietary protein via receptor-mediated and fluid-phase endocytosis for intracellular digestion and trans-cellular transport. In LREs, we identify a conserved endocytic machinery, composed of the scavenger receptor complex Cubilin/Amnionless and Dab2, that is required for protein uptake by LREs and for growth and survival of larval zebrafish. Moreover, impairing LRE function in suckling mice, via conditional deletion of Dab2, leads to stunted growth and severe protein malnutrition reminiscent of kwashiorkor, a devastating human malnutrition syndrome. These findings identify digestive functions and conserved molecular mechanisms in LREs that are crucial for vertebrate growth and survival.
Collapse
|
5
|
Pniewski T, Milczarek M, Wojas-Turek J, Pajtasz-Piasecka E, Wietrzyk J, Czyż M. Plant lyophilisate carrying S-HBsAg as an oral booster vaccine against HBV. Vaccine 2018; 36:6070-6076. [DOI: 10.1016/j.vaccine.2018.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/12/2018] [Accepted: 09/01/2018] [Indexed: 12/25/2022]
|
6
|
Fragoso G, Hernández M, Cervantes-Torres J, Ramírez-Aquino R, Chapula H, Villalobos N, Segura-Velázquez R, Figueroa A, Flores I, Jiménez H, Adalid L, Rosas G, Galvez L, Pezzat E, Monreal-Escalante E, Rosales-Mendoza S, Vazquez LG, Sciutto E. Transgenic papaya: a useful platform for oral vaccines. PLANTA 2017; 245:1037-1048. [PMID: 28194565 DOI: 10.1007/s00425-017-2658-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Transgenic papaya callus lines expressing the components of the S3Pvac vaccine constitute a stable platform to produce an oral vaccine against cysticercosis caused by Taenia solium or T. crassiceps. The development of effective delivery systems to cope with the reduced immunogenicity of new subunit vaccines is a priority in vaccinology. Herein, experimental evidence supporting a papaya-based platform to produce needle-free, recombinant, highly immunogenic vaccines is shown. Papaya (Carica papaya) callus lines were previously engineered by particle bombardment to express the three protective peptides of the S3Pvac anti-cysticercosis vaccine (KETc7, KETc12, KETc1). Calli were propagated in vitro, and a stable integration and expression of the target genes has been maintained, as confirmed by PCR, qRT-PCR, and HPLC. These results point papaya calli as a suitable platform for long-term transgenic expression of the vaccine peptides. The previously demonstrated protective immunogenic efficacy of S3Pvac-papaya orally administered to mice is herein confirmed in a wider dose-range and formulated with different delivery vehicles, adequate for oral vaccination. This protection is accompanied by an increase in anti-S3Pvac antibody titers and a delayed hypersensitivity response against the vaccine. A significant increase in CD4+ and CD8+ lymphocyte proliferation was induced in vitro by each vaccine peptide in mice immunized with the lowest dose of S3Pvac papaya (0.56 ng of the three peptides in 0.1 µg of papaya callus total protein per mouse). In pigs, the obliged intermediate host for Taenia solium, S3Pvac papaya was also immunogenic when orally administered in a two-log dose range. Vaccinated pigs significantly increased anti-vaccine antibodies and mononuclear cell proliferation. Overall, the oral immunogenicity of this stable S3Pvac-papaya vaccine in mice and pigs, not requiring additional adjuvants, supports the interest in papaya callus as a useful platform for plant-based vaccines.
Collapse
Affiliation(s)
- Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
| | - Marisela Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
| | - Jacquelynne Cervantes-Torres
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
| | - Rubén Ramírez-Aquino
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Calle 13 Sur 2702, CP 72420, Puebla, Mexico
| | - Héctor Chapula
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
| | - Nelly Villalobos
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
| | - René Segura-Velázquez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
| | - Alfredo Figueroa
- Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, CP 39087, Chilpancingo, GRO, Mexico
| | - Iván Flores
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, MOR, Mexico
| | - Herminio Jiménez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Calle 13 Sur 2702, CP 72420, Puebla, Mexico
| | - Laura Adalid
- Instituto Nacional de Neurología y Neurocirugía, SSA, Colonia la Fama, Delegación Tlalpan, Mexico, DF, Mexico
| | - Gabriela Rosas
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, MOR, Mexico
| | - Luis Galvez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Calle 13 Sur 2702, CP 72420, Puebla, Mexico
| | - Elias Pezzat
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Calle 13 Sur 2702, CP 72420, Puebla, Mexico
| | - Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, Mexico
| | - Luis G Vazquez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Calle 13 Sur 2702, CP 72420, Puebla, Mexico
| | - Edda Sciutto
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico.
| |
Collapse
|
7
|
Pasternak JA, Ng SH, Buchanan RM, Mertins S, Mutwiri GK, Gerdts V, Wilson HL. Oral antigen exposure in newborn piglets circumvents induction of oral tolerance in response to intraperitoneal vaccination in later life. BMC Vet Res 2015; 11:50. [PMID: 25889479 PMCID: PMC4357157 DOI: 10.1186/s12917-015-0350-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 02/05/2015] [Indexed: 11/10/2022] Open
Abstract
Background We previously determined that newborn piglets orally gavaged with Ovalbumin (OVA) responded to systemic OVA re-exposure with tolerance; if adjuvants were included in oral vaccine, piglets responded with antibody-mediated immunity (Vet Immunol Immunopathol 161(3–4):211–21, 2014). Here, we will investigate whether newborn piglets gavaged with a vaccine comprised of OVA plus unmethylated CpG oligodeoxynucleotides (CpG; soluble component; OVA/CpG) combined with OVA plus CpG encapsulated within polyphosphazene microparticles (MP; particulate component) responded with systemic and mucosal immunity. To monitor the response to systemic antigen re-exposure, piglets were i.p.-immunized with OVA plus Incomplete Freund’s Adjuvant (IFA) one month later. Results Newborn piglets (n = 5/group) were gavaged with a combined soluble and particulate vaccine consisting of OVA (0.5-0.05 mg) plus 50 μg CpG and 0.5 mg OVA plus 50 μg CpG encapsulated within a polyphosphazene MP (0.5 mg) referred to as OVA/CpG + MP. Control piglets were gavaged with saline alone. Piglets were i.p. immunized with 10 mg OVA (or saline) in IFA at four weeks of age and then euthanized at eight weeks of age. We observed significantly higher titres of serum anti-OVA immunoglobulin (Ig) IgM, IgA, IgG, IgG1, IgG2 and IgG in piglets immunized with 0.05 mg OVA/CpG + MP relative to saline control animals. Thus, a single oral exposure at birth to a combined soluble and particulate OVA vaccine including adjuvants can circumvent induction of oral tolerance which impacts response to i.p. vaccination in later life. Further, piglets gavaged with 0.05 mg OVA/CpG + MP generated significant anti-OVA IgG and IgG1 titres in lung compared to saline control piglets but results were comparable to titres measured in parenteral control piglets. Peripheral blood mononuclear cells (PBMCs) ex vivo-stimulated with OVA showed markedly decreased production of IL-10 cytokine after 72 hours relative to animal-matched cells incubated with media alone. No production of IFN-γ was observed from any groups. Conclusion Newborn piglets gavaged with low dose soluble and particulate OVA plus CpG ODN and polyphosphazene adjuvants produced antigen-specific antibodies in serum and lung after systemic re-exposure in later life. These data indicate circumvention of oral tolerance but not induction of oral immunity.
Collapse
Affiliation(s)
- J Alex Pasternak
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| | - Rachelle M Buchanan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| | - Sonja Mertins
- Current address: Klinikum der Universität zu Köln, Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Goldenfelsstraße 19-21, 50935, Köln, Germany.
| | - George K Mutwiri
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| |
Collapse
|
8
|
Wilson HL, Obradovic MR. Evidence for a common mucosal immune system in the pig. Mol Immunol 2014; 66:22-34. [PMID: 25242212 PMCID: PMC7132386 DOI: 10.1016/j.molimm.2014.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/15/2014] [Accepted: 09/01/2014] [Indexed: 12/03/2022]
Abstract
There is evidence that the common mucosal immune system exists in pigs. Vaccination at an easily accessible mucosal site may assist in providing protection at other mucosal sites. Local and distal mucosal sites should be sampled after vaccinations to define the optimal dose and formulation which promotes the common mucosal immune system in pigs.
The majority of lymphocytes activated at mucosal sites receive instructions to home back to the local mucosa, but a portion also seed distal mucosa sites. By seeding distal sites with antigen-specific effector or memory lymphocytes, the foundation is laid for the animal's mucosal immune system to respond with a secondary response should to this antigen be encountered at this site in the future. The common mucosal immune system has been studied quite extensively in rodent models but less so in large animal models such as the pig. Reasons for this paucity of reported induction of the common mucosal immune system in this species may be that distal mucosal sites were examined but no induction was observed and therefore it was not reported. However, we suspect that the majority of investigators simply did not sample distal mucosal sites and therefore there is little evidence of immune response induction in the literature. It is our hope that more pig immunologists and infectious disease experts who perform mucosal immunizations or inoculations on pigs will sample distal mucosal sites and report their findings, whether results are positive or negative. In this review, we highlight papers that show that immunization/inoculation using one route triggers mucosal immune system induction locally, systemically, and within at least one distal mucosal site. Only by understanding whether immunizations at one site triggers immunity throughout the common mucosal immune system can we rationally develop vaccines for the pig, and through these works we can gather evidence about the mucosal immune system that may be extrapolated to other livestock species or humans.
Collapse
Affiliation(s)
- Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), 120 Veterinary Road, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada.
| | - Milan R Obradovic
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), 120 Veterinary Road, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada.
| |
Collapse
|
9
|
Pasternak JA, Ng SH, Wilson HL. A single, low dose oral antigen exposure in newborn piglets primes mucosal immunity if administered with CpG oligodeoxynucleotides and polyphosphazene adjuvants. Vet Immunol Immunopathol 2014; 161:211-21. [PMID: 25194591 DOI: 10.1016/j.vetimm.2014.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/05/2014] [Accepted: 08/12/2014] [Indexed: 10/24/2022]
Abstract
By definition, soluble antigens ingested orally trigger mucosal tolerance such that any subsequent re-exposure by a systemic route results in suppression of immunity. We propose that antigens introduced in extreme early life can readily traverse the gut wall and therefore circumvent induction of mucosal tolerance and instead induce immunity. Piglets were drenched with low-doses of ovalbumin (OVA; 5mg or 0.05 mg) alone, OVA plus adjuvants (CpG oligodeoxynucleotides and PCEP polyphosphazene) or saline within 6h of birth. At 28 days of age, they were administered 10mg OVA plus 1:1 Montanide adjuvant (or saline) via the intraperitoneal (i.p.) route or via the oral route. Serum was obtained on day 28 and day 49 to measure OVA-specific antibodies titres. All piglets boosted orally with OVA plus Montanide, regardless of prior OVA exposure, failed to induce immunity. As expected, piglets drenched with saline but boosted via the i.p. route with OVA plus Montanide showed significant induction of anti-OVA IgA, IgG, IgG1 and IgG2 relative to saline control piglets. Newborn animals drenched with 5mg or 0.05 mg OVA failed to induce oral immunity. A second intramuscular injection in adulthood triggered immunity in the piglets that were drenched with 0.05 mg OVA and boosted initially by the i.p. route suggesting that some systemic lymphocytes were primed despite initial lack of induction of humoral immunity. In contrast, piglets orally immunized with 5mg or 0.05 mg OVA plus adjuvants resulted in significant induction of anti-OVA IgA (5mg only), IgM, IgG, IgG1 and IgG2 in serum relative to saline control piglets as well as significant induction of anti-OVA IgA, IgM (5mg only) IgG, IgG1 (5mg only) or IgG2 relative to piglets drenched with OVA alone. These data clearly show that the response was sensitive to the oral vaccine components and was not simply a response to the i.p. immunization at day 28. This work demonstrates that newborn piglets respond to oral antigens with immunity if re-exposure to the antigen occurs via a systemic route and if adjuvants are included with the oral vaccine administered at birth. These results should be further explored to establish whether early life oral vaccination can be exploited to protect this susceptible population against infectious diseases.
Collapse
Affiliation(s)
- J Alex Pasternak
- Vaccine and Infectious Disease Organization, home of the International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization, home of the International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization, home of the International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| |
Collapse
|
10
|
Batista-Duharte A, Portuondo D, Pérez O, Carlos IZ. Systemic immunotoxicity reactions induced by adjuvanted vaccines. Int Immunopharmacol 2014; 20:170-80. [DOI: 10.1016/j.intimp.2014.02.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/04/2014] [Accepted: 02/21/2014] [Indexed: 02/08/2023]
|
11
|
Levast B, Berri M, Wilson HL, Meurens F, Salmon H. Development of gut immunoglobulin A production in piglet in response to innate and environmental factors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:235-244. [PMID: 24384471 DOI: 10.1016/j.dci.2013.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
The current review focuses on pre- and post-natal development of intestinal immunoglobulin A (IgA) production in pig. IgA production is influenced by intrinsic genetic factors in the foetus as well as extrinsic environmental factors during the post-natal period. At birth, piglets are exposed to new antigens through maternal colostrums/milk as well as exogenous microbiota. This exposure to new antigens is critical for the proper development of the gut mucosal immune system and is characterized mainly by the establishment of IgA response. A second critical period for neonatal intestinal immune system development occurs at weaning time when the gut environment is exposed to new dietary antigens. Neonate needs to establish oral tolerance and in the absence of protective milk need to fight potential new pathogens. To improve knowledge about the immune response in the neonates, it is important to identify intrinsic and extrinsic factors which influence the intestinal immune system development and to elucidate their mechanism of action.
Collapse
Affiliation(s)
- Benoît Levast
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada.
| | - Mustapha Berri
- Institut National de la Recherche Agronomique (INRA), UMR1282 ISP, Nouzilly, France; Université de Tours, UMR1282 ISP, Tours, France
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - François Meurens
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Henri Salmon
- Institut National de la Recherche Agronomique (INRA), UMR1282 ISP, Nouzilly, France; Université de Tours, UMR1282 ISP, Tours, France
| |
Collapse
|