1
|
α-Hederin Saponin Augments the Chemopreventive Effect of Cisplatin against Ehrlich Tumors and Bioinformatic Approach Identifying the Role of SDF1/CXCR4/p-AKT-1/NFκB Signaling. Pharmaceuticals (Basel) 2023; 16:ph16030405. [PMID: 36986504 PMCID: PMC10056433 DOI: 10.3390/ph16030405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/10/2023] Open
Abstract
Stromal cell-derived factor-1 (SDF1) and its C-X-C chemokine receptor type 4 receptor (CXCR4) are significant mediators for cancer cells’ proliferation, and we studied their expression in Ehrlich solid tumors (ESTs) grown in mice. α-Hederin is a pentacyclic triterpenoid saponin found in Hedera or Nigella species with biological activity that involves suppression of growth of breast cancer cell lines. The aim of this study was to explore the chemopreventive activity of α-hederin with/without cisplatin; this was achieved by measuring the reduction in tumor masses and the downregulation in SDF1/CXCR4/pAKT signaling proteins and nuclear factor kappa B (NFκB). Ehrlich carcinoma cells were injected in four groups of Swiss albino female mice (Group1: EST control group, Group2: EST + α-hederin group, Group3: EST + cisplatin group, and Group4: EST+α-hederin/cisplatin treated group). Tumors were dissected and weighed, one EST was processed for histopathological staining with hematoxylin and eosin (HE), and the second MC was frozen and processed for estimation of signaling proteins. Computational analysis for these target proteins interactions showed direct-ordered interactions. The dissected solid tumors revealed decreases in tumor masses (~21%) and diminished viable tumor regions with significant necrotic surrounds, particularly with the combination regimens. Immunohistochemistry showed reductions (~50%) in intratumoral NFκβ in the mouse group that received the combination therapy. The combination treatment lowered the SDF1/CXCR4/p-AKT proteins in ESTs compared to the control. In conclusion, α-hederin augmented the chemotherapeutic potential of cisplatin against ESTs; this effect was at least partly mediated through suppressing the chemokine SDF1/CXCR4/p-AKT/NFκB signaling. Further studies are recommended to verify the chemotherapeutic potential of α-hederin in other breast cancer models.
Collapse
|
2
|
Wu B, Wang J, Wang X, Zhu M, Chen F, Shen Y, Zhong Z. CXCL5 expression in tumor tissues is associated with poor prognosis in patients with pancreatic cancer. Oncol Lett 2020; 20:257. [PMID: 32994820 PMCID: PMC7509746 DOI: 10.3892/ol.2020.12120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/25/2020] [Indexed: 02/02/2023] Open
Abstract
Immunotherapy based on the tumor microenvironment is a feasible method for treating cancer; therefore, it is necessary to investigate the immune microenvironment of pancreatic cancer and the influencing factors of the immune microenvironment. Chemokines are an important factor affecting the tumor immune microenvironment. In the present study, chemokines or chemokine receptors were screened to identify those differentially expressed in pancreatic cancer compared with normal controls and associated with patient prognosis. Chemokines or chemokine receptors that are differentially expressed in pancreatic cancer tumor tissues were initially screened using the Gene Expression Omnibus database. Next, survival analysis was performed using GEPIA, a website based on The Cancer Genome Atlas (TCGA) database. Immunohistochemical staining of CXCL5 was performed in tissue microarrays (TMAs) containing 119 cases of pancreatic cancer. Histochemistry score (H-SCORE) was used to evaluate the expression of CXCL5. Next, association analysis of the H-SCORE of CXCL5 and the clinical characteristics of patients was performed, as well as Kaplan-Meier survival and Cox multivariate regression analyses. The results of the bioinformatics analysis demonstrated that CXCL5 was highly expressed in pancreatic cancer tissues. High expression of CXCL5 in pancreatic cancer tissues was associated with a poor prognosis in patients in TCGA cohort. The expression level of CXCL5 in tumor tissues was significantly higher compared with that in adjacent peritumoral normal tissues in the immunohistochemical analysis. There was no significant association between CXCL5 expression in pancreatic cancer tumor tissues and clinicopathological factors. Patients with pancreatic cancer with high CXCL5 expression had a poor prognosis, as determined by Kaplan-Meier survival analysis based on the TMA dataset. The results of Cox multivariate regression analysis showed that CXCL5 was an independent factor for a poor prognosis in patients with pancreatic cancer. In conclusion, the results of the present study revealed that the chemokine CXCL5 was highly expressed in pancreatic cancer tissues; high CXCL5 expression was associated with a poor prognosis in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Jing Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaoguang Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Mingyuan Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Fei Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhengxiang Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
3
|
Abstract
Bioluminescence (BL) is an excellent optical readout platform that has great potential to be utilized in various bioassays and molecular imaging. The advantages of BL-based bioassays include the long dynamic range, minimal background, high signal-to-noise ratios, biocompatibility for use in cell-based assays, no need of external light source for excitation, simplicity in the measurement system, and versatility in the assay design. The recent intensive research in BL has greatly diversified the available luciferase-luciferin systems in the bioassay toolbox. However, the wide variety does not promise their successful utilization in various bioassays as new tools. This is mainly due to complexity and confusion with the diversity, and the unavailability of defined standards. This review is intended to provide an overview of recent basic developments and applications in BL studies, and showcases the bioanalytical utilities. We hope that this review can be used as an instant reference on BL and provides useful guidance for readers in narrowing down their potential options in their own assay designs.
Collapse
Affiliation(s)
- Sung-Bae Kim
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine
| |
Collapse
|
4
|
Wang R, Du X, Zhi Y. Screening of Critical Genes Involved in Metastasis and Prognosis of High-Grade Serous Ovarian Cancer by Gene Expression Profile Data. J Comput Biol 2020; 27:1104-1114. [PMID: 31725318 DOI: 10.1089/cmb.2019.0235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ruike Wang
- Department of Traditional Chinese Medicine, Jining No. 1 People's Hospital, Jining City, China
- Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining City, China
| | - Xia Du
- Department of Dermatology, Jining No. 1 People's Hospital, Jining City, China
| | - Yaqin Zhi
- Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining City, China
- Department of Oncology, Jining No. 1 People's Hospital, Jining City, China
| |
Collapse
|
5
|
Zeng Y, Li B, Li T, Liu W, Ran C, Penson RT, Poznansky MC, Du Y, Chen H. CD90 low MSCs modulate intratumoral immunity to confer antitumor activity in a mouse model of ovarian cancer. Oncotarget 2019; 10:4479-4491. [PMID: 31320999 PMCID: PMC6633895 DOI: 10.18632/oncotarget.27065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Both anti-tumoral and pro-tumoral effects of mesenchymal stem cells (MSCs) in preclinical treatment of ovarian cancer have been controversially demonstrated. In this study, we profiled the phenotypes of mouse compact bone-derived MSCs (CB-MSCs) and bone marrow-derived MSCs (BM-MSCs) and found that CB-MSCs expressed lower CD90 compared to BM-MSCs. We examined gene expression of immune regulating cytokines of CB-MSCs in 2D and 3D culture and under stimulation with TLR4 agonist LPS or immune activator VIC-008. Our data showed that when CB-MSCs were cultured in simulated in vivo 3D condition, CD90 expression was further decreased. Moreover, gene expressions of immune activating cytokines IL-12, IL-21, IFNγ and a pro-inflammatory cytokine CXCL10 in CB-MSCs were increased in 3D culture whereas gene expression of anti-inflammatory cytokines IL-10 and CCL5 were downregulated. Stimulation of CB-MSCs by LPS or VIC-008 presented similar profile of the cytokine gene expressions to that in 3D culture which might benefit the anti-tumor efficacy of CD90low MSCs. The anti-tumor effects of CD90low CB-MSCs alone or in combination with VIC-008 were evaluated in a syngeneic orthotopic mouse model of ovarian cancer. Treatment that combines CB-MSCs and VIC-008 significantly decreased tumor growth and prolonged mouse survival. This was associated with the increase of activated anti-tumoral CD4+ and CD8+ T cells and the decrease of Treg cells in the tumor microenvironment. Taken together, our study demonstrates the synergistic anti-tumoral efficacy by application of CB-MSCs combined with immune activator VIC-008 and provides new insight into CD90low MSCs as a new anti-tumor arsenal.
Collapse
Affiliation(s)
- Yang Zeng
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston 02215, USA
| | - Binghao Li
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Tao Li
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown 02129, USA
| | - Richard T. Penson
- Medical Gynecologic Oncology, Gillette Center for Women's Cancers, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Huabiao Chen
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| |
Collapse
|
6
|
Lecavalier-Barsoum M, Chaudary N, Han K, Pintilie M, Hill RP, Milosevic M. Targeting CXCL12/CXCR4 and myeloid cells to improve the therapeutic ratio in patient-derived cervical cancer models treated with radio-chemotherapy. Br J Cancer 2019; 121:249-256. [PMID: 31239542 PMCID: PMC6738100 DOI: 10.1038/s41416-019-0497-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The CXCL12/CXCR4 chemokine pathway is involved in cervical cancer pathogenesis and radiation treatment (RT) response. We previously reported that radiochemotherapy (RTCT) and concurrent administration of the CXCR4 inhibitor plerixafor improved primary tumour response. The aims of this study were to determine optimal sequencing of RTCT and plerixafor, the mechanisms responsible for improved response and the effect of plerixafor on late intestinal toxicity. METHODS Orthotopic cervical cancer xenografts were treated with RTCT (30 Gy in 2 Gy fractions and cisplatin) with or without concurrent, adjuvant or continuous plerixafor. The endpoints were growth delay and molecular and immune cell changes at the end of treatment. Late intestinal toxicity was assessed by histologic examination of the rectum 90 days after a single 20 Gy fraction. RESULTS RTCT increased CXCL12/CXCR4 signalling and the intratumoral accumulation of myeloid cells; the addition of plerixafor mitigated these effects. All of the RTCT and plerixafor arms showed prolonged tumour growth delay compared to RTCT alone, with the adjuvant arm showing the greatest improvement. Plerixafor also reduced late intestinal toxicity. CONCLUSION Adding Plerixafor to RTCT blunts treatment-induced increases in CXCL12/CXCR4 signalling, improves primary tumour response and reduces intestinal side effects. This combination warrants testing in future clinical trials.
Collapse
Affiliation(s)
| | - Naz Chaudary
- University Health Network and Princess Margaret Cancer Centre, Toronto, Canada
| | - Kathy Han
- University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Melania Pintilie
- University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Richard P Hill
- University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Michael Milosevic
- University Health Network and Princess Margaret Cancer Centre, Toronto, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Liu Y, Ren CC, Yang L, Xu YM, Chen YN. Role of CXCL12-CXCR4 axis in ovarian cancer metastasis and CXCL12-CXCR4 blockade with AMD3100 suppresses tumor cell migration and invasion in vitro. J Cell Physiol 2018; 234:3897-3909. [PMID: 30191987 DOI: 10.1002/jcp.27163] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
Abstract
Ovarian cancer (OC) is a lethal gynecologic tumor, which brings its mortality to the head. CXCL12 and its receptor chemokine receptor 4 ( CXCR4) have been found to be highly expressed in OC and contribute to the disease progression by affecting tumor cell proliferation and invasion. Here, in this study, we aim to explore whether the blockade of CXCL12-CXCR4 axis with AMD3100 (a selective CXCR4 antagonist) has effects on the progression of OC. On the basis of the gene expression omnibus database of OC gene expression chips, the OC differentially expressed genes were screened by microarray analysis. OC (nonmetastatic and metastatic) and normal ovarian tissues were collected to determine the expressions of CXCL12 and CXCR4. A series of AMD3100, shRNA against CXCR4, and pCNS-CXCR4 were introduced to treat CAOV3 cells with the highest CXCR4 was assessed. Cell viability, apoptosis, migration, and invasion were all evaluated. The microarray analysis screened out the differential expression of CXCL12-CXCR4 in OC. CXCL12 and CXCR4 expressions were increased in OC tissues, particularly in the metastatic OC tissues. Downregulation of CXCR4 by AMD3100 or shRNA was observed to have a critical role in inhibiting cell proliferation, migration, and invasion of the CAOV3 OC cell line while promoting cell apoptosis. Overexpressed CXCR4 brought significantly promoting effects on the proliferation and invasiveness of OC cells. These results reinforce that the blockade of CXCL12-CXCR4 axis with AMD3100 inhibits the growth of OC cells. The antitumor role of the inhibition of CXCL12-CXCR4 axis offers a preclinical validation of CXCL12-CXCR4 axis as a therapeutic target in OC.
Collapse
Affiliation(s)
- Yan Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi-Ming Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan-Nan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Lecavalier-Barsoum M, Chaudary N, Han K, Koritzinsky M, Hill R, Milosevic M. Targeting the CXCL12/CXCR4 pathway and myeloid cells to improve radiation treatment of locally advanced cervical cancer. Int J Cancer 2018; 143:1017-1028. [PMID: 29417588 DOI: 10.1002/ijc.31297] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/10/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022]
Abstract
Cervical cancer is the fourth most commonly diagnosed cancer and the fourth leading cause of cancer death in women worldwide. Approximately half of cervical cancer patients present with locally advanced disease, for which surgery is not an option. These cases are nonetheless potentially curable with radiotherapy and cisplatin chemotherapy. Unfortunately, some tumours are resistant to treatment, and lymph node and distant recurrences are major problems in patients with advanced disease at diagnosis. New targeted treatments that can overcome treatment resistance and reduce metastases are urgently needed. The CXCL12/CXCR4 chemokine pathway is ubiquitously expressed in many normal tissues and cancers, including cervical cancer. Emerging evidence indicates that it plays a central role in cervical cancer pathogenesis, malignant progression, the development of metastases and radiation treatment response. Pre-clinical studies of standard-of-care fractionated radiotherapy and concurrent weekly cisplatin plus the CXCR4 inhibitor Plerixafor (AMD3100) in patient-derived orthotopic cervical cancer xenografts have shown improved primary tumour response and reduced lymph node metastases with no increase in early or late side effects. These studies have pointed the way forward to future clinical trials of radiotherapy/cisplatin plus Plerixafor or other newly emerging CXCL12 or CXCR4 inhibitors in women with cervical cancer.
Collapse
Affiliation(s)
- Magali Lecavalier-Barsoum
- Department of Oncology, Segal Cancer Centre, Jewish General Hospital, McGill University, Montréal, Canada
| | - Naz Chaudary
- Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, Canada
| | - Kathy Han
- Radiation Medicine Program, University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Radiation Medicine Program, University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Richard Hill
- Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, Canada.,Radiation Medicine Program, University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Michael Milosevic
- Radiation Medicine Program, University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev 2018; 45:6048-6077. [PMID: 27711774 DOI: 10.1039/c6cs00296j] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of d-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.
Collapse
Affiliation(s)
- Zinaida M Kaskova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Aleksandra S Tsarkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Ilia V Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| |
Collapse
|
10
|
Verhoef LGGC, Wade M. Visualization of Protein Interactions in Living Cells Using Bimolecular Luminescence Complementation (BiLC). ACTA ACUST UNITED AC 2017; 90:30.5.1-30.5.14. [PMID: 29091275 DOI: 10.1002/cpps.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The number of intracellular protein-protein interactions (PPIs) far exceeds the total number of proteins encoded by the genome. Dynamic cellular PPI networks respond to external stimuli and endogenous metabolism in order to maintain homeostasis. Many PPIs are directly involved in disease pathogenesis and/or resistance to therapeutics; they therefore represent potential drug targets. A technology generally termed 'bimolecular complementation' relies on the physical splitting of a molecular reporter (such as a fluorescent or luminescent protein) and fusion of the resulting two fragments to a pair of interacting proteins. When these proteins interact, they effectively reconstitute the activity of the molecular reporter (typically leading to increased fluorescence or luminescence). This unit describes the selection and development of bimolecular luminescence complementation (BiLC) assays for reporting intracellular PPIs, and provides examples in which BiLC was used to identify small molecules that can modulate PPIs. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Lisette G G C Verhoef
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| |
Collapse
|
11
|
Khalid S, Hanif R. Association of rs1801157 single nucleotide polymorphism of CXCL12 gene in breast cancer in Pakistan and in-silico expression analysis of CXCL12-CXCR4 associated biological regulatory network. PeerJ 2017; 5:e3822. [PMID: 28929029 PMCID: PMC5602684 DOI: 10.7717/peerj.3822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background C-X-C chemokine ligand 12 (CXCL12) has important implications in breast cancer (BC) pathogenesis. It is selectively expressed on B and T lymphocytes and is involved in hematopoiesis, thymocyte trafficking, stem cell motility, neovascularization, and tumorigenesis. The single nucleotide polymorphism (SNP) rs1801157 of CXCL12 gene has been found to be associated with higher risk of BC. Methods Our study focuses on the genotypic and allelic distribution of SNP (rs1801157; G/A) in Pakistani population as well as its association with the clinico-pathological features. The association between rs1801157 genotypes (G/A) and BC risks was assessed by a multivariate logistic regression (MLR) analysis. Genotyping was performed in both healthy individuals and patients of BC using PCR-restriction fragment length polymorphism (PCR-RFLP) method. Furthermore, in-silico approaches were adapted to investigate the association of CXCL12 and its receptor CXCR4 with genes/proteins involved in BC signalling. Results Significant differences in allelic and genotypic distribution between BC patients and healthy individuals of genotype (G/G) and (A/G) (p < 0.05) were observed. The frequency of the allele G in the BC group (77%) was significantly higher as compared to control group (61%) (p = 0.01). The association of genotype GG with clinico-pathological features including age, stages of cancer and organ (lung, liver, bones and brain) metastasis (p > 0.05) was assessed. In a MLR analysis, a number of variables including age, weight of an individual, affected lymph nodes, hormonal status (estrogen and progesterone receptor), alcohol consumption and family history associated with the GG genotype (GG:AA, odds ratio (OR) = 1.30, 95% CI [1.06–1.60]) were found to be independent risk factors for BC. Our in-vitro results suggest that genotype GG is possibly increasing the risk of BC in Pakistani cohorts. in-silico analysis finds that CXCL12–CXCR4 is associated with an increased expression of PDZK1, PI3k and Akt which lead the breast tumor towards metastasis. Conclusion Multiple targets such as CXCL12, CXCR4, PDZK1, PI3k and Akt can be inhibited in combined strategies to treat BC metastasis.
Collapse
Affiliation(s)
- Samra Khalid
- Atta-ur-Rahman School of Applied Biosciences (ASAB)/Assistant Professor/Healthcare Biotechnology, National University of Science and Technology, Islamabad, Pakistan
| | - Rumeza Hanif
- Atta-ur-Rahman School of Applied Biosciences (ASAB)/Assistant Professor/Healthcare Biotechnology, National University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
12
|
Targeting the CXCR4/CXCL12 axis in treating epithelial ovarian cancer. Gene Ther 2017; 24:621-629. [PMID: 28753202 DOI: 10.1038/gt.2017.69] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/06/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Ovarian carcinoma is the most crucial and difficult target for available therapeutic treatments among gynecological malignancies, and great efforts are required to find an effective solution. Molecular studies showed that the chemokine stromal cell-derived factor-1 (also known as CXCL12) and its receptor, CXCR4, are key determinants of tumor initiation, progression and metastasis in ovarian carcinomas. Hence, it is generally believed that blocking the CXCR4/CXCL12 pathway could serve as a potential therapy for patients with ovarian cancer. Herein, we investigated the role of the CXCR4/CXCL12 axis in regulating ovarian cancer progression. Using flow cytometry, a real-time PCR and western blot analyses, we showed that the chemokine receptor CXCR4 protein and mRNA were overexpressed in human epithelial ovarian cancer cell lines, and these were closely correlated with poor outcomes. Moreover, silencing CXCR4 by small hairpin RNA in HTB75 cells reduced cell proliferation, migration and invasion and significantly reduced RhoA and Rac-1/Cdc42 expressions, whereas overexpression of CXCR4 in SKOV3 cells significantly increased cell migration and markedly increased RhoA, Rac-1/Cdc42 levels. Silencing CXCR4 also led to decreased in vitro cytotoxicity of AMD3100, a specific antagonist of CXCR4, which exerts its effect upon CXCR4 expression. Remarkably, knockdown of CXCR4 in HTB75 cells led to a significantly decreased capability to form tumors in vivo, and the Ki67 proliferation index of xenograft tumors showed a dramatic reduction. Our results revealed that the CXCR4/CXCL12 pathway represents a promising therapeutic target for epithelial ovarian carcinoma.
Collapse
|
13
|
Chemotherapy induces adaptive drug resistance and metastatic potentials via phenotypic CXCR4-expressing cell state transition in ovarian cancer. PLoS One 2017; 12:e0171044. [PMID: 28196146 PMCID: PMC5308810 DOI: 10.1371/journal.pone.0171044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/13/2017] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer (OVC) patients who receive chemotherapy often acquire drug resistance within one year. This can lead to tumor reoccurrence and metastasis, the major causes of mortality. We report a transient increase of a small distinctive CXCR4High/CD24Low cancer stem cell population (CXCR4High) in A2780 and SKOV-3 OVC cell lines in response to cisplatin, doxorubicin, and paclitaxel, treatments. The withdrawal of the drug challenges reversed this cell-state transition. CXCR4High exhibits dormancy in drug resistance and mesenchymal-like invasion, migration, colonization, and tumor formation properties. The removal of this cell population from a doxorubicin-resistant A2780 lineage (A2780/ADR) recovered the sensitivity to drug treatments. A cytotoxic peptide (CXCR4-KLA) that can selectively target cell-surface CXCR4 receptor was further synthesized to investigate the therapeutic merits of targeting CXCR4High. This peptide was more potent than the conventional CXCR4 antagonists (AMD3100 and CTCE-9908) in eradicating the cancer stem cells. When used together with cytotoxic agents such as doxorubicin and cisplatin, the combined drug-peptide regimens exhibited a synergistic cell-killing effect on A2780, A2780/ADR, and SKOV-3. Our data suggested that chemotherapy could establish drug-resistant and tumor-initiating properties of OVC via reversible CXCR4 cell state transition. Therapeutic strategies designed to eradicate rather than antagonize CXCR4High might offer a far-reaching potential as supportive chemotherapy.
Collapse
|
14
|
Song Z, Zhang X, Ye X, Feng C, Yang G, Lu Y, Lin Y, Dong C. High Expression of Stromal Cell-Derived Factor 1 (SDF-1) and NF-κB Predicts Poor Prognosis in Cervical Cancer. Med Sci Monit 2017; 23:151-157. [PMID: 28074045 PMCID: PMC5244828 DOI: 10.12659/msm.899319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background SDF-1 and NF-κB are associated with the prognosis of a wide range of cancers, but their value in cervical cancer remains controversial. The aim of this study was to investigate the expression of SDF-1and NF-κB in cervical cancer and their significance in clinical prognosis. Material/Methods The expression of SDF-1and NF-κB in 105 formalin-fixed, paraffin-embedded cervical cancer tissues and the adjacent tissues was examined by immunohistochemistry (IHC). The results were semi-quantitatively scored and analyzed by chi-square test. The overall survival times (OS) were collected by follow-up and analyzed by Kaplan-Meier analysis. Results The expression level of both SDF-1and NF-κB in cervical cancer are higher than that in the adjacent tissues (P<0.05). SDF-1 expression are correlated with tumor size and FIGO histology grade (P<0.05). NF-κB expression are correlated with tumor size and FIGO histology grade, and lymph node metastasis (LNM) status (P<0.05). The patients with a positive expression of SDF-1or NF-κB tended to have much shorter survival time than patients with negative expression. In addition, multivariate Cox regression analysis demonstrated that SDF-1 expression and lymph node metastasis are independent predictors of the OS in cervical cancer patients. Conclusions The expression of SDF-1 is significantly associated with tumor size and FIGO histology grade. The expression of NF-κB is significantly associated with tumor size, FIGO histology grade, and lymph node metastasis. The positive SDF-1or NF-κB expression is significantly correlated with poor prognosis. These may be valuable biomarkers for the prognosis and the potential therapeutic targets of cervical cancer.
Collapse
Affiliation(s)
- Zhiwang Song
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Xia Zhang
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Xiaojuan Ye
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Chan Feng
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Guang Yang
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Yonglin Lu
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Yun Lin
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| | - Chunyan Dong
- Breast Cancer Center, Shanghai East Hospital, Tongji University, Shanghai, China (mainland)
| |
Collapse
|
15
|
Guo Q, Gao BL, Zhang XJ, Liu GC, Xu F, Fan QY, Zhang SJ, Yang B, Wu XH. CXCL12-CXCR4 Axis Promotes Proliferation, Migration, Invasion, and Metastasis of Ovarian Cancer. Oncol Res 2016; 22:247-58. [PMID: 26629936 PMCID: PMC7842602 DOI: 10.3727/096504015x14343704124430] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The CXCL12-CXCR4 chemokine axis may play a very important role in ovarian cancer cells proliferation, migration, invasion, and peritoneal metastasis in vitro and in vivo. In this study, transfected SKOV3-CXCR4, transfected vector SKOV3-negative, nontransfected SKOV3 ovarian cancer cells, and human peritoneal mesothelial cells (HPMCs) were cultivated in vitro, and the proliferation, migration, and invasion of these ovarian cancer cells were investigated with or without the influence of the CXCL12-CXCR4 axis. Nude mice models of ovarian cancer were created by injection of ovarian cancer cells into the peritoneal cavity for investigation of ovarian cancer cells metastasis. Our results demonstrated that in the SKOV3-CXCR4 group, the cell number of proliferation, migration, or penetration through the Matrigel membrane treated with CXCL12 was significantly (p < 0.05) greater than those treated with CXCR4 antibody or CXCR4 antagonist AMD 3100 in a concentration-dependent manner. In the SKOV3-negative and the nontransfected SKOV3 groups, no significant (p > 0.05) differences existed in the cell number of proliferation, migration, or penetration. Coculture of HPMCs and SKOV3-CXCR4 had significantly (p < 0.05) higher migration and invasion rates than the SKOV3-CXCR4-only group. In nude mice seeded with ovarian cancer cells, the tumor weight in the nude mice injected with SKOV3-CXCR4 cells was significantly (p < 0.05) greater than in the group injected with the SKOV3-negative or nontransfected SKOV3 cells. Taken together, our results show that the CXCL12-CXCR4 chemokine axis can significantly promote the proliferation, migration, invasion, and peritoneal metastasis of ovarian cancer cells, and interference with this axis may serve as a new therapeutic target in treating ovarian cancers.
Collapse
Affiliation(s)
- Qing Guo
- Department of Obstetrics and Gynecology, Shijiazhuang First Hospital, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The role of polymorphisms of stromal-derived factor-1 and CXC receptor 4 in acute myeloid leukemia and leukemia cell dissemination. Gene 2016; 588:103-8. [PMID: 27154815 DOI: 10.1016/j.gene.2016.04.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/10/2016] [Accepted: 04/29/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a form of cancer characterized by infiltration of the bone marrow, blood, and other tissues by proliferative, clonal, abnormally differentiated cells of the hematopoietic system. Chemokine stromal cell-derived factor 1 (SDF-1) and its receptor CXC receptor 4 (CXCR4) play crucial roles in malignant cell invasion. Genetic polymorphisms may contribute to the differences in the expression level and activities associated with the SDF-1/CXCR4 pathway. This study aimed to determine the associations between the polymorphisms located on the SDF-1 (rs1801157, G>A) and CXCR4 (rs2228014, C>T) encoding genes and susceptibility and leukemia cell dissemination in AML. METHODS A total of 926 individuals, including 466 de novo AML patients and 460 healthy controls were genotyped for rs1801157 and rs2228014 using DNA Sanger sequencing. RESULTS Genotype distributions of CT and CT+TT for rs2228014 were significantly increased in AML patients compared with healthy controls [OR: 1.36, p=0.04; OR: 1.34, p=0.04; respectively]. However, rs1801157 demonstrated no significant differences in genotype distributions and allele frequency between AML patients and healthy controls. For the two combined SNPs, there was no significant proportional difference between the wild type GG-CC genotypes and non-GG-CC genotypes in AML patients and healthy controls. Additionally, peripheral blood leukemia-cell (PBLC) count was not statistically influenced by the genotypes of either rs1801157 or rs2228014. CONCLUSION Genotype CT of rs2228014 appeared to correlate with AML risk, but played no role in leukemia cells invading the bloodstream, while rs1801157 and the two combined SNPs were not associated with either increased AML risk or extramedullary leukemia-cell dissemination.
Collapse
|
17
|
CXCL12-CXCR4/CXCR7 axis contributes to cell motilities of oral squamous cell carcinoma. Tumour Biol 2015; 37:567-75. [DOI: 10.1007/s13277-015-3803-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/20/2015] [Indexed: 12/16/2022] Open
|
18
|
Stacer AC, Fenner J, Cavnar SP, Xiao A, Zhao S, Chang SL, Salomonnson A, Luker KE, Luker GD. Endothelial CXCR7 regulates breast cancer metastasis. Oncogene 2015; 35:1716-24. [PMID: 26119946 PMCID: PMC4486335 DOI: 10.1038/onc.2015.236] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 02/08/2023]
Abstract
Atypical chemokine receptor CXCR7 (ACKR3) functions as a scavenger receptor for chemokine CXCL12, a molecule that promotes multiple steps in tumor growth and metastasis in breast cancer and multiple other malignancies. While normal vascular endothelium expresses low levels of CXCR7, marked upregulation of CXCR7 occurs in tumor vasculature in breast cancer and other tumors. To investigate effects of endothelial CXCR7 in breast cancer, we conditionally deleted this receptor from vascular endothelium of adult mice, generating CXCR7ΔEND/ΔEND animals. CXCR7ΔEND/ΔEND mice appeared phenotypically normal, although these animals exhibited a modest 35 ± 3% increase in plasma CXCL12 as compared with control. Using two different syngeneic, orthotopic tumor implant models of breast cancer, we discovered that CXCR7ΔEND/ΔEND mice had significantly greater local recurrence of cancer following resection, elevated numbers of circulating tumor cells, and more spontaneous metastases. CXCR7ΔEND/ΔEND mice also showed greater experimental metastases following intracardiac injection of cancer cells. These results establish that endothelial CXCR7 limits breast cancer metastasis at multiple steps in the metastatic cascade, advancing understanding of CXCL12 pathways in tumor environments and informing ongoing drug development targeting CXCR7 in cancer.
Collapse
Affiliation(s)
- A C Stacer
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI, USA
| | - J Fenner
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI, USA
| | - S P Cavnar
- Department of Biomedical Engineering, University of Michigan Medical School and College of Engineering, Ann Arbor, MI, USA
| | - A Xiao
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI, USA
| | - S Zhao
- Department of Radiation Oncology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI, USA
| | - S L Chang
- Depatment of Chemical Engineering, University of Michigan Medical School and College of Engineering, Ann Arbor, MI, USA
| | - A Salomonnson
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI, USA
| | - K E Luker
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI, USA
| | - G D Luker
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan Medical School and College of Engineering, Ann Arbor, MI, USA.,Department of Microbiology and Immunology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2015; 35:816-26. [DOI: 10.1038/onc.2015.139] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 02/07/2023]
|
20
|
Jamieson LE, Harrison DJ, Campbell CJ. Chemical analysis of multicellular tumour spheroids. Analyst 2015; 140:3910-20. [PMID: 25923379 DOI: 10.1039/c5an00524h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Conventional two dimensional (2D) monolayer cell culture has been considered the 'gold standard' technique for in vitro cellular experiments. However, the need for a model that better mimics the three dimensional (3D) architecture of tissue in vivo has led to the development of Multicellular Tumour Spheroids (MTS) as a 3D tissue culture model. To some extent MTS mimic the environment of in vivo tumours where, for example, oxygen and nutrient gradients develop, protein expression changes and cells form a spherical structure with regions of proliferation, senescence and necrosis. This review focuses on the development of techniques for chemical analysis of MTS as a tool for understanding in vivo tumours and a platform for more effective drug and therapy discovery. While traditional monolayer techniques can be translated to 3D models, these often fail to provide the desired spatial resolution and z-penetration for live cell imaging. More recently developed techniques for overcoming these problems will be discussed with particular reference to advances in instrument technology for achieving the increased spatial resolution and imaging depth required.
Collapse
Affiliation(s)
- L E Jamieson
- EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ, UK.
| | | | | |
Collapse
|
21
|
Doroshow JH, Kummar S. Translational research in oncology--10 years of progress and future prospects. Nat Rev Clin Oncol 2014; 11:649-62. [PMID: 25286976 DOI: 10.1038/nrclinonc.2014.158] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
International efforts to sequence the genomes of various human cancers have been broadly deployed in drug discovery programmes. Diagnostic tests that predict the value of the molecularly targeted anticancer agents used in such programmes are conceived and validated in parallel with new small-molecule treatments and immunotherapies. This approach has been aided by better preclinical cancer models; an enhanced appreciation of the complex interactions that exist between tumour cells and their microenvironment; the elucidation of interactions between many of the genetic drivers of cancer, including oncogenes and tumour suppressors; and recent insights into the genetic heterogeneity of human tumours made possible by extraordinary improvements in DNA-sequencing techniques. These advances are being employed in the first generation of genomic clinical trials that will examine the feasibility of matching a broad range of systemic therapies to specific molecular tumour characteristics. More-extensive molecular characterization of tumours and their supporting matrices are anticipated to become standard aspects of oncological practice, permitting continuous molecular re-evaluations of human malignancies on a patient-by-patient and treatment-by-treatment basis. We review selected developments in translational cancer biology, diagnostics, and therapeutics that have occurred over the past decade and offer our thoughts on future prospects for the next few years.
Collapse
Affiliation(s)
- James H Doroshow
- 1] Division of Cancer Treatment and Diagnosis, Room 3A-44, Building 31, 31 Center Drive, National Cancer Institute, NIH, Bethesda, MD 20892, USA. [2] Developmental Therapeutics Branch of the Center for Cancer Research, Room 3A-44, Building 31, 31 Center Drive, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, Room 3A-44, Building 31, 31 Center Drive, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Lake MC, Aboagye EO. Luciferase fragment complementation imaging in preclinical cancer studies. Oncoscience 2014; 1:310-25. [PMID: 25594026 PMCID: PMC4278313 DOI: 10.18632/oncoscience.45] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/31/2014] [Indexed: 12/20/2022] Open
Abstract
The luciferase fragment complementation assay (LFCA) enables molecular events to be non-invasively imaged in live cells in vitro and in vivo in a comparatively cheap and safe manner. It is a development of previous enzyme complementation assays in which reporter genes are split into two, individually enzymatically inactive, fragments that are able to complement one another upon interaction. This complementation can be used to externally visualize cellular activities. In recent years, the number of studies which have used LFCAs to probe questions relevant to cancer have increased, and this review summarizes the most significant and interesting of these. In particular, it focuses on work conducted on the epidermal growth factor, nuclear and chemokine receptor families, and intracellular signaling pathways, including IP3, cAMP, Akt, cMyc, NRF2 and Rho GTPases. LFCAs which have been developed to image DNA methylation and detect RNA transcripts are also discussed.
Collapse
Affiliation(s)
- Madryn C. Lake
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London
| |
Collapse
|
23
|
Yu Y, Li H, Xue B, Jiang X, Huang K, Ge J, Zhang H, Chen B. SDF-1/CXCR7 axis enhances ovarian cancer cell invasion by MMP-9 expression through p38 MAPK pathway. DNA Cell Biol 2014; 33:543-9. [PMID: 24819308 DOI: 10.1089/dna.2013.2289] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ovarian cancer is an aggressive gynecological malignancy with high metastatic potential. Recently, the CXC receptor (CXCR7) has been identified as a new receptor for stromal-derived factor-1 (SDF-1), and exerts important roles in cancer development. However, its effect on ovarian cancer and the underlying mechanism remain unknown. In this study, we detected abundant CXCR7 expression in ovarian cancer tissues and cells. Moreover, SDF-1 induced dramatically upregulation of CXCR7 mRNA and protein levels, indicating that the SDF-1/CXCR7 axis existed in ovarian cancer. Further analysis confirmed that SDF-1 enhanced cell adhesion and subsequent invasion, which were significantly attenuated when pretreated with CXCR7 small interference RNA (siRNA), indicating the critical function of SDF-1/CXCR7 in cell invasion. Further mechanistic analysis indicated that SDF-1/CXCR7 enhanced cell invasion by matrix metalloproteinase (MMP)-9, as pretreatment with MMP-9 siRNA significantly abrogated a number of invading cells. Additionally, SDF-1/CXCR7 induced phosphorylation of the p38 MAPK pathway, which was accounted for MMP-9 expression as preconditioning with the p38 MAPK inhibitor SB203580 obviously decreased MMP-9 expression. Together, our data implied that SDF-1/CXCR7 enhanced ovarian cancer cell invasion by MMP-9 expression through the p38 MAPK pathway. Thus, these findings confirmed the critical role of SDF-1/CXCR7 during the pathological processes of ovarian cancer and supported its potential targets for further development of antiovarian cancer therapy.
Collapse
Affiliation(s)
- Yuecheng Yu
- 1 Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sun Y, Mao X, Fan C, Liu C, Guo A, Guan S, Jin Q, Li B, Yao F, Jin F. CXCL12-CXCR4 axis promotes the natural selection of breast cancer cell metastasis. Tumour Biol 2014; 35:7765-73. [PMID: 24810923 PMCID: PMC4158177 DOI: 10.1007/s13277-014-1816-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/04/2014] [Indexed: 12/14/2022] Open
Abstract
CXCR4 and its ligand CXCL12 can promote the proliferation, survival, and invasion of cancer cells. They have been shown to play an important role in regulating metastasis of breast cancer to specific organs. High CXCR4 expression was also correlated to poor clinical outcome. Previous study also showed that tumor cells express a high level of CXCR4 and that tumor metastasis target tissues (lung, liver, and bone) express high levels of the ligand CXCL12, allowing tumor cells to directionally migrate to target organs via a CXCL12-CXCR4 chemotactic gradient. However, the exact mechanisms of how CXCR4 and CXCL12 enhance metastasis and/or tumor growth and their full implications on breast cancer progression are unknown. Yet it is likely that chemokine receptor signaling may provide more than just a migrational advantage by also helping the metastasized cells establish and survive in secondary environments. In this study, we investigated CXCR4 and CXCL12 expression in breast cancer and analyzed its association with clinicopathological factors by immunohistochemistry first. Then, we detected the mRNA and protein expression of CXCR4 and CXCL12 in breast cancer cell lines by Western blot and RT-PCR. The MDA-MB-231 has CXCR4 expression and very weak CXCL12 expression. So, we constructed the functional CXCL12 expression in MDA-MB-231 using a gene transfection technique. Further experiments were conducted to evaluate the effect of CXCL12 transfection on the biological behaviors of MDA-MB-231. The cell proliferation of MDA-MB-231–CXCL12 was accessed by MTT assay; the apoptosis was analyzed by an AnnexinV-FITC/propidium iodide double staining of flow cytometry method; and the cell invasive ability was examined by Matrigel invasion assay. Immunohistochemical analysis showed the co-expression of CXCR4 and CXCL12 correlated with lymph node metastasis and TNM stage (p < 0.01). It suggested that the chemokine CXCL12 and its sole ligand CXCR4 play important role in the malignance of breast cancer. To gain a deeper insight into it, we picked CXCR4-expressing cells MDA-MB-231 to be transfected with CXCL12 stably. The decreased cellular proliferation, increased apoptosis, and invasive ability were found in MDA-MB-231 with successful CXCL12 transfection (p < 0.05). Our findings underlined the CXCL12-CXCR4 axis correlated tightly with breast cancer metastasis. CXCL12-CXCR4 axis can increase the invasion and apoptosis of MDA-MB-231 simultaneously. These data strongly support the hypothesis that CXCL12-CXCR4 axis promotes the natural selection of breast cancer cell metastasis. Our findings could have significant implications in terms of breast cancer aggressiveness and the effectiveness of targeting the receptors and downstream signaling pathways for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning, 110001, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
House CD, Hernandez L, Annunziata CM. Recent technological advances in using mouse models to study ovarian cancer. Front Oncol 2014; 4:26. [PMID: 24592355 PMCID: PMC3923136 DOI: 10.3389/fonc.2014.00026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/28/2014] [Indexed: 12/14/2022] Open
Abstract
Serous epithelial ovarian cancer (SEOC) is the most lethal gynecological cancer in the United States with disease recurrence being the major cause of morbidity and mortality. Despite recent advances in our understanding of the molecular mechanisms responsible for the development of SEOC, the survival rate for women with this disease has remained relatively unchanged in the last two decades. Preclinical mouse models of ovarian cancer, including xenograft, syngeneic, and genetically engineered mice, have been developed to provide a mechanism for studying the development and progression of SEOC. Such models strive to increase our understanding of the etiology and dissemination of ovarian cancer in order to overcome barriers to early detection and resistance to standard chemotherapy. Although there is not a single model that is most suitable for studying ovarian cancer, improvements have led to current models that more closely mimic human disease in their genotype and phenotype. Other advances in the field, such as live animal imaging techniques, allow effective monitoring of the microenvironment and therapeutic efficacy. New and improved preclinical mouse models, combined with technological advances to study such models, will undoubtedly render success of future human clinical trials for patients with SEOC.
Collapse
Affiliation(s)
| | - Lidia Hernandez
- Women's Malignancies Branch, National Cancer Institute , Bethesda, MD , USA
| | | |
Collapse
|
26
|
Yu ZH, Liu T, Zhao YH, Huang YY, Gao YT. Cisplatin targets the stromal cell-derived factor-1-CXC chemokine receptor type 4 axis to suppress metastasis and invasion of ovarian cancer-initiating cells. Tumour Biol 2014; 35:4637-44. [PMID: 24408020 DOI: 10.1007/s13277-014-1607-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022] Open
Abstract
In ovarian cancer, CD44+/CD117+ stem cells, also known as cancer-initiating cells (CICs), are highly proliferative and invasive. Therefore, the CD44+/CD117+ subpopulation is thought to be an important target for novel therapeutic strategies. In this study, we investigated the effects of cisplatin (CDDP) on metastasis and invasion suppression of ovarian CICs by targeting the CXC chemokine receptor-4 (CXCR4) signaling pathway in vitro and in vivo. CD44+/CD117+ ovarian CICs were enriched from human primary ovarian tumor tissues and confirmed by flow cytometry sorting. A 3-(4,5-dimethylthiazol-2-yl)-2.5-dipheny-tetrazolium bromide (MTT) assay revealed significant inhibition of proliferation of ovarian CICs with increasing CDDP drug concentrations. Moreover, colony formation and transwell migration assays indicated that CDDP significantly suppressed the invasive capacity of ovarian CICs in vitro. The expression levels of stromal cell-derived factor (SDF)-1, CXCR4, matrix metalloproteinase (MMP) 2, and MMP9 mRNA and protein levels were significantly reduced in CDDP-treated cells compared to untreated ovarian CICs. Furthermore, xenograft experiments confirmed that CDDP suppressed the growth of xenograft tumors formed by ovarian CICs in vivo. In addition, CXCR4 agonist (diprotin A) treatment of ovarian CICs weakened the effects of CDDP and enhanced SDF-1-CXCR4 axis expression in ovarian CICs. Thus, the SDF-1-CXCR4 axis is an important mediator of proliferation and invasion in CXCR4-overexpressing ovarian cancer-initiating cells (OCICs). Furthermore, CDDP inhibits invasion and metastasis of OCICs by targeting SDF-1-CXCR4 axis expression.
Collapse
Affiliation(s)
- Zhi-hua Yu
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, China
| | | | | | | | | |
Collapse
|
27
|
Walentowicz-Sadlecka M, Sadlecki P, Bodnar M, Marszalek A, Walentowicz P, Sokup A, Wilińska-Jankowska A, Grabiec M. Stromal derived factor-1 (SDF-1) and its receptors CXCR4 and CXCR7 in endometrial cancer patients. PLoS One 2014; 9:e84629. [PMID: 24416254 PMCID: PMC3887002 DOI: 10.1371/journal.pone.0084629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/25/2013] [Indexed: 11/19/2022] Open
Abstract
PURPOSE One of the most important function of stromal derived factor-1 (SDF-1) and its receptors, is regulating the process of metastasis formation. The aim of our study was to investigate the correlation between SDF-1, CXCR4 and CXCR7 protein levels measured by immunohistochemistry with the clinicopathological features and the survival of endometrial cancer patients. MATERIALS AND METHODS 92 patients aged 37-84 (mean 65.1±9.5) were enrolled to our study between January 2000 and December 2007. After the diagnosis of endometrial cancer, all women underwent total abdominal hysterectomy, with bilateral salpingoophorectomy and pelvic lymph node dissection. In all patients clinical stage (according to FIGO classification), histologic grade, myometrial invasion, lymph node and distant metastases were determined.Furthermore, the survival time was assessed. Immunohistochemical analyses of SDF-1, CXCR4 and CXCR7 were performed on archive formalin fixed paraffin embedded tissue sections. RESULTS Statistically significant correlations (p<0.01) were reported between SDF-1 and the clinical stage of disease, lymph node metastases, distant metastases, deep myometrial invasion (≥50%), cervical involvement, involvement of adnexa. Statistically significant correlation (p<0.01) was found between SDF-1 expression and the risk of the recurrence. Higher SDF-1 expression was associated with a higher risk of recurrence (p = 0.0001). The results of CXCR4 and CXCR7 expression didn't reveal any significant differences(p>0.05) between the proteins expression in the primary tumor cells and the clinicopathological features. Moreover, the Kaplan-Meier analyses demonstrated a stepwise impairment of cancer overall survival (OS) with increasing SDF-1 expression. CONCLUSION The important role of SDF-1 as a predictor of negative clinicopathological characteristics of a tumor suggests that the expression of this stromal factor should be included in the panel of accessory pathomorphological tests and could be helpful in establishing a more accurate prognosis in endometrial cancer patients.
Collapse
Affiliation(s)
- Malgorzata Walentowicz-Sadlecka
- Department of Obstetrics and Gynecology, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, the Nicolaus Copernicus University of Torun, Bydgoszcz, Poland
| | - Pawel Sadlecki
- Department of Obstetrics and Gynecology, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, the Nicolaus Copernicus University of Torun, Bydgoszcz, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathology, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, the Nicolaus Copernicus University of Torun, Bydgoszcz, Poland
| | - Andrzej Marszalek
- Department of Clinical Pathology, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, the Nicolaus Copernicus University of Torun, Bydgoszcz, Poland
| | - Pawel Walentowicz
- Department of Obstetrics and Gynecology, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, the Nicolaus Copernicus University of Torun, Bydgoszcz, Poland
| | - Alina Sokup
- Department of Gastroenterology, Angiology and Internal Diseases, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, the Nicolaus Copernicus University of Torun, Bydgoszcz, Poland
| | | | - Marek Grabiec
- Department of Obstetrics and Gynecology, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, the Nicolaus Copernicus University of Torun, Bydgoszcz, Poland
| |
Collapse
|
28
|
Huang AF, Chen MW, Huang SM, Kao CL, Lai HC, Chan JYH. CD164 regulates the tumorigenesis of ovarian surface epithelial cells through the SDF-1α/CXCR4 axis. Mol Cancer 2013; 12:115. [PMID: 24094005 PMCID: PMC4015273 DOI: 10.1186/1476-4598-12-115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/02/2013] [Indexed: 02/08/2023] Open
Abstract
Background CD164 (endolyn), a sialomucin, has been reported to play a role in the proliferation, adhesion, and differentiation of hematopoietic stem cells. The potential association of CD164 with tumorigenicity remains unclear. Methods The clinicopathological correlation of ovarian cancer with CD164 was assessed in a 97-patient tumor tissue microarray. Overexpression or silence CD164 was to analyze the effect of CD164 on the proliferation, colony formation and apoptosis via a mouse xenograft and western blotting analysis. The subcellular localization of CD164 was collected in the immunohistochemical and confocal analysis. Results Our data demonstrated that higher expression levels of CD164 were identified in malignant ovarian cancer cell lines, such as SKOV3 and HeyA8. The clinicopathological correlation analysis showed that the upregulation of CD164 protein was significantly associated with tumor grade and metastasis. The overexpression of CD164 in human ovarian epithelial surface cells promoted cellular proliferation and colony formation and suppressed apoptosis. These tumorigenicity effects of CD164 were reconfirmed in a mouse xenograft model. We also found that the overexpression of CD164 proteins increased the amounts of CXCR4 and SDF-1α and activated the SDF-1α/CXCR4 axis, inducing colony and sphere formation. Finally, we identified the subcellular localization of CD164 in the nucleus and cytosol and found that nuclear CD164 might be involved in the regulation of the activity of the CXCR4 promoter. Conclusions Our findings suggest that the increased expression of CD164 is involved in ovarian cancer progression via the SDF-1α/CXCR4 axis, which promotes tumorigenicity. Thus, targeting CD164 may serve as a potential ovarian cancer biomarker, and targeting CD164 may serve as a therapeutic modality in the management of high-grade ovarian tumors.
Collapse
Affiliation(s)
- Ai-Fang Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
29
|
Ehrlich A, Ray P, Luker KE, Lolis EJ, Luker GD. Allosteric peptide regulators of chemokine receptors CXCR4 and CXCR7. Biochem Pharmacol 2013; 86:1263-71. [PMID: 23973527 DOI: 10.1016/j.bcp.2013.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 12/19/2022]
Abstract
The chemokine CXCL12 and its shared seven-transmembrane receptors CXCR4 and CXCR7 regulate diseases including cancer, atherosclerosis, autoimmunity, and HIV infection, making these molecules promising drug targets. These molecules also control key processes in normal development and physiology, suggesting the need to selectively modulate CXCR4 and/or CXCR7 functions and signaling to reduce potential complications of long-term therapy. We previously identified two peptides that functioned as allosteric agonists driving CXCR4-dependent chemotaxis, providing key structural information to design a small number of additional peptides to investigate determinants of CXCL12 interactions and signaling through CXCR4 and CXCR7. In the current study, we show that the previously identified peptides only minimally activated CXCR4 signaling through the cytosolic adapter protein β-arrestin 2 and do not initiate signaling to ERK1/2. By comparison, peptides with diverse N-terminal amino acid sequences effectively activated CXCR7 signaling to β-arrestin 2. One peptide, designated as GSLW based on its N-terminal amino acids, activated CXCR7 signaling and potentiated CXCL12-CXCR7 signaling without blocking the scavenger function of CXCR7 to internalize CXCL12. These results advance our understanding of CXCR7 ligand recognition and signaling, and provide structural information to target allosteric binding sites on this receptor as chemical probes and potential therapeutic agents.
Collapse
Affiliation(s)
- Anna Ehrlich
- Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
30
|
Cai C, Wang LH, Dong Q, Wu ZJ, Li MY, Sun YH. Association of CXCL12 and CXCR4 gene polymorphisms with the susceptibility and prognosis of renal cell carcinoma. ACTA ACUST UNITED AC 2013; 82:165-70. [PMID: 24032722 DOI: 10.1111/tan.12170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/27/2013] [Accepted: 06/26/2013] [Indexed: 12/27/2022]
Affiliation(s)
- C. Cai
- Department of Special Clinic, Changhai Hospital; Second Military Medical University; Shanghai; 200433; China
| | - L.-H. Wang
- Department of Urology, Changhai Hospital; Second Military Medical University; Shanghai; 200433; China
| | - Q. Dong
- Department of Nephrology, Shanghai Corps Hospital; Chinese People's Armed Police Forces; Shanghai; 201103; China
| | - Z.-J. Wu
- Department of Urology, Changhai Hospital; Second Military Medical University; Shanghai; 200433; China
| | - M.-Y. Li
- Department of Special Clinic, Changhai Hospital; Second Military Medical University; Shanghai; 200433; China
| | - Y.-H. Sun
- Department of Urology, Changhai Hospital; Second Military Medical University; Shanghai; 200433; China
| |
Collapse
|