1
|
Sivalingam P, Sabatino R, Sbaffi T, Corno G, Fontaneto D, Borgomaneiro G, Rogora M, Crotti E, Mapelli F, Borin S, Pilar AL, Eckert EM, Di Cesare A. Anthropogenic pollution may enhance natural transformation in water, favouring the spread of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134885. [PMID: 38876022 DOI: 10.1016/j.jhazmat.2024.134885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Aquatic ecosystems are crucial in the antimicrobial resistance cycle. While intracellular DNA has been extensively studied to understand human activity's impact on antimicrobial resistance gene (ARG) dissemination, extracellular DNA is frequently overlooked. This study examines the effect of anthropogenic water pollution on microbial community diversity, the resistome, and ARG dissemination. We analyzed intracellular and extracellular DNA from wastewater treatment plant effluents and lake surface water by shotgun sequencing. We also conducted experiments to evaluate anthropogenic pollution's effect on transforming extracellular DNA (using Gfp-plasmids carrying ARGs) within a natural microbial community. Chemical analysis showed treated wastewater had higher anthropogenic pollution-related parameters than lake water. The richness of microbial community, antimicrobial resistome, and high-risk ARGs was greater in treated wastewaters than in lake waters both for intracellular and extracellular DNA. Except for the high-risk ARGs, richness was significantly higher in intracellular than in extracellular DNA. Several ARGs were associated with mobile genetic elements and located on plasmids. Furthermore, Gfp-plasmid transformation within a natural microbial community was enhanced by anthropogenic pollution levels. Our findings underscore anthropogenic pollution's pivotal role in shaping microbial communities and their antimicrobial resistome. Additionally, it may facilitate ARG dissemination through extracellular DNA plasmid uptake.
Collapse
Affiliation(s)
- Periyasamy Sivalingam
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy
| | - Raffaella Sabatino
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Tomasa Sbaffi
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Gianluca Corno
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Diego Fontaneto
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Giulia Borgomaneiro
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy
| | - Michela Rogora
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy
| | - Elena Crotti
- Department of Food Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Francesca Mapelli
- Department of Food Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Sara Borin
- Department of Food Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Andrea Lopez Pilar
- Biological Science Faculty, Complutense University of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain
| | - Ester M Eckert
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Andrea Di Cesare
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy.
| |
Collapse
|
2
|
Di Cesare A, Sabatino R, Sbaffi T, Fontaneto D, Brambilla D, Beghi A, Pandolfi F, Borlandelli C, Fortino D, Biccai G, Genoni P, Corno G. Anthropogenic pollution drives the bacterial resistome in a complex freshwater ecosystem. CHEMOSPHERE 2023; 331:138800. [PMID: 37121282 DOI: 10.1016/j.chemosphere.2023.138800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Aquatic ecosystems in anthropogenically impacted areas are important reservoirs of antibiotic resistance genes (ARGs) of allochthonous origin. However, the dynamics of the different ARGs within the bacterial communities of lakes and rivers, as well as the factors that drive their selection, are not completely understood. In this study, we analysed the fate of the bacterial resistome (total content of ARGs and of metal resistance genes, MRGs) for a period of six months (summer-winter) in a continuum lake-river-lake system (Lake Varese, River Bardello, Lake Maggiore) in Northern Italy, by shotgun metagenomics. The metagenomic data were then compared with chemical, physical and microbiological data, to infer the role of anthropogenic pressure in the different sampling stations. ARGs and MRGs were more abundant and diverse in the River Bardello, characterised by the highest anthropogenic pollution. The date of sampling influenced ARGs and MRGs, with higher abundances in summer (August) than in fall or in winter, when the impact of the treated wastewater discharge in the river was limited by a higher water flow from Lake Varese. ARG and MRG abundances were significantly correlated and they co-occurred in the main network analysis modules with potential pathogenic bacteria. Different levels of anthropogenic impact selectively promoted specific ARGs while others, generally abundant in waters, were not affected by anthropogenic pressure. Reducing the level of anthropogenic pressure resulted in a rapid decrease of most ARGs. From our results, the role of anthropogenic pressure in promoting the spread of specific antibiotic resistances and of potential pathogens in aquatic ecosystem becomes clear. Finally we highlight the strict correlation between ARGs and MRGs suggesting their potential co-selection in stressed aquatic bacterial communities.
Collapse
Affiliation(s)
- Andrea Di Cesare
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Raffaella Sabatino
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Tomasa Sbaffi
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Diego Fontaneto
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Diego Brambilla
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Andrea Beghi
- Regional Environmental Protection Agency of Lombardia, Italy
| | - Franca Pandolfi
- Regional Environmental Protection Agency of Lombardia, Italy
| | | | - Davide Fortino
- Regional Environmental Protection Agency of Lombardia, Italy
| | - Giovanni Biccai
- Regional Environmental Protection Agency of Lombardia, Italy
| | - Pietro Genoni
- Regional Environmental Protection Agency of Lombardia, Italy
| | - Gianluca Corno
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy.
| |
Collapse
|
3
|
Eckert EM, Galafassi S, Bastidas Navarro M, Di Cesare A, Corno G. Increased similarity of aquatic bacterial communities of different origin after antibiotic disturbance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120568. [PMID: 36351482 DOI: 10.1016/j.envpol.2022.120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Stochastic or deterministic processes control the bacterial community assembly in waters and their understanding is a fundamental question to correctly manage aquatic environments exposed to the release of antibiotics from anthropogenic sources. It has been suggested that microdiversity (i.e. the rare biosphere) convers freshwater communities with stability, meaning that previously rare taxa bloom when the community is disturbed. Since there might be a seed bank of similar, but not abundant, bacterial taxa in different waters, we tested whether a disturbance by an antibiotic cocktail would increase similarity in bacterial communities from different freshwater systems (a wastewater effluent and two lakes). In a continuous culture set-up in chemostats, we show that disturbance with antibiotics causes communities from different environments to become more similar. Once the antibiotic pressure is released the communities tend to become more dissimilar again. This shows that there is a similar shift in community composition even in waters from very different origins when they are disturbed by antibiotics, even at low concentrations. Antibiotics impact the bacterial communities at the cell and the community level, independently by the original degree of anthropogenic stress they are adapted to, altering the original phenotypes, genotypes, and the relations between bacteria.
Collapse
Affiliation(s)
- Ester M Eckert
- National Research Council of Italy, Water Research Institute, (CNR-IRSA), L.go Tonolli 50, 28922, Verbania, Italy
| | - Silvia Galafassi
- National Research Council of Italy, Water Research Institute, (CNR-IRSA), L.go Tonolli 50, 28922, Verbania, Italy
| | - Marcela Bastidas Navarro
- Laboratorio de Limnología, INIBIOMA, CONICET-Universidad Nacional Del Comahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Andrea Di Cesare
- National Research Council of Italy, Water Research Institute, (CNR-IRSA), L.go Tonolli 50, 28922, Verbania, Italy
| | - Gianluca Corno
- National Research Council of Italy, Water Research Institute, (CNR-IRSA), L.go Tonolli 50, 28922, Verbania, Italy.
| |
Collapse
|
4
|
Mawarda PC, Le Roux X, Acosta MU, van Elsas JD, Salles JF. The impact of protozoa addition on the survivability of Bacillus inoculants and soil microbiome dynamics. ISME COMMUNICATIONS 2022; 2:82. [PMID: 37938668 PMCID: PMC9723691 DOI: 10.1038/s43705-022-00166-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 10/06/2023]
Abstract
Protists' selective predation of bacterial cells is an important regulator of soil microbiomes, which might influence the success of bacterial releases in soils. For instance, the survival and activity of introduced bacteria can be affected by selective grazing on resident communities or the inoculant, but this remains poorly understood. Here, we investigated the impact of the introduction in the soil of two protozoa species, Rosculus terrestris ECOP02 and/or Cerocomonas lenta ECOP01, on the survival of the inoculants Bacillus mycoides M2E15 (BM) or B. pumilus ECOB02 (BP). We also evaluated the impact of bacterial inoculation with or without protozoan addition on the abundance and diversity of native soil bacterial and protist communities. While the addition of both protozoa decreased the survival of BM, their presence contrarily increased the BP abundance. Protists' selective predation governs the establishment of these bacterial inoculants via modifying the soil microbiome structure and the total bacterial abundance. In the BP experiment, the presence of the introduced protozoa altered the soil community structures and decreased soil bacterial abundance at the end of the experiment, favouring the invader survival. Meanwhile, the introduced protozoa did not modify the soil community structures in the BM experiment and reduced the BM + Protozoa inoculants' effect on total soil bacterial abundance. Our study reinforces the view that, provided added protozoa do not feed preferentially on bacterial inoculants, their predatory behaviour can be used to steer the soil microbiome to improve the success of bacterial inoculations by reducing resource competition with the resident soil microbial communities.
Collapse
Affiliation(s)
- Panji Cahya Mawarda
- Microbial Community Ecology Cluster, Expertise Group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Research Center for Environment and Clean Technology, National Research and Innovation Agency Republic of Indonesia (BRIN), Komplek LIPI Bandung, Jalan Sangkuriang Gedung 50, Bandung, 40135, Indonesia.
| | - Xavier Le Roux
- Laboratoire d'Ecologie Microbienne, INRAE, CNRS, Université de Lyon, Université Lyon 1, UMR INRAE 1418, UMR CNRS 5557, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Melissa Uribe Acosta
- Plant-Microbe Interactions Group, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Pollution Diagnostics and Control Group (GDCON), Biology Institute, University Research Campus (SIU), University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia
| | - Jan Dirk van Elsas
- Microbial Community Ecology Cluster, Expertise Group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Joana Falcão Salles
- Microbial Community Ecology Cluster, Expertise Group GREEN, Groningen Institute of Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
5
|
Sathicq MB, Sabatino R, Di Cesare A, Eckert EM, Fontaneto D, Rogora M, Corno G. PET particles raise microbiological concerns for human health while tyre wear microplastic particles potentially affect ecosystem services in waters. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128397. [PMID: 35236044 DOI: 10.1016/j.jhazmat.2022.128397] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Although abundant and chemically peculiar, tyre wear microplastic particles (TWP) and their impact on the microbial communities in water are largely understudied. We tested in laboratory based semi-continuous cultures the impact of TWP and of polyethylene terephthalate (PET) derived particles (following a gradient of relative abundance) on the pathobiome (the group of potential human pathogenic bacteria) of a freshwater microbial community exposed to contamination by the effluent of a urban wastewater treatment plant, for a period of 28 days. We could define the modulated impact of the two types of microplastic particles: while PET does not favour bacterial growth, it offers a refuge to several potential pathogens of allochthonous origin (from the treated sewage effluent), TWP act as an additional carbon source, promoting the development and the massive growth of a biofilm composed by fast-growing bacterial genera including species potentially harmful and competitive in abating biodiversity in surface waters. Our results demonstrate the different ecological role and impact on freshwater environments of TWP and PET particles, and the need to approach the study of this pollutant not as a whole, but considering the origin and the chemical composition of the different particles.
Collapse
Affiliation(s)
- Maria Belen Sathicq
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Raffaella Sabatino
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Andrea Di Cesare
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Ester M Eckert
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Diego Fontaneto
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Michela Rogora
- National Research Council of Italy - Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Gianluca Corno
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy.
| |
Collapse
|
6
|
Vandermaesen J, Du S, Daly AJ, Baetens JM, Horemans B, De Baets B, Boon N, Springael D. Interspecies Interactions of the 2,6-Dichlorobenzamide Degrading Aminobacter sp. MSH1 with Resident Sand Filter Bacteria: Indications for Mutual Cooperative Interactions That Improve BAM Mineralization Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1352-1364. [PMID: 34982540 DOI: 10.1021/acs.est.1c06653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioaugmentation often involves an invasion process requiring the establishment and activity of a foreign microbe in the resident community of the target environment. Interactions with resident micro-organisms, either antagonistic or cooperative, are believed to impact invasion. However, few studies have examined the variability of interactions between an invader and resident species of its target environment, and none of them considered a bioremediation context. Aminobacter sp. MSH1 mineralizing the groundwater micropollutant 2,6-dichlorobenzamide (BAM), is proposed for bioaugmentation of sand filters used in drinking water production to avert BAM contamination. We examined the nature of the interactions between MSH1 and 13 sand filter resident bacteria in dual and triple species assemblies in sand microcosms. The residents affected MSH1-mediated BAM mineralization without always impacting MSH1 cell densities, indicating effects on cell physiology rather than on cell number. Exploitative competition explained most of the effects (70%), but indications of interference competition were also found. Two residents improved BAM mineralization in dual species assemblies, apparently in a mutual cooperation, and overruled negative effects by others in triple species systems. The results suggest that sand filter communities contain species that increase MSH1 fitness. This opens doors for assisting bioaugmentation through co-inoculation with "helper" bacteria originating from and adapted to the target environment.
Collapse
Affiliation(s)
- Johanna Vandermaesen
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, B-3001 Heverlee, Belgium
| | - Siyao Du
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, B-3001 Heverlee, Belgium
| | - Aisling J Daly
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Jan M Baetens
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Benjamin Horemans
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, B-3001 Heverlee, Belgium
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, B-3001 Heverlee, Belgium
| |
Collapse
|
7
|
Bolius S, Morling K, Wiedner C, Weithoff G. Genetic Identity and Herbivory Drive the Invasion of a Common Aquatic Microbial Invader. Front Microbiol 2020; 11:1598. [PMID: 32754141 PMCID: PMC7370804 DOI: 10.3389/fmicb.2020.01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
Despite the increasing number of species invasions, the factors driving invasiveness are still under debate. This is particularly the case for “invisible” invasions by aquatic microbial species. Since in many cases only a few individuals or propagules enter a new habitat, their genetic variation is low and might limit their invasion success, known as the genetic bottleneck. Thus, a key question is, how genetic identity and diversity of invading species influences their invasion success and, subsequently, affect the resident community. We conducted invader-addition experiments using genetically different strains of the globally invasive, aquatic cyanobacterium Raphidiopsis raciborskii (formerly: Cylindrospermopsis raciborskii) to determine the role of invader identity and genetic diversity (strain richness) at four levels of herbivory. We tested the invasion success of solitary single strain invasions against the invader genetic diversity, which was experimentally increased up to ten strains (multi-strain populations). By using amplicon sequencing we determined the strain-specific invasion success in the multi-strain treatments and compared those with the success of these strains in the single-strain treatments. Furthermore, we tested for the invasion success under different herbivore pressures. We showed that high grazing pressure by a generalist herbivore prevented invasion, whereas a specialist herbivore enabled coexistence of consumer and invader. We found a weak effect of diversity on invasion success only under highly competitive conditions. When invasions were successful, the magnitude of this success was strain-specific and consistent among invasions performed with single-strain or multi-strain populations. A strain-specific effect was also observed on the resident phytoplankton community composition, highlighting the strong role of invader genetic identity. Our results point to a strong effect of the genetic identity on the invasion success under low predation pressure. The genetic diversity of the invader population, however, had little effect on invasion success in our study, in contrast to most previous findings. Instead, it is the interaction between the consumer abundance and type together with the strain identity of the invader that defined invasion success. This study underlines the importance of strain choice in invasion research and in ecological studies in general.
Collapse
Affiliation(s)
- Sarah Bolius
- Department Ecology and Ecosystem Modelling, University of Potsdam, Potsdam, Germany
| | - Karoline Morling
- Department of Aquatic Environmental Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Guntram Weithoff
- Department Ecology and Ecosystem Modelling, University of Potsdam, Potsdam, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
8
|
Schierstaedt J, Jechalke S, Nesme J, Neuhaus K, Sørensen SJ, Grosch R, Smalla K, Schikora A. Salmonella
persistence in soil depends on reciprocal interactions with indigenous microorganisms. Environ Microbiol 2020; 22:2639-2652. [DOI: 10.1111/1462-2920.14972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Jasper Schierstaedt
- Plant‐Microbe SystemsLeibniz Institute of Vegetable and Ornamental Crops Großbeeren Germany
| | - Sven Jechalke
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen Giessen Germany
| | - Joseph Nesme
- Section of Microbiology, Department of BiologyUniversity of Copenhagen Copenhagen Denmark
| | - Klaus Neuhaus
- ZIEL ‐ Institute for Food & Health, Core Facility Microbiome/NGS, Technische Universität München Freising Germany
| | - Søren J. Sørensen
- Section of Microbiology, Department of BiologyUniversity of Copenhagen Copenhagen Denmark
| | - Rita Grosch
- Plant‐Microbe SystemsLeibniz Institute of Vegetable and Ornamental Crops Großbeeren Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn‐Institut, Federal Research Centre for Cultivated Plants Braunschweig Germany
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn‐Institut, Federal Research Centre for Cultivated Plants Braunschweig Germany
| |
Collapse
|
9
|
Corno G, Yang Y, Eckert EM, Fontaneto D, Fiorentino A, Galafassi S, Zhang T, Di Cesare A. Effluents of wastewater treatment plants promote the rapid stabilization of the antibiotic resistome in receiving freshwater bodies. WATER RESEARCH 2019; 158:72-81. [PMID: 31015144 DOI: 10.1016/j.watres.2019.04.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Treated wastewater discharged into the environment acts as a disturbance of the natural microbial communities in terms of taxonomic composition and of functional gene pool, including antibiotic resistance genes. We tested whether stochastic and heterogeneous site-specific trajectories or generalities, potentially driven by deterministic processes, control the fate of allochthonous bacteria from anthropogenic sources and the persistence of their functional traits in freshwater. Finding generalities would allow the identification of wastewater treatments that could be effective in abating determinants of antibiotic resistance. We analysed the short-term response of native bacterial communities in waters exposed to the disturbance of wastewater at different dilutions, using a metagenomic approach that revealed both microbial community composition and the scope and abundance of the resistome that can pose indirect risks to human health. We found that the taxonomic composition of the communities after the disturbance was driven by case-specific stochastic processes, whereas the resistome had a deterministic trajectory, rapidly stabilising its functional traits with higher proportions of wastewater effluents, regardless of differences in taxonomic composition, richness of antibiotic resistance genes and of bacterial taxa, phenotypic features of the bacterial communities, and type of wastewater treatment. The observed deterministic proliferation of resistomes in freshwater bodies receiving wastewater effluents, suggests that this process may contribute to the global propagation of antibiotic resistance, and thus calls for new legislations promoting alternative tertiary treatments for the wastewater reuse, and targeting bacterial functional traits and not only bacterial abundances.
Collapse
Affiliation(s)
- Gianluca Corno
- Microbial Ecology Group, Water Research Institute - National Research Council (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy.
| | - Ying Yang
- School of Marine Sciences, Sun Yat-Sen University, Xingang Xi Road 135, 510275, Guangzhou, China
| | - Ester M Eckert
- Microbial Ecology Group, Water Research Institute - National Research Council (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Diego Fontaneto
- Microbial Ecology Group, Water Research Institute - National Research Council (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Antonino Fiorentino
- Microbial Ecology Group, Water Research Institute - National Research Council (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Silvia Galafassi
- Microbial Ecology Group, Water Research Institute - National Research Council (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Andrea Di Cesare
- Microbial Ecology Group, Water Research Institute - National Research Council (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| |
Collapse
|
10
|
Ren L, Song X, He D, Wang J, Tan M, Xia X, Li G, Tan Y, Wu QL. Bacterioplankton Metacommunity Processes across Thermal Gradients: Weaker Species Sorting but Stronger Niche Segregation in Summer than in Winter in a Subtropical Bay. Appl Environ Microbiol 2019; 85:e02088-18. [PMID: 30367007 PMCID: PMC6328778 DOI: 10.1128/aem.02088-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/23/2018] [Indexed: 11/20/2022] Open
Abstract
Thermal effluents from nuclear power plants greatly change the environmental and ecological conditions of the receiving marine water body, but knowledge about their impact on microbial ecology is limited. Here we used high-throughput sequencing of the 16S rRNA gene to examine marine bacterioplankton metacommunity assembly across thermal gradients in two representative seasons (i.e., winter and summer) in a subtropical bay located on the northern coast of the South China Sea. We found high heterogeneity in bacterioplankton community compositions (BCCs) across thermal gradients and between seasons. The spatially structured temperature gradient created by thermal effluents was the key determinant of BCCs, but its influence differed by season. Using a metacommunity approach, we found that in the thermal discharge area, i.e., where water is frequently exchanged with surrounding seawater and thermal effluent water, the BCC spatial patterns were shaped by species sorting rather than by mass effects from surrounding seawater or by dilution of thermal effluent water by surrounding seawater. However, this effect of species sorting was weaker in summer than in winter seawater. In both seasons, the bacterioplankton community structure was predominately determined by niche sharing; however, the relative importance of niche segregation was enhanced in summer seawater. Our findings suggest that for the seasonal differences in metacommunity processes, the BCCs of subtropical summer seawater were more sensitive to temperature and were more difficult to predict than those of winter seawater in the face of different intensities of thermal impacts.IMPORTANCE Understanding the mechanisms of bacterial community assembly across environmental gradients is one of the major goals of marine microbial ecology. Thermal effluents from two nuclear power plants have been present in the subtropical Daya Bay for more than 20 years and have generated a comparatively stable and long thermal gradient (a temperature increase from 0 to 10°C). The environmental patches across thermal gradients are heterogeneous and very strongly interconnected on a microbial scale; thus, this is a useful model for the study of the metacommunity processes (i.e., patch dynamics, species sorting, mass effects, and neutral processes) that underlie marine bacterioplankton assembly. The significance of our research is to reveal how environmental conditions and dispersal-related processes interact to influence bacterioplankton metacommunity processes and their seasonal differences across thermal gradients. Our results may advance the understanding of marine microbial ecology under future conditions of global warming.
Collapse
Affiliation(s)
- Lijuan Ren
- Key Laboratory of Tropical Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xingyu Song
- Key Laboratory of Tropical Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Dan He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Meiting Tan
- Key Laboratory of Tropical Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yehui Tan
- Key Laboratory of Tropical Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
11
|
The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader's niche. ISME JOURNAL 2018; 12:728-741. [PMID: 29374268 DOI: 10.1038/s41396-017-0003-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 01/13/2023]
Abstract
Although many environments like soils are constantly subjected to invasion by alien microbes, invaders usually fail to succeed, succumbing to the robust diversity often found in nature. So far, only successful invasions have been explored, and it remains unknown to what extent an unsuccessful invasion can impact resident communities. Here we hypothesized that unsuccessful invasions can cause impacts to soil functioning by decreasing the diversity and niche breadth of resident bacterial communities, which could cause shifts to community composition and niche structure-an effect that is likely exacerbated when diversity is compromised. To examine this question, diversity gradients of soil microbial communities were subjected to invasion by the frequent, yet oft-unsuccessful soil invader, Escherichia coli, and evaluated for changes to diversity, bacterial community composition, niche breadth, and niche structure. Contrary to expectations, diversity and niche breadth increased across treatments upon invasion. Community composition and niche structure were also altered, with shifts of niche structure revealing an escape by the resident community away from the invader's resources. Importantly, the extent of the escape varied in response to the community's diversity, where less diverse communities experienced larger shifts. Thus, although transient and unsuccessful, the invader competed for resources with resident species and caused tangible impacts that modified both the diversity and functioning of resident communities, which can likely generate a legacy effect that influences future invasion attempts.
Collapse
|
12
|
The Limnohabitans Genus Harbors Generalistic and Opportunistic Subtypes: Evidence from Spatiotemporal Succession in a Canyon-Shaped Reservoir. Appl Environ Microbiol 2017; 83:AEM.01530-17. [PMID: 28842542 DOI: 10.1128/aem.01530-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
We studied the diversity of Limnohabitans using reverse line blot hybridization with Limnohabitans lineage-specific probes in the freshwater canyon-shaped Římov reservoir (Czech Republic). To examine the succession of distinct lineages, we performed (i) a study of an intensive spring sampling program at the lacustrine part of the Římov reservoir (from ice melt through a phytoplankton peak to the clear-water phase), and (ii) a seasonal study (April to November) when the occurrence of distinct Limnohabitans lineages was related to the inherent longitudinal heterogeneity of the reservoir. Significant spatiotemporal changes in the compositions of distinct Limnohabitans lineages allowed for the identification of "generalists" that were always present throughout the whole season as well as "specialists" that appeared in the reservoir only for limited periods of time or irregularly. Our results indicate that some phytoplankton groups, such as cryptophytes or cyanobacteria, and zooplankton composition were the major factors modulating the distribution and dynamics of distinct Limnohabitans lineages. The highest Limnohabitans diversity was observed during the spring algal bloom, whereas the lowest was during the summer cyanobacterial bloom. The microdiversity also markedly increased upstream in the reservoir, being highest at the inflow, and thus likely reflecting strong influences of the watershed.IMPORTANCE The genus Limnohabitans is a typical freshwater bacterioplankton and is believed to play a significant role in inland freshwater habitats. This work is unique in detecting and tracing different closely related lineages of this bacterial genus in its natural conditions using the semiquantitative reverse line blot hybridization method and in discovering the factors influencing the microdiversity, subtype alternations, and seasonality.
Collapse
|
13
|
Di Cesare A, Eckert EM, Rogora M, Corno G. Rainfall increases the abundance of antibiotic resistance genes within a riverine microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:473-478. [PMID: 28438356 DOI: 10.1016/j.envpol.2017.04.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/09/2017] [Accepted: 04/17/2017] [Indexed: 05/23/2023]
Abstract
Infections with antibiotic resistant bacteria are among the major threats for human health. Studies elucidating the role of the environment in their spread are still in their infancy, it, however, seems that different environments might function as a long-term reservoir of antibiotic resistance genes (ARGs) that reside within their microbial communities. An increasing number of studies target the presence and the persistence of ARGs in waters and soils that are exposed to human activities; they, however, rarely consider the spatial/temporal variability that predominate in these environments. Here we evaluated the effect of a moderate rain event (4 mm rain h-1) on the abundance and distribution of ARGs (tetA, ermB, blaCTXM, sulII, and qnrS), by comparing measurements of gene abundances during the rainfall to the yearly average, in the waters of a large subalpine river. ARG abundances, which all increased during the rain event, were then correlated to several microbiological, physical and chemical variables, in order to establish their potential origin. Increments in ARG abundances during rainfall (total ARGs: 24 fold) was concomitant to an increase in total phosphorous, N-NH4, and microbial aggregates. Our results show a strong influence of a moderate rainfall on the abundances of ARGs, and suggest the catchment as their source. The impact of moderate rainfalls in areas exposed to anthropic activities should then be considered in modelling and management of ARG dynamics.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Microbial Ecology Group (MEG), National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli, 50, 28922, Verbania, Italy
| | - Ester M Eckert
- Microbial Ecology Group (MEG), National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli, 50, 28922, Verbania, Italy
| | - Michela Rogora
- National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli, 50, 28922, Verbania, Italy
| | - Gianluca Corno
- Microbial Ecology Group (MEG), National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli, 50, 28922, Verbania, Italy.
| |
Collapse
|
14
|
Di Cesare A, Fontaneto D, Doppelbauer J, Corno G. Fitness and Recovery of Bacterial Communities and Antibiotic Resistance Genes in Urban Wastewaters Exposed to Classical Disinfection Treatments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10153-61. [PMID: 27548377 DOI: 10.1021/acs.est.6b02268] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antibiotic resistance genes (ARGs) are increasingly appreciated to be important as micropollutants. Indirectly produced by human activities, they are released into the environment, as they are untargeted by conventional wastewater treatments. In order to understand the fate of ARGs and of other resistant forms (e.g., phenotypical adaptations) in urban wastewater treatment plants (WWTPs), we monitored three WWTPs with different disinfection processes (chlorine, peracetic acid (PAA), and ultraviolet light (UV)). We monitored WWTPs influx and pre- and postdisinfection effluent over 24 h, followed by incubation experiments lasting for 96 h. We measured bacterial abundance, size distribution and aggregational behavior, the proportion of intact (active) cells, and the abundances of four ARGs and of the mobile element integron1. While all the predisinfection treatments of all WWTPs removed the majority of bacteria and of associated ARGs, of the disinfection processes only PAA efficiently removed bacterial cells. However, the stress imposed by PAA selected for bacterial aggregates and, similarly to chlorine, stimulated the selection of ARGs during the incubation experiment. This suggests disinfections based on chemically aggressive destruction of bacterial cell structures can promote a residual microbial community that is more resistant to antibiotics and, given the altered aggregational behavior, to competitive stress in nature.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Microbial Ecology Group, National Research Council of Italy, Institute of Ecosystem Study - Largo Tonolli 50, 28922 Verbania, Italy
| | - Diego Fontaneto
- Microbial Ecology Group, National Research Council of Italy, Institute of Ecosystem Study - Largo Tonolli 50, 28922 Verbania, Italy
| | - Julia Doppelbauer
- Microbial Ecology Group, National Research Council of Italy, Institute of Ecosystem Study - Largo Tonolli 50, 28922 Verbania, Italy
| | - Gianluca Corno
- Microbial Ecology Group, National Research Council of Italy, Institute of Ecosystem Study - Largo Tonolli 50, 28922 Verbania, Italy
| |
Collapse
|
15
|
Mallon CA, Elsas JDV, Salles JF. Microbial Invasions: The Process, Patterns, and Mechanisms. Trends Microbiol 2015; 23:719-729. [DOI: 10.1016/j.tim.2015.07.013] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/20/2015] [Accepted: 07/31/2015] [Indexed: 01/20/2023]
|
16
|
Peerakietkhajorn S, Kato Y, Kasalický V, Matsuura T, Watanabe H. BetaproteobacteriaLimnohabitansstrains increase fecundity in the crustaceanDaphnia magna: symbiotic relationship between major bacterioplankton and zooplankton in freshwater ecosystem. Environ Microbiol 2015; 18:2366-74. [DOI: 10.1111/1462-2920.12919] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Saranya Peerakietkhajorn
- Department of Biotechnology; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565 0871 Japan
| | - Yasuhiko Kato
- Department of Biotechnology; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565 0871 Japan
- Frontier Research Base for Global Young Researchers; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565 0871 Japan
| | - Vojtěch Kasalický
- Biology Centre CAS; Institute of Hydrobiology; České Budějovice Czech Republic
| | - Tomoaki Matsuura
- Department of Biotechnology; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565 0871 Japan
| | - Hajime Watanabe
- Department of Biotechnology; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565 0871 Japan
| |
Collapse
|
17
|
Havel JE, Kovalenko KE, Thomaz SM, Amalfitano S, Kats LB. Aquatic invasive species: challenges for the future. HYDROBIOLOGIA 2015; 750:147-170. [PMID: 32214452 DOI: 10.1007/s10750-014-2150-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/20/2014] [Accepted: 12/24/2014] [Indexed: 05/24/2023]
Abstract
Humans have effectively transported thousands of species around the globe and, with accelerated trade; the rate of introductions has increased over time. Aquatic ecosystems seem at particular risk from invasive species because of threats to biodiversity and human needs for water resources. Here, we review some known aspects of aquatic invasive species (AIS) and explore several new questions. We describe impacts of AIS, factors limiting their dispersal, and the role that humans play in transporting AIS. We also review the characteristics of species that should be the greatest threat for future invasions, including those that pave the way for invasions by other species ("invasional meltdown"). Susceptible aquatic communities, such as reservoirs, may serve as stepping stones for invasions of new landscapes. Some microbes disperse long distance, infect new hosts and grow in the external aquatic medium, a process that has consequences for human health. We also discuss the interaction between species invasions and other human impacts (climate change, landscape conversion), as well as the possible connection of invasions with regime shifts in lakes. Since many invaders become permanent features of the environment, we discuss how humans live with invasive species, and conclude with questions for future research.
Collapse
Affiliation(s)
- John E Havel
- 1Department of Biology, Missouri State University, 901 S. National Avenue, Springfield, MO 65897 USA
| | - Katya E Kovalenko
- 2Natural Resources Research Institute, University of Minnesota Duluth, 5013 Miller Trunk Highway, Duluth, MN 55812 USA
| | - Sidinei Magela Thomaz
- 3State University of Maringá, Nupélia/DBI/PEA, Colombo Avenue 5790, Maringá, PR 87020-900 Brazil
| | - Stefano Amalfitano
- 4Water Research Institute (IRSA-CNR), Via Salaria Km 29.300, 00015 Monterotondo, Rome Italy
| | - Lee B Kats
- 5Natural Science Division, Pepperdine University, Malibu, CA 90263 USA
| |
Collapse
|
18
|
Havel JE, Kovalenko KE, Thomaz SM, Amalfitano S, Kats LB. Aquatic invasive species: challenges for the future. HYDROBIOLOGIA 2015; 750:147-170. [PMID: 32214452 PMCID: PMC7087615 DOI: 10.1007/s10750-014-2166-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/20/2014] [Accepted: 12/24/2014] [Indexed: 05/15/2023]
Abstract
Humans have effectively transported thousands of species around the globe and, with accelerated trade; the rate of introductions has increased over time. Aquatic ecosystems seem at particular risk from invasive species because of threats to biodiversity and human needs for water resources. Here, we review some known aspects of aquatic invasive species (AIS) and explore several new questions. We describe impacts of AIS, factors limiting their dispersal, and the role that humans play in transporting AIS. We also review the characteristics of species that should be the greatest threat for future invasions, including those that pave the way for invasions by other species ("invasional meltdown"). Susceptible aquatic communities, such as reservoirs, may serve as stepping stones for invasions of new landscapes. Some microbes disperse long distance, infect new hosts and grow in the external aquatic medium, a process that has consequences for human health. We also discuss the interaction between species invasions and other human impacts (climate change, landscape conversion), as well as the possible connection of invasions with regime shifts in lakes. Since many invaders become permanent features of the environment, we discuss how humans live with invasive species, and conclude with questions for future research.
Collapse
Affiliation(s)
- John E. Havel
- Department of Biology, Missouri State University, 901 S. National Avenue, Springfield, MO 65897 USA
| | - Katya E. Kovalenko
- Natural Resources Research Institute, University of Minnesota Duluth, 5013 Miller Trunk Highway, Duluth, MN 55812 USA
| | - Sidinei Magela Thomaz
- State University of Maringá, Nupélia/DBI/PEA, Colombo Avenue 5790, Maringá, PR 87020-900 Brazil
| | - Stefano Amalfitano
- Water Research Institute (IRSA-CNR), Via Salaria Km 29.300, 00015 Monterotondo, Rome Italy
| | - Lee B. Kats
- Natural Science Division, Pepperdine University, Malibu, CA 90263 USA
| |
Collapse
|
19
|
Corno G, Coci M, Giardina M, Plechuk S, Campanile F, Stefani S. Antibiotics promote aggregation within aquatic bacterial communities. Front Microbiol 2014; 5:297. [PMID: 25071728 PMCID: PMC4077313 DOI: 10.3389/fmicb.2014.00297] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/29/2014] [Indexed: 11/13/2022] Open
Abstract
The release of antibiotics (AB) into the environment poses several threats for human health due to potential development of AB-resistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance) in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5-6 fold. These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of the effects of AB in aquatic ecosystems.
Collapse
Affiliation(s)
- Gianluca Corno
- Microbial Ecology Group, Institute of Ecosystem Study, National Research Council Verbania, Italy
| | - Manuela Coci
- Microbial Ecology Group, Institute of Ecosystem Study, National Research Council Verbania, Italy ; Laboratory of Molecular Microbiology and Antibiotic Resistance, Department of Bio-Medical Sciences, University of Catania Catania, Italy
| | - Marco Giardina
- Microbial Ecology Group, Institute of Ecosystem Study, National Research Council Verbania, Italy ; Laboratory of Molecular Microbiology and Antibiotic Resistance, Department of Bio-Medical Sciences, University of Catania Catania, Italy
| | - Sonia Plechuk
- Microbial Ecology Group, Institute of Ecosystem Study, National Research Council Verbania, Italy ; Laboratory of Molecular Microbiology and Antibiotic Resistance, Department of Bio-Medical Sciences, University of Catania Catania, Italy
| | - Floriana Campanile
- Laboratory of Molecular Microbiology and Antibiotic Resistance, Department of Bio-Medical Sciences, University of Catania Catania, Italy
| | - Stefania Stefani
- Laboratory of Molecular Microbiology and Antibiotic Resistance, Department of Bio-Medical Sciences, University of Catania Catania, Italy
| |
Collapse
|
20
|
Adams HE, Crump BC, Kling GW. Metacommunity dynamics of bacteria in an arctic lake: the impact of species sorting and mass effects on bacterial production and biogeography. Front Microbiol 2014; 5:82. [PMID: 24624127 PMCID: PMC3940886 DOI: 10.3389/fmicb.2014.00082] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/14/2014] [Indexed: 11/13/2022] Open
Abstract
To understand mechanisms linking ecosystem processes and microbial diversity in freshwater ecosystems, bacterial productivity and the metacommunity dynamics of species sorting and mass effects were investigated in an 18 ha headwater lake in northern Alaska. On most sampling dates, the phylogenetic composition of bacterial communities in inflowing streams (inlets) was strikingly different than that in the lake and the outflowing stream (outlet) (16S DGGE fingerprinting), demonstrating the shift in composition that occurs as these communities transit the lake. Outlet and downstream communities were also more productive than inlet and upstream communities ((14)C-leucine incorporation). Inlet bacteria transplanted to the outlet stream in dialysis bags were equally or less productive than control bacteria, suggesting that the inlet bacteria are capable of growing under lake conditions, but do not remain abundant because of species sorting in the lake. Outlet bacteria (representative of epilimnetic bacteria) transplanted to the inlet stream were less productive than control bacteria, suggesting that lake bacteria are not as well adapted to growing under inlet conditions. Based on water density, inlet stream water and bacteria generally entered the lake at the base of the epilimnion. However, during low to medium flow in the inlet stream the residence time of the epilimnion was too long relative to bacterial doubling times for these allochthonous bacteria to have a mass effect on the composition of outlet bacteria. The highest community similarity between inlet and outlet bacteria was detected after a large rain event in 2003, with over 61% similarity (average non-storm similarities were 39 ± 8%). While mass effects may be important during large storm events, species sorting appears to be the predominant mechanism structuring bacterial communities within the lake, leading to the assembly of a lake community that has lost some ability to function in stream habitats.
Collapse
Affiliation(s)
- Heather E Adams
- Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA
| | - Byron C Crump
- College of Earth, Ocean and Atmospheric Science, Oregon State University Corvallis, OR, USA
| | - George W Kling
- Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|