1
|
Peyre L, Meyer M, Hofman P, Roux J. TRAIL receptor-induced features of epithelial-to-mesenchymal transition increase tumour phenotypic heterogeneity: potential cell survival mechanisms. Br J Cancer 2021; 124:91-101. [PMID: 33257838 PMCID: PMC7782794 DOI: 10.1038/s41416-020-01177-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The continuing efforts to exploit the death receptor agonists, such as the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), for cancer therapy, have largely been impaired by the anti-apoptotic and pro-survival signalling pathways leading to drug resistance. Cell migration, invasion, differentiation, immune evasion and anoikis resistance are plastic processes sharing features of the epithelial-to-mesenchymal transition (EMT) that have been shown to give cancer cells the ability to escape cell death upon cytotoxic treatments. EMT has recently been suggested to drive a heterogeneous cellular environment that appears favourable for tumour progression. Recent studies have highlighted a link between EMT and cell sensitivity to TRAIL, whereas others have highlighted their effects on the induction of EMT. This review aims to explore the molecular mechanisms by which death signals can elicit an increase in response heterogeneity in the metastasis context, and to evaluate the impact of these processes on cell responses to cancer therapeutics.
Collapse
Affiliation(s)
- Ludovic Peyre
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Mickael Meyer
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France
| | - Jérémie Roux
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice (IRCAN), Centre Antoine Lacassagne, 06107, Nice, France.
| |
Collapse
|
2
|
Eilertsen IA, Sveen A, Strømme JM, Skotheim RI, Nesbakken A, Lothe RA. Alternative splicing expands the prognostic impact of KRAS in microsatellite stable primary colorectal cancer. Int J Cancer 2018; 144:841-847. [PMID: 30121958 PMCID: PMC6587976 DOI: 10.1002/ijc.31809] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/15/2023]
Abstract
KRAS mutation is a well-known marker for poor response to targeted treatment and patient prognosis in microsatellite stable (MSS) colorectal cancer (CRC). However, variation in clinical outcomes among patients wild-type for KRAS underlines that this is not a homogeneous population. Here, we evaluated the prognostic impact of KRAS alternative splicing in relation to mutation status in a single-hospital series of primary MSS CRCs (N = 258). Using splicing-sensitive microarrays and RNA sequencing, the relative expression of KRAS-4A versus KRAS-4B transcript variants was confirmed to be down-regulated in CRC compared to normal colonic mucosa (N = 41; p ≤ 0.001). This was independent of mutation status, however, gene set enrichment analysis revealed that the effect of splicing on KRAS signaling was specific to the KRAS wild-type subgroup, in which low relative KRAS-4A expression was associated with a higher level of KRAS signaling (p = 0.005). In concordance, the prognostic value of KRAS splicing was also dependent on mutation status, and for patients with Stage I-III KRAS wild-type MSS CRC, low relative KRAS-4A expression was associated with inferior overall survival (HR: 2.36, 95% CI: 1.07-5.18, p = 0.033), a result not found in mutant cases (pinteraction = 0.026). The prognostic association in the wild-type subgroup was independent of clinicopathological factors, including cancer stage in multivariable analysis (HR: 2.68, 95% CI: 1.18-6.09, p = 0.018). This suggests that KRAS has prognostic value beyond mutation status in MSS CRC, and highlights the importance of molecular heterogeneity in the clinically relevant KRAS wild-type subgroup.
Collapse
Affiliation(s)
- Ina A Eilertsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jonas M Strømme
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital, Oslo, Norway.,Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital, Oslo, Norway.,Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Arild Nesbakken
- K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Inactivation of BRCA2 in human cancer cells identifies a subset of tumors with enhanced sensitivity towards death receptor-mediated apoptosis. Oncotarget 2017; 7:9477-90. [PMID: 26843614 PMCID: PMC4891053 DOI: 10.18632/oncotarget.7053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/01/2016] [Indexed: 12/20/2022] Open
Abstract
Purpose DNA repair defects due to detrimental BRCA2-mutations confer increased susceptibility towards DNA interstrand-crosslinking (ICL) agents and define patient subpopulations for individualized genotype-based cancer therapy. However, due to the side effects of these drugs, there is a need to identify additional agents, which could be used alone or in combination with ICL-agents. Therefore, we investigated whether BRCA2-mutations might also increase the sensitivity towards TRAIL-receptors (TRAIL-R)-targeting compounds. Experimental design Two independent model systems were applied: a BRCA2 gene knockout and a BRCA2 gene complementation model. The effects of TRAIL-R-targeting compounds and ICL-agents on cell viability, apoptosis and cell cycle distribution were compared in BRCA2-proficient versus-deficient cancer cells in vitro. In addition, the effects of the TRAIL-R2-targeting antibody LBY135 were assessed in vivo using a murine tumor xenograft model. Results BRCA2-deficient cancer cells displayed an increased sensitivity towards TRAIL-R-targeting agents. These effects exceeded and were mechanistically distinguishable from the well-established effects of ICL-agents. In vitro, ICL-agents expectedly induced an early cell cycle arrest followed by delayed apoptosis, whereas TRAIL-R-targeting compounds caused early apoptosis without prior cell cycle arrest. In vivo, treatment with LBY135 significantly reduced the tumor growth of BRCA2-deficient cancer cells in a xenograft model. Conclusions BRCA2 mutations strongly increase the in vitro- and in vivo-sensitivity of cancer cells towards TRAIL-R-mediated apoptosis. This effect is mechanistically distinguishable from the well-established ICL-hypersensitivity of BRCA2-deficient cells. Our study thus defines a new genetic subpopulation of cancers susceptible towards TRAIL-R-targeting compounds, which could facilitate novel therapeutic approaches for patients with BRCA2-deficient tumors.
Collapse
|
4
|
Mert U, Sanlioglu AD. Intracellular localization of DR5 and related regulatory pathways as a mechanism of resistance to TRAIL in cancer. Cell Mol Life Sci 2017; 74:245-255. [PMID: 27510421 PMCID: PMC11107773 DOI: 10.1007/s00018-016-2321-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/19/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a prominent cytokine capable of inducing apoptosis. It can bind to five different cognate receptors, through which diverse intracellular pathways can be activated. TRAIL's ability to preferentially kill transformed cells makes it a promising potential weapon for targeted tumor therapy. However, recognition of several resistance mechanisms to TRAIL-induced apoptosis has indicated that a thorough understanding of the details of TRAIL biology is still essential before this weapon can be confidently unleashed. Critical to this aim is revealing the functions and regulation mechanisms of TRAIL's potent death receptor DR5. Although expression and signaling mechanisms of DR5 have been extensively studied, other aspects, such as its subcellular localization, non-signaling functions, and regulation of its membrane transport, have only recently attracted attention. Here, we discuss different aspects of TRAIL/DR5 biology, with a particular emphasis on the factors that seem to influence the cell surface expression pattern of DR5, along with factors that lead to its nuclear localization. Disturbance of this balance apparently affects the sensitivity of cancer cells to TRAIL-mediated apoptosis, thus constituting an eligible target for potential new therapeutic agents.
Collapse
Affiliation(s)
- Ufuk Mert
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey
| | - Ahter Dilsad Sanlioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey.
- Center for Gene and Cell Therapy, Akdeniz University, 07058, Antalya, Turkey.
| |
Collapse
|
5
|
Brandl L, Horst D, de Toni E, Kirchner T, Herbst A, Kolligs FT. ITF-2B protein levels are correlated with favorable prognosis in patients with colorectal carcinomas. Am J Cancer Res 2015; 5:2241-2248. [PMID: 26328254 PMCID: PMC4548335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023] Open
Abstract
The majority of sporadic forms of colorectal carcinomas is characterized by deregulation of Wnt/β-catenin signaling early in colorectal carcinogenesis. As a consequence, ITF-2B protein levels are increased in adenomas of these patients. However, ITF-2B protein levels are strongly reduced with increasing carcinoma stages, suggesting that reduction of ITF-2B protein is required for progression of adenomas to colorectal carcinomas. To find out if ITF-2B protein levels are correlated with the survival of patients with colorectal carcinomas, a tissue microarray containing samples from 213 colorectal carcinomas (T-categories T2 and T3) with corresponding survival information was stained with an ITF-2B antibody. In addition, we analyzed if detection of ITF-2B in microsatellite instable and microsatellite stable carcinomas as well as in colorectal carcinomas with KRAS mutations is correlated with survival. Detection of cytoplasmic ITF-2B protein was associated with better overall and progression free survival of patients with colorectal carcinomas (P=0.033 and 0.024, respectively). Multivariate Cox regression analysis revealed an increased risk to suffer from poor overall survival and recurrent disease if no cytoplasmic ITF-2B was detectable (HR=1.91; P=0.033 and HR=1.75; P=0.033, respectively). Similarly, patients with MSS carcinomas had a better overall survival, if they showed cytoplasmic positivity for ITF-2B (P=0.013). Remarkably, patients with colorectal carcinomas carrying KRAS mutations had a better overall and progression free survival rate if the carcinomas were positive for cytoplasmic ITF-2B (HR=4.71; P=0.002 and HR=2.57; P=0.024, respectively). These data suggest that cytoplasmic protein levels of ITF-2B could be used as a prognostic marker for patients with colorectal carcinomas.
Collapse
Affiliation(s)
- Lydia Brandl
- Department of Pathology, University of MunichD-80337 Munich, Germany
| | - David Horst
- Department of Pathology, University of MunichD-80337 Munich, Germany
| | - Enrico de Toni
- Department of Medicine II, University of MunichD-81377 Munich, Germany
| | - Thomas Kirchner
- Department of Pathology, University of MunichD-80337 Munich, Germany
- German Cancer Consortium (DKTK)Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ)Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Andreas Herbst
- Department of Medicine II, University of MunichD-81377 Munich, Germany
| | - Frank T Kolligs
- Department of Medicine II, University of MunichD-81377 Munich, Germany
- German Cancer Consortium (DKTK)Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ)Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Internal Medicine and Gastroenterology, HELIOS Klinikum Berlin-BuchD-13125 Berlin, Germany
| |
Collapse
|
6
|
Oikonomou E, Koustas E, Goulielmaki M, Pintzas A. BRAF vs RAS oncogenes: are mutations of the same pathway equal? Differential signalling and therapeutic implications. Oncotarget 2014; 5:11752-77. [PMID: 25361007 PMCID: PMC4322985 DOI: 10.18632/oncotarget.2555] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/30/2014] [Indexed: 02/05/2023] Open
Abstract
As the increased knowledge of tumour heterogeneity and genetic alterations progresses, it exemplifies the need for further personalized medicine in modern cancer management. Here, the similarities but also the differential effects of RAS and BRAF oncogenic signalling are examined and further implications in personalized cancer diagnosis and therapy are discussed. Redundant mechanisms mediated by the two oncogenes as well as differential regulation of signalling pathways and gene expression by RAS as compared to BRAF are addressed. The implications of RAS vs BRAF differential functions, in relevant tumour types including colorectal cancer, melanoma, lung cancer are discussed. Current therapeutic findings and future viewpoints concerning the exploitation of RAS-BRAF-pathway alterations for the development of novel therapeutics and efficient rational combinations, as well as companion tests for relevant markers of response will be evaluated. The concept that drug-resistant cells may also display drug dependency, such that altered dosing may prevent the emergence of lethal drug resistance posed a major therapy hindrance.
Collapse
Affiliation(s)
- Eftychia Oikonomou
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, 11635, Greece
| | - Evangelos Koustas
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, 11635, Greece
| | - Maria Goulielmaki
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, 11635, Greece
| | - Alexander Pintzas
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, 11635, Greece
| |
Collapse
|
7
|
Möller Y, Siegemund M, Beyes S, Herr R, Lecis D, Delia D, Kontermann R, Brummer T, Pfizenmaier K, Olayioye MA. EGFR-targeted TRAIL and a Smac mimetic synergize to overcome apoptosis resistance in KRAS mutant colorectal cancer cells. PLoS One 2014; 9:e107165. [PMID: 25198428 PMCID: PMC4157814 DOI: 10.1371/journal.pone.0107165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/04/2014] [Indexed: 11/18/2022] Open
Abstract
TRAIL is a death receptor ligand that induces cell death preferentially in tumor cells. Recombinant soluble TRAIL, however, performs poorly as an anti-cancer therapeutic because oligomerization is required for potent biological activity. We previously generated a diabody format of tumor-targeted TRAIL termed DbαEGFR-scTRAIL, comprising single-stranded TRAIL molecules (scTRAIL) and the variable domains of a humanized variant of the EGFR blocking antibody Cetuximab. Here we define the bioactivity of DbαEGFR-scTRAIL with regard to both EGFR inhibition and TRAIL receptor activation in 3D cultures of Caco-2 colorectal cancer cells, which express wild-type K-Ras. Compared with conventional 2D cultures, Caco-2 cells displayed strongly enhanced sensitivity toward DbαEGFR-scTRAIL in these 3D cultures. We show that the antibody moiety of DbαEGFR-scTRAIL not only efficiently competed with ligand-induced EGFR function, but also determined the apoptotic response by specifically directing DbαEGFR-scTRAIL to EGFR-positive cells. To address how aberrantly activated K-Ras, which leads to Cetuximab resistance, affects DbαEGFR-scTRAIL sensitivity, we generated stable Caco-2tet cells inducibly expressing oncogenic K-RasG12V. In the presence of doxycycline, these cells showed increased resistance to DbαEGFR-scTRAIL, associated with the elevated expression of the anti-apoptotic proteins cIAP2, Bcl-xL and FlipS. Co-treatment of cells with the Smac mimetic SM83 restored the DbαEGFR-scTRAIL-induced apoptotic response. Importantly, this synergy between DbαEGFR-scTRAIL and SM83 also translated to 3D cultures of oncogenic K-Ras expressing HCT-116 and LoVo colorectal cancer cells. Our findings thus support the notion that DbαEGFR-scTRAIL therapy in combination with apoptosis-sensitizing agents may be promising for the treatment of EGFR-positive colorectal cancers, independently of their KRAS status.
Collapse
Affiliation(s)
- Yvonne Möller
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Martin Siegemund
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Sven Beyes
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Ricarda Herr
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Daniele Lecis
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Domenico Delia
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roland Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Monilola A. Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
8
|
Seifert O, Pollak N, Nusser A, Steiniger F, Rüger R, Pfizenmaier K, Kontermann RE. Immuno-LipoTRAIL: Targeted delivery of TRAIL-functionalized liposomal nanoparticles. Bioconjug Chem 2014; 25:879-87. [PMID: 24766622 DOI: 10.1021/bc400517j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The TNF-related apoptosis-inducing ligand (TRAIL) is a powerful inducer of apoptosis in tumor cells; however, clinical studies with recombinant soluble TRAIL were rather disappointing. Here, we developed TRAIL-functionalized liposomes (LipoTRAIL, LT) to mimic membrane-displayed TRAIL for efficient activation of death receptors DR4 and DR5 and enhanced induction of apoptosis, which were combined with an anti-EGFR single-chain Fv fragment (scFv) for targeted delivery to EGFR-positive tumor cells. These immuno-LipoTRAILs (ILTs) bound specifically to EGFR-expressing cells (Colo205) and exhibited increased cytotoxicity compared with that of nontargeted LTs. Compared to that of the soluble TRAIL, the plasma half-life of the functionalized liposomes was strongly extended, and increased antitumor activity of LT and ILT was demonstrated in a xenograft tumor model. Thus, we established a multifunctional liposomal TRAIL formulation (ILT) with improved pharmacokinetic and pharmacodynamic behavior, characterized by targeted delivery and increased induction of apoptosis due to multivalent TRAIL presentation.
Collapse
Affiliation(s)
- Oliver Seifert
- Institut für Zellbiologie und Immunologie, Universität Stuttgart , Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Bickeböller M, Tagscherer KE, Kloor M, Jansen L, Chang-Claude J, Brenner H, Hoffmeister M, Toth C, Schirmacher P, Roth W, Bläker H. Functional characterization of the tumor-suppressor MARCKS in colorectal cancer and its association with survival. Oncogene 2014; 34:1150-9. [DOI: 10.1038/onc.2014.40] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/13/2013] [Accepted: 01/12/2014] [Indexed: 12/14/2022]
|
10
|
Jalving M, Heijink DM, Koornstra JJ, Boersma-van Ek W, Zwart N, Wesseling J, Sluiter WJ, de Vries EGE, Kleibeuker JH, de Jong S. Regulation of TRAIL receptor expression by β-catenin in colorectal tumours. Carcinogenesis 2013; 35:1092-9. [PMID: 24379239 DOI: 10.1093/carcin/bgt484] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL) is being investigated as a targeted cancer therapeutic and the expression of its pro-apoptotic receptors, DR4 and DR5, increases during colorectal carcinogenesis. This study investigated the role of β-catenin in the regulation of these receptors. In human colorectal adenoma and carcinoma cell lines, downregulation of β-catenin resulted in lower total DR4 and DR5 protein levels. Similarly, cell membrane expression of DR4 and DR5 was reduced after downregulation of β-catenin in colon carcinoma cells, whereas induction of β-catenin in HeLa cells led to increased cell membrane expression of DR4 and DR5. Downregulation of β-catenin decreased the recombinant human TRAIL sensitivity of human colon carcinoma cells. Activation of the transcription factor T-cell factor-4 (TCF-4) is an important function of β-catenin. Dominant-negative TCF-4 overexpression, however, did not significantly affect TRAIL receptor expression or recombinant human TRAIL sensitivity. Human colorectal adenomas (N = 158) with aberrant (cytoplasmic and nuclear) β-catenin expression had a higher percentage of immunohistochemical DR4 and DR5 staining per tumour (mean: 73 and 88%, respectively) than those with membranous β-catenin staining only (mean: 50 and 70%, respectively, P < 0.01 for both). Furthermore, aberrant β-catenin staining co-localized with DR4 and DR5 expression in 92% of adenomas. In 53 human colorectal carcinomas, aberrant β-catenin expression was present in most cases and DR4/5 expression was largely homogenous. Similarly, in adenomas from APC(min) mice, cytoplasmic β-catenin staining co-localized with staining for the murine TRAIL death receptor. In conclusion, the gradual increase in TRAIL receptor expression during colorectal carcinogenesis is at least partially mediated through increased β-catenin expression, independently of TCF-4-signalling.
Collapse
|
11
|
Paul Olson TJ, Hadac JN, Sievers CK, Leystra AA, Deming DA, Zahm CD, Albrecht DM, Nomura A, Nettekoven LA, Plesh LK, Clipson L, Sullivan R, Newton MA, Schelman WR, Halberg RB. Dynamic tumor growth patterns in a novel murine model of colorectal cancer. Cancer Prev Res (Phila) 2013; 7:105-13. [PMID: 24196829 DOI: 10.1158/1940-6207.capr-13-0163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colorectal cancer often arises from adenomatous colonic polyps. Polyps can grow and progress to cancer, but may also remain static in size, regress, or resolve. Predicting which polyps progress and which remain benign is difficult. We developed a novel long-lived murine model of colorectal cancer with tumors that can be followed by colonoscopy. Our aim was to assess whether these tumors have similar growth patterns and histologic fates to human colorectal polyps to identify features to aid in risk stratification of colonic tumors. Long-lived Apc(Min/+) mice were treated with dextran sodium sulfate to promote colonic tumorigenesis. Tumor growth patterns were characterized by serial colonoscopy with biopsies obtained for immunohistochemistry and gene expression profiling. Tumors grew, remained static, regressed, or resolved over time with different relative frequencies. Newly developed tumors demonstrated higher rates of growth and resolution than more established tumors that tended to remain static in size. Colonic tumors were hyperplastic lesions (3%), adenomas (73%), intramucosal carcinomas (20%), or adenocarcinomas (3%). Interestingly, the level of β-catenin was higher in adenomas that became intratumoral carcinomas than those that failed to progress. In addition, differentially expressed genes between adenomas and intramucosal carcinomas were identified. This novel murine model of intestinal tumorigenesis develops colonic tumors that can be monitored by serial colonoscopy, mirror growth patterns seen in human colorectal polyps, and progress to colorectal cancer. Further characterization of cellular and molecular features is needed to determine which features can be used to risk-stratify polyps for progression to colorectal cancer and potentially guide prevention strategies.
Collapse
Affiliation(s)
- Terrah J Paul Olson
- University of Wisconsin-Madison K4/532 Clinical Science Center, 600 Highland Avenue, Madison, WI 53792.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|