1
|
Ranaivoson FM, Bande R, Cardaun I, De Riso A, Gärtner A, Loke P, Reinisch C, Vogirala P, Beaumont E. Crystal structure of human peptidylarginine deiminase type VI (PAD6) provides insights into its inactivity. IUCRJ 2024; 11:395-404. [PMID: 38656308 PMCID: PMC11067741 DOI: 10.1107/s2052252524002549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Human peptidylarginine deiminase isoform VI (PAD6), which is predominantly limited to cytoplasmic lattices in the mammalian oocytes in ovarian tissue, is essential for female fertility. It belongs to the peptidylarginine deiminase (PAD) enzyme family that catalyzes the conversion of arginine residues to citrulline in proteins. In contrast to other members of the family, recombinant PAD6 was previously found to be catalytically inactive. We sought to provide structural insight into the human homologue to shed light on this observation. We report here the first crystal structure of PAD6, determined at 1.7 Å resolution. PAD6 follows the same domain organization as other structurally known PAD isoenzymes. Further structural analysis and size-exclusion chromatography show that PAD6 behaves as a homodimer similar to PAD4. Differential scanning fluorimetry suggests that PAD6 does not coordinate Ca2+ which agrees with acidic residues found to coordinate Ca2+ in other PAD homologs not being conserved in PAD6. The crystal structure of PAD6 shows similarities with the inactive state of apo PAD2, in which the active site conformation is unsuitable for catalytic citrullination. The putative active site of PAD6 adopts a non-productive conformation that would not allow protein-substrate binding due to steric hindrance with rigid secondary structure elements. This observation is further supported by the lack of activity on the histone H3 and cytokeratin 5 substrates. These findings suggest a different mechanism for enzymatic activation compared with other PADs; alternatively, PAD6 may exert a non-enzymatic function in the cytoplasmic lattice of oocytes and early embryos.
Collapse
Affiliation(s)
- Fanomezana M. Ranaivoson
- Protein Sciences Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| | - Rieke Bande
- Assay Development Department, Manfred Eigen Campus, Evotec (Germany), Essener Bogen 7, 22419 Hamburg, Germany
| | - Isabell Cardaun
- In vitro Biology Department, Manfred Eigen Campus, Evotec SE, Essener Bogen 7, 22419 Hamburg, Germany
| | - Antonio De Riso
- Protein Sciences Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| | - Annette Gärtner
- In vitro Biology Department, Manfred Eigen Campus, Evotec SE, Essener Bogen 7, 22419 Hamburg, Germany
| | - Pui Loke
- Chemistry Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| | - Christina Reinisch
- Assay Development Department, Manfred Eigen Campus, Evotec (Germany), Essener Bogen 7, 22419 Hamburg, Germany
| | - Prasuna Vogirala
- Protein Sciences Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| | - Edward Beaumont
- Protein Sciences Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| |
Collapse
|
2
|
Nava-Quiroz KJ, López-Flores LA, Pérez-Rubio G, Rojas-Serrano J, Falfán-Valencia R. Peptidyl Arginine Deiminases in Chronic Diseases: A Focus on Rheumatoid Arthritis and Interstitial Lung Disease. Cells 2023; 12:2829. [PMID: 38132149 PMCID: PMC10741699 DOI: 10.3390/cells12242829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Protein citrullination is accomplished by a broad enzyme family named Peptidyl Arginine Deiminases (PADs), which makes this post-translational modification in many proteins that perform physiological and pathologic mechanisms in the body. Due to these modifications, citrullination has become a significant topic in the study of pathological processes. It has been related to some chronic and autoimmune diseases, including rheumatoid arthritis (RA), interstitial lung diseases (ILD), multiple sclerosis (MS), and certain types of cancer, among others. Antibody production against different targets, including filaggrin, vimentin, and collagen, results in an immune response if they are citrullinated, which triggers a continuous inflammatory process characteristic of autoimmune and certain chronic diseases. PAD coding genes (PADI1 to PADI4 and PADI6) harbor variations that can be important in these enzymes' folding, activity, function, and half-life. However, few studies have considered these genetic factors in the context of chronic diseases. Exploring PAD pathways and their role in autoimmune and chronic diseases is a major topic in developing new pharmacological targets and valuable biomarkers to improve diagnosis and prevention. The present review addresses and highlights genetic, molecular, biochemical, and physiopathological factors where PAD enzymes perform a major role in autoimmune and chronic diseases.
Collapse
Affiliation(s)
- Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
- Programa de Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Luis A. López-Flores
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
- Programa de Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| | - Jorge Rojas-Serrano
- Rheumatology Clinic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| |
Collapse
|
3
|
Wang B, Fields L, Li L. Recent advances in characterization of citrullination and its implication in human disease research: From method development to network integration. Proteomics 2023; 23:e2200286. [PMID: 36546832 PMCID: PMC10285031 DOI: 10.1002/pmic.202200286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Post-translational modifications (PTM) of proteins increase the functional diversity of the proteome and have been implicated in the pathogenesis of numerous diseases. The most widely understood modifications include phosphorylation, methylation, acetylation, O-linked/N-linked glycosylation, and ubiquitination, all of which have been extensively studied and documented. Citrullination is a historically less explored, yet increasingly studied, protein PTM which has profound effects on protein conformation and protein-protein interactions. Dysregulation of protein citrullination has been associated with disease development and progression. Identification and characterization of citrullinated proteins is highly challenging, complicated by the low cellular abundance of citrullinated proteins, making it difficult to identify and quantify the extent of citrullination in samples, coupled with challenges associated with development of mass spectrometry (MS)-based methods, as the corresponding mass shift is relatively small, +0.984 Da, and identical to the mass shift of deamidation. The focus of this review is to discuss recent advancements of citrullination-specific MS approaches and integration of the potential methodology for improved citrullination identification and characterization. In addition, the association of citrullination in disease networks is also highlighted.
Collapse
Affiliation(s)
- Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- School of Pharmacy, Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Thirugnanasambandham I, Radhakrishnan A, Kuppusamy G, Kumar Singh S, Dua K. PEPTIDYLARGININE DEIMINASE-4: MEDICO-FORMULATIVE STRATEGY TOWARDS MANAGEMENT OF RHEUMATOID ARTHRITIS. Biochem Pharmacol 2022; 200:115040. [DOI: 10.1016/j.bcp.2022.115040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022]
|
5
|
V Shaji B, Shaji S, V H H, S P, Y A. Calcium depletion at high glucose concentration promotes vesicle-mediated NET release in response to Staphylococcus aureus. Mol Immunol 2020; 124:211-217. [DOI: 10.1016/j.molimm.2020.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/04/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
|
6
|
Ying TC, Ibrahim Z, Rahman MBA, Tejo BA. Structure-Based Design of Peptide Inhibitors for Protein Arginine Deiminase Type IV (PAD4). ENCYCLOPEDIA OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY 2019:729-740. [DOI: 10.1016/b978-0-12-809633-8.20156-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Zhou Y, Mittereder N, Sims GP. Perspective on Protein Arginine Deiminase Activity-Bicarbonate Is a pH-Independent Regulator of Citrullination. Front Immunol 2018; 9:34. [PMID: 29403504 PMCID: PMC5778117 DOI: 10.3389/fimmu.2018.00034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/04/2018] [Indexed: 01/14/2023] Open
Abstract
Protein citrullination catalyzed by peptidyl arginine deiminase (PADs) is involved in autoimmune disease pathogenesis, especially in rheumatoid arthritis. Calcium is a key regulator of PAD activity, but under normal physiological conditions it remains uncertain how intracellular calcium levels can be raised to sufficiently high levels to activate these enzymes. In pursuit of trying to identify other factors that influence PAD activity, we identified bicarbonate as a potential regulator of PAD activity. We demonstrate that physiological levels of bicarbonate upregulate citrullination by recombinant PAD2/4 and endogenous PADs in neutrophils. The impact of bicarbonate is independent of calcium and pH. Adding bicarbonate to commercial PAD activity kits could increase assay performance and biological relevance. These results suggest that citrullination activity is regulated by multiple factors including calcium and bicarbonate. We also provide commentary on the current understanding of PAD regulation and future perspective of research in this area.
Collapse
Affiliation(s)
- Yebin Zhou
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| | - Nanette Mittereder
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| | - Gary P Sims
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, MD, United States
| |
Collapse
|
8
|
Shi J, Darrah E, Sims GP, Mustelin T, Sampson K, Konig MF, Bingham CO, Rosen A, Andrade F. Affinity maturation shapes the function of agonistic antibodies to peptidylarginine deiminase type 4 in rheumatoid arthritis. Ann Rheum Dis 2017; 77:141-148. [PMID: 29070531 DOI: 10.1136/annrheumdis-2017-211489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The citrullinating enzyme peptidylarginine deiminase type 4 (PAD4) is the target of a polyclonal group of autoantibodies in patients with rheumatoid arthritis (RA). A subgroup of such antibodies, initially identified by cross-reactivity with peptidylarginine deiminase type 3 (PAD3), is strongly associated with progression of radiographic joint damage and interstitial lung disease and has the unique ability to activate PAD4. The features of these antibodies in terms of their T cell-dependent origin, genetic characteristics and effect of individual antibody specificities on PAD4 function remain to be defined. METHODS We used PAD4 tagged with the monomeric fluorescent protein mWasabi to isolate PAD4-specific memory B cells from anti-PAD4 positive patients with RA and applied single cell cloning technologies to obtain monoclonal antibodies. RESULTS Among 44 single B cells, we cloned five antibodies with PAD4-activating properties. Sequence analysis, germline reversion experiments and antigen specificity assays suggested that autoantibodies to PAD4 are not polyreactive and arise from PAD4-reactive precursors. Somatic mutations increase the agonistic activity of these antibodies at low calcium concentrations by facilitating their interaction with structural epitopes that modulate calcium-binding site 5 in PAD4. CONCLUSIONS PAD4-activating antibodies directly amplify a key process in disease pathogenesis, making them unique among other autoantibodies in RA. Understanding the molecular basis for their functionality may inform the design of future PAD4 inhibitors.
Collapse
Affiliation(s)
- Jing Shi
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gary P Sims
- Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Tomas Mustelin
- Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Kevon Sampson
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maximilian F Konig
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Clifton O Bingham
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Antony Rosen
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Wang L, Song G, Zhang X, Feng T, Pan J, Chen W, Yang M, Bai X, Pang Y, Yu J, Han J, Han B. PADI2-Mediated Citrullination Promotes Prostate Cancer Progression. Cancer Res 2017; 77:5755-5768. [DOI: 10.1158/0008-5472.can-17-0150] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/31/2017] [Accepted: 08/11/2017] [Indexed: 11/16/2022]
|
10
|
Zhai Q, Wang L, Zhao P, Li T. Role of citrullination modification catalyzed by peptidylarginine deiminase 4 in gene transcriptional regulation. Acta Biochim Biophys Sin (Shanghai) 2017; 49:567-572. [PMID: 28472221 DOI: 10.1093/abbs/gmx042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022] Open
Abstract
Peptidylarginine deiminase 4 (PADI4), a new histone modification enzyme, which converts both arginine and monomethyl-arginine to citrulline, has gained massive attention in recent years as a potential regulator of gene transcription. Recent studies have shown that arginine residues R2, R8, R17, and R26 in the H3 tail and R3 in the H4 tail can be deiminated by PADI4. This kind of histone post-translational modification has the potential to antagonize histone methylation and coordinate with histone deacetylation to regulate gene transcription. PADI4 also deiminates non-histone proteins, such as p300, NPM1, ING4, RPS2, and DNMT3A. PADI4 has been shown to involve in cell apoptosis and differentiation. Moreover, PADI4 can interact with tumor suppressor p53 and regulate the transcriptional activity of p53. Dysregulation of PADI4 is implicated in a variety of diseases, including rheumatoid arthritis, tumor development, and multiple sclerosis. A wide variety of PADI4 inhibitors have been identified. Further understanding of PADI4 functions may lead to novel diagnostic and therapeutic approaches in these diseases. This review summarizes the recent progress in the study of the regulation mechanism of PADI4 on gene transcription and the major physiological functions of PADI4 in human diseases.
Collapse
Affiliation(s)
- Qiaoli Zhai
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| | - Lianqing Wang
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| | - Peiqing Zhao
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| | - Tao Li
- Center of Translational Medicine, Central Hospital of Zibo, Shandong University, Zibo 255036, China
| |
Collapse
|
11
|
Probing the Roles of Calcium-Binding Sites during the Folding of Human Peptidylarginine Deiminase 4. Sci Rep 2017; 7:2429. [PMID: 28546558 PMCID: PMC5445078 DOI: 10.1038/s41598-017-02677-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 04/18/2017] [Indexed: 11/24/2022] Open
Abstract
Our recent studies of peptidylarginine deiminase 4 (PAD4) demonstrate that its non-catalytic Ca2+-binding sites play a crucial role in the assembly of the correct geometry of the enzyme. Here, we examined the folding mechanism of PAD4 and the role of Ca2+ ions in the folding pathway. Multiple mutations were introduced into the calcium-binding sites, and these mutants were termed the Ca1_site, Ca2_site, Ca3_site, Ca4_site and Ca5_site mutants. Our data indicate that during the unfolding process, the PAD4 dimer first dissociates into monomers, and the monomers then undergo a three-state denaturation process via an intermediate state formation. In addition, Ca2+ ions assist in stabilizing the folding intermediate, particularly through binding to the Ca3_site and Ca4_site to ensure the correct and active conformation of PAD4. The binding of calcium ions to the Ca1_site and Ca2_site is directly involved in the catalytic action of the enzyme. Finally, this study proposes a model for the folding of PAD4. The nascent polypeptide chains of PAD4 are first folded into monomeric intermediate states, then continue to fold into monomers, and ultimately assemble into a functional and dimeric PAD4 enzyme, and cellular Ca2+ ions may be the critical factor governing the interchange.
Collapse
|
12
|
Sarswat A, Wasilewski E, Chakka SK, Bello AM, Caprariello AV, Muthuramu CM, Stys PK, Dunn SE, Kotra LP. Inhibitors of protein arginine deiminases and their efficacy in animal models of multiple sclerosis. Bioorg Med Chem 2017; 25:2643-2656. [PMID: 28341402 DOI: 10.1016/j.bmc.2017.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 11/25/2022]
Abstract
Protein arginine deiminases (PAD) are implicated in a variety of inflammatory and neurodegenerative diseases including multiple sclerosis (MS). Following the discovery of an in silico hit containing hydantoin and a piperidine moiety, we hypothesized that a 2-carbon linker on the hydantoin would be necessary for a 5-membered heterocycle for optimal PAD inhibitory activity. We designed thirteen compounds as potential inhibitors of PAD2 and PAD4 enzymes-two important PAD enzymes implicated in MS. Two compounds, one with an imidazole moiety (22) and the other with a tetrazole moiety (24) showed good inhibition of PAD isozymes in vitro and in the EAE mouse model of MS in vivo. Further experiments suggested that compound 22, a non-covalent inhibitor of PAD2 and PAD4, exhibits dose-dependent efficacy in the EAE mouse model and in the cuprizone-mediated demyelination model.
Collapse
Affiliation(s)
- Amit Sarswat
- Centre for Molecular Design and Preformulations, and Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ewa Wasilewski
- Centre for Molecular Design and Preformulations, and Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario M5S 3M2, Canada
| | - Sai K Chakka
- Centre for Molecular Design and Preformulations, and Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Angelica M Bello
- Centre for Molecular Design and Preformulations, and Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario M5S 3M2, Canada
| | - Andrew V Caprariello
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Chithra M Muthuramu
- Centre for Molecular Design and Preformulations, and Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Peter K Stys
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Shannon E Dunn
- Centre for Molecular Design and Preformulations, and Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Immunology, University of Toronto, and Women's College Research Institute, Toronto, Ontario, M5S 1B2, Canada
| | - Lakshmi P Kotra
- Centre for Molecular Design and Preformulations, and Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
13
|
Lee CY, Lin CC, Liu YL, Liu GY, Liu JH, Hung HC. Molecular Interplay between the Dimer Interface and the Substrate-Binding Site of Human Peptidylarginine Deiminase 4. Sci Rep 2017; 7:42662. [PMID: 28209966 PMCID: PMC5314407 DOI: 10.1038/srep42662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
Abstract
Our previous studies suggest that the fully active form of Peptidylarginine deiminase 4 (PAD4) should be a dimer and not a monomer. This paper provides a plausible mechanism for the control of PAD4 catalysis by molecular interplay between its dimer-interface loop (I-loop) and its substrate-binding loop (S-loop). Mutagenesis studies revealed that two hydrophobic residues, W347 and V469, are critical for substrate binding at the active site; mutating these two residues led to a severe reduction in the catalytic activity. We also identified several hydrophobic amino acid residues (L6, L279 and V283) at the dimer interface. Ultracentrifugation analysis revealed that interruption of the hydrophobicity of this region decreases dimer formation and, consequently, enzyme activity. Molecular dynamic simulations and mutagenesis studies suggested that the dimer interface and the substrate-binding site of PAD4, which consist of the I-loop and the S-loop, respectively, are responsible for substrate binding and dimer stabilization. We identified five residues with crucial roles in PAD4 catalysis and dimerization: Y435 and R441 in the I-loop, D465 and V469 in the S-loop, and W548, which stabilizes the I-loop via van der Waals interactions with C434 and Y435. The molecular interplay between the S-loop and the I-loop is crucial for PAD4 catalysis.
Collapse
Affiliation(s)
- Chien-Yun Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Chu-Cheng Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Liang Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jyung-Hurng Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
14
|
Myelin Basic Protein Citrullination in Multiple Sclerosis: A Potential Therapeutic Target for the Pathology. Neurochem Res 2016; 41:1845-56. [PMID: 27097548 DOI: 10.1007/s11064-016-1920-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial demyelinating disease characterized by neurodegenerative events and autoimmune response against myelin component. Citrullination or deimination, a post-translational modification of protein-bound arginine into citrulline, catalyzed by Ca(2+) dependent peptidylarginine deiminase enzyme (PAD), plays an essential role in physiological processes include gene expression regulation, apoptosis and the plasticity of the central nervous system, while aberrant citrullination can generate new epitopes, thus involving in the initiation and/or progression of autoimmune disorder like MS. Myelin basic protein (MBP) is the major myelin protein and is generally considered to maintain the stability of the myelin sheath. This review describes the MBP citrullination and its consequence, as well as offering further support for the "inside-out" hypothesis that MS is primarily a neurodegenerative disease with secondary inflammatory demyelination. In addition, it discusses the role of MBP citrullination in the immune inflammation and explores the potential of inhibition of PAD enzymes as a therapeutic strategy for the disease.
Collapse
|
15
|
Hsu PC, Liao YF, Lin CL, Lin WH, Liu GY, Hung HC. Vimentin is involved in peptidylarginine deiminase 2-induced apoptosis of activated Jurkat cells. Mol Cells 2014; 37:426-34. [PMID: 24850148 PMCID: PMC4044315 DOI: 10.14348/molcells.2014.2359] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/20/2014] [Accepted: 04/21/2014] [Indexed: 01/27/2023] Open
Abstract
Peptidylarginine deiminase type 2 (PADI2) deiminates (or citrullinates) arginine residues in protein to citrulline residues in a Ca2+-dependent manner, and is found in lymphocytes and macrophages. Vimentin is an intermediate filament protein and a well-known substrate of PADI2. Citrullinated vimentin is found in ionomycin-induced macrophage apoptosis. Citrullinated vimentin is the target of anti-Sa antibodies, which are specific to rheumatoid arthritis, and play a critical role in the pathogenesis of the disease. To investigate the role of PADI2 in apoptosis, we generated a Jurkat cell line that overexpressed the PADI2 transgene from a tetracycline-inducible promoter, and used a combination of 12-O-tetradecanoylphorbol-13-acetate and ionomycin to activate Jurkat cells. We found that PADI2 overexpression reduced the cell viability of activated Jurkat cells in1a dose- and time-dependent manner. The PADI2-overexpressed and -activated Jurkat cells presented typical manifestations of apoptosis, and exhibited greater levels of citrullinated proteins, including citrullinated vimentin. Vimentin overexpression rescued a portion of the cells from apoptosis. In conclusion, PADI2 overexpression induces apoptosis in activated Jurkat cells. Vimentin is involved in PADI2-induced apoptosis. Moreover, PADI2-overexpressed Jurkat cells secreted greater levels of vimentin after activation, and expressed more vimentin on their cell surfaces when undergoing apoptosis. Through artificially highlighting PADI2 and vimentin, we demonstrated that PADI2 and vimentin participate in the apoptotic mechanisms of activated T lymphocytes. The secretion and surface expression of vimentin are possible ways of autoantigen presentation to the immune system.
Collapse
Affiliation(s)
- Pei-Chen Hsu
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, and Agricultural Biotechnology Center (ABC), National Chung Hsing University, Taiwan,
Republic of China
- Department of Medicine, Da-Chien General Hospital, Taiwan,
Republic of China
| | - Ya-Fan Liao
- Department of Applied Chemistry, Chaoyang University of Technology, Taiwan,
Republic of China
| | - Chin-Li Lin
- Institute of Medicine, Chung Shan Medical University
| | - Wen-Hao Lin
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, and Agricultural Biotechnology Center (ABC), National Chung Hsing University, Taiwan,
Republic of China
| | - Guang-Yaw Liu
- Institute of Microbiology and Immunology, Chung Shan Medical University, and Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taiwan,
Republic of China
| | - Hui-Chih Hung
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, and Agricultural Biotechnology Center (ABC), National Chung Hsing University, Taiwan,
Republic of China
| |
Collapse
|
16
|
Acharya NK, Nagele EP, Han M, Nagele RG. Autoantibodies: double agents in human disease. Sci Transl Med 2014; 5:186fs19. [PMID: 23698377 DOI: 10.1126/scitranslmed.3006288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nimish K Acharya
- New Jersey Institute for Successful Aging, School of Osteopathic Medicine-SOM, University of Medicine and Dentistry of New Jersey-UMDNJ, Stratford, NJ 08084, USA
| | | | | | | |
Collapse
|
17
|
Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1126-35. [PMID: 23860259 DOI: 10.1016/j.bbagrm.2013.07.003] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023]
Abstract
Peptidylarginine deiminases are a family of enzymes that mediate post-translational modifications of protein arginine residues by deimination or demethylimination to produce citrulline. In vitro, the activity of PADs is dependent on calcium and reductive reagents carrying a free sulfhydryl group. The discovery that PAD4 can target both arginine and methyl-arginine for citrullination about 10years ago renewed our interest in studying this family of enzymes in gene regulation and their physiological functions. The deregulation of PADs is involved in the etiology of multiple human diseases, including cancers and autoimmune disorders. There is a growing effort to develop isoform specific PAD inhibitors for disease treatment. However, the regulation of the activity of PADs in vivo remains largely elusive, and we expect that much will be learned about the role of these enzymes in a normal life cycle and under pathology conditions.
Collapse
|