1
|
Gürsel Ürün Y, Budak M, Usturalı Keskin E. Methylation status, mRNA and protein expression of the SMAD4 gene in patients with non-melanocytic skin cancers. Mol Biol Rep 2023; 50:7295-7304. [PMID: 37428273 DOI: 10.1007/s11033-023-08656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND SMAD4 is a potent tumor suppressor. SMAD4 loss increases genomic instability and plays a critical role in the DNA damage response that leads to skin cancer development. We aimed to investigate SMAD4 methylation effects on mRNA and protein expression of SMAD4 in cancer and healthy tissues from patients with basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (cSCC), and basosquamous skin cancer (BSC). METHODS AND RESULTS The study included 17 BCC, 24 cSCC and nine BSC patients. DNA and RNA were isolated from cancerous and healthy tissues following punch biopsy. Methylation-specific polymerase chain reaction (PCR) and real-time quantitative PCR methods were used to examine SMAD4 promoter methylation and SMAD4 mRNA levels, respectively. The percentage and intensity of staining of the SMAD4 protein were determined by immunohistochemistry. The percentage of SMAD4 methylation was increased in the patients with BCC (p = 0.007), cSCC (p = 0.004), and BSC (p = 0.018) compared to the healthy tissue. SMAD4 mRNA expression was decreased in the patients with BCC (p˂0.001), cSCC (p˂0.001), and BSC (p = 0.008). The staining characteristic of SMAD4 protein was negative in the cancer tissues of the patients with cSCC (p = 0.00). Lower SMAD4 mRNA levels were observed in the poorly differentiated cSCC patients (p = 0.001). The staining characteristics of the SMAD4 protein were related to age and chronic sun exposure. CONCLUSIONS Hypermethylation of SMAD4 and reduced SMAD4 mRNA expression were found to play a role in the pathogenesis of BCC, cSCC, and BSC. A decrease in SMAD4 protein expression level was observed only in cSCC patients. This suggests that epigenetic alterations to the SMAD4 gene are associated with cSCC. TRIAL REGISTRATION The name of the trial register: SMAD4 Methylation and Expression Levels in Non-melanocytic Skin Cancers; SMAD4 Protein Positivity. The registration number: NCT04759261 ( https://clinicaltrials.gov/ct2/results?term=NCT04759261 ).
Collapse
Affiliation(s)
- Yıldız Gürsel Ürün
- Department of Dermatology and Venereology, Faculty of Medicine, Trakya University, Edirne, Turkey.
| | - Metin Budak
- Department of Biophysics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | | |
Collapse
|
2
|
Jia X, He L, Yang Z. Recent advances in the role of Yes-associated protein in dermatosis. Skin Res Technol 2023; 29:e13285. [PMID: 36973973 PMCID: PMC10155855 DOI: 10.1111/srt.13285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 03/04/2023]
Abstract
BACKGROUND Dermatosis is a general term for diseases of the skin and skin appendages including scleroderma, psoriasis, bullous disease, atopic dermatitis, basal cell carcinoma, squamous cell carcinoma, and melanoma. These diseases affect millions of individuals globally and are a serious public health concern. However, the pathogenesis of skin diseases is not fully understood, and treatments are not optimal. Yes-associated protein (YAP) is a transcriptional coactivator that plays a role in the regulation of gene transcription and signal transduction. AIMS To study the role of Yes-associated protein in skin diseases. MATERIALS AND METHODS The present review summarizes recent advances in our understanding of the role of YAP in skin diseases, current treatments that target YAP, and potential avenues for novel therapies. RESULTS Abnormal YAP expression has been implicated in occurrence and development of dermatosis. YAP regulates the cell homeostasis, proliferation, differentiation, apoptosis, angiopoiesis, and epithelial-to-mesenchymal transition, among other processes. As well as, it serves as a potential target in many biological processes for treating dermatosis. CONCLUSIONS The effects of YAP on the skin are complex and require multidimensional investigational approaches. YAP functions as an oncoprotein that can promote the occurrence and development of cancer, but there is currently limited information on the therapeutic potential of YAP inhibition for cancer treatment. Additional studies are also needed to clarify the role of YAP in the development and maturation of dermal fibroblasts; skin barrier function, homeostasis, aging, and melanin production; and dermatosis.
Collapse
Affiliation(s)
- Xiaorong Jia
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Li He
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Zhi Yang
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| |
Collapse
|
3
|
Di Bartolomeo L, Vaccaro F, Irrera N, Borgia F, Li Pomi F, Squadrito F, Vaccaro M. Wnt Signaling Pathways: From Inflammation to Non-Melanoma Skin Cancers. Int J Mol Sci 2023; 24:ijms24021575. [PMID: 36675086 PMCID: PMC9867176 DOI: 10.3390/ijms24021575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Canonical and non-canonical Wnt signaling pathways are involved in cell differentiation and homeostasis, but also in tumorigenesis. In fact, an exaggerated activation of Wnt signaling may promote tumor growth and invasion. We summarize the most intriguing evidence about the role of Wnt signaling in cutaneous carcinogenesis, in particular in the pathogenesis of non-melanoma skin cancer (NMSC). Wnt signaling is involved in several ways in the development of skin tumors: it may modulate the inflammatory tumor microenvironment, synergize with Sonic Hedgehog pathway in the onset of basal cell carcinoma, and contribute to the progression from precancerous to malignant lesions and promote the epithelial-mesenchymal transition in squamous cell carcinoma. Targeting Wnt pathways may represent an additional efficient approach in the management of patients with NMSC.
Collapse
Affiliation(s)
- Luca Di Bartolomeo
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Federico Vaccaro
- Department of Dermatology, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, 98125 Messina, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, 98125 Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
- Correspondence:
| |
Collapse
|
4
|
Ko EK, Capell BC. Methyltransferases in the Pathogenesis of Keratinocyte Cancers. Cancers (Basel) 2021; 13:cancers13143402. [PMID: 34298617 PMCID: PMC8304454 DOI: 10.3390/cancers13143402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/13/2022] Open
Abstract
Recent evidence suggests that the disruption of gene expression by alterations in DNA, RNA, and histone methylation may be critical contributors to the pathogenesis of keratinocyte cancers (KCs), made up of basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), which collectively outnumber all other human cancers combined. While it is clear that methylation modifiers are frequently dysregulated in KCs, the underlying molecular and mechanistic changes are only beginning to be understood. Intriguingly, it has recently emerged that there is extensive cross-talk amongst these distinct methylation processes. Here, we summarize and synthesize the latest findings in this space and highlight how these discoveries may uncover novel therapeutic approaches for these ubiquitous cancers.
Collapse
Affiliation(s)
- Eun Kyung Ko
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Brian C. Capell
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
5
|
Yao Q, Epstein CB, Banskota S, Issner R, Kim Y, Bernstein BE, Pinello L, Asgari MM. Epigenetic Alterations in Keratinocyte Carcinoma. J Invest Dermatol 2021; 141:1207-1218. [PMID: 33212152 PMCID: PMC8068579 DOI: 10.1016/j.jid.2020.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are both derived from epidermal keratinocytes but are phenotypically diverse. To improve the understanding of keratinocyte carcinogenesis, it is critical to understand epigenetic alterations, especially those that govern gene expression. We examined changes to the enhancer-associated histone acetylation mark H3K27ac by mapping matched tumor-normal pairs from 11 patients (five with BCC and six with SCC) undergoing Mohs surgery. Our analysis uncovered cancer-specific enhancers on the basis of differential H3K27ac peaks between matched tumor-normal pairs. We also uncovered biological pathways potentially altered in keratinocyte carcinoma, including enriched epidermal development and Wnt signaling pathways enriched in BCCs and enriched immune response and cell activation pathways in SCCs. We also observed enrichment of transcription factors that implicated SMAD and JDP2 in BCC pathogenesis and FOXP1 in SCC pathogenesis. On the basis of these findings, we prioritized three loci with putative regulation events (FGFR2 enhancer in BCC, intragenic regulation of FOXP1 in SCC, and WNT5A promoter in both subtypes) and validated our findings with published gene expression data. Our findings highlight unique and shared epigenetic alterations in histone modifications and potential regulators for BCCs and SCCs that likely impact the divergent oncogenic pathways, paving the way for targeted drug discoveries.
Collapse
Affiliation(s)
- Qiuming Yao
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Charles B Epstein
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Samridhi Banskota
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Robbyn Issner
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yuhree Kim
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Bradley E Bernstein
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Luca Pinello
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | - Maryam M Asgari
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Targeting Hedgehog Pathway and DNA Methyltransferases in Uterine Leiomyosarcoma Cells. Cells 2020; 10:cells10010053. [PMID: 33396427 PMCID: PMC7824187 DOI: 10.3390/cells10010053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Uterine leiomyosarcoma (LMS) is an aggressive tumor that presents poor prognosis, high rates of recurrence and metastasis. Because of its rarity, there is no information available concerning LMS molecular mechanisms of origin and development. Here, we assessed the expression profile of Hedgehog (HH) signaling pathway markers and the effects of their pharmacological inhibition on uterine smooth muscle (UTSM), leiomyoma and LMS cells. Additionally, we also evaluated the effects of DNMTs inhibition on LMS cells behavior. Cell proliferation, migration and apoptosis rates were evaluated by MTT, Scratch and Annexin V assays, respectively. RNA expression and protein levels were assessed by qRT-PCR and Western blot. We found that SMO and GLIs (1, 2 and 3) expression was upregulated in LMS cells, with increased nuclear levels of GLI proteins. Treatment with LDE225 (SMOi) and Gant61 (GLIi) resulted in a significant reduction in Glis protein levels in LMS (p < 0.05). Additionally, the expression of DNMT (1, 3a, and 3b), as well as GLI1 nuclear expression, was significantly decreased after treatment with HH inhibitor in LMS cells. Our results showed that blocking of SMO, GLI and DNMTs is able to inhibit LMS proliferation, migration and invasion. Importantly, the combination of those treatments exhibited a potentiated effect on LMS malignant features due to HH pathway deactivation.
Collapse
|
7
|
Kashyap MP, Sinha R, Mukhtar MS, Athar M. Epigenetic regulation in the pathogenesis of non-melanoma skin cancer. Semin Cancer Biol 2020; 83:36-56. [PMID: 33242578 DOI: 10.1016/j.semcancer.2020.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Understanding of cancer with the help of ever-expanding cutting edge technological tools and bioinformatics is revolutionizing modern cancer research by broadening the space of discovery window of various genomic and epigenomic processes. Genomics data integrated with multi-omics layering have advanced cancer research. Uncovering such layers of genetic mutations/modifications, epigenetic regulation and their role in the complex pathophysiology of cancer progression could lead to novel therapeutic interventions. Although a plethora of literature is available in public domain defining the role of various tumor driver gene mutations, understanding of epigenetic regulation of cancer is still emerging. This review focuses on epigenetic regulation association with the pathogenesis of non-melanoma skin cancer (NMSC). NMSC has higher prevalence in Caucasian populations compared to other races. Due to lack of proper reporting to cancer registries, the incidence rates for NMSC worldwide cannot be accurately estimated. However, this is the most common neoplasm in humans, and millions of new cases per year are reported in the United States alone. In organ transplant recipients, the incidence of NMSC particularly of squamous cell carcinoma (SCC) is very high and these SCCs frequently become metastatic and lethal. Understanding of solar ultraviolet (UV) light-induced damage and impaired DNA repair process leading to DNA mutations and nuclear instability provide an insight into the pathogenesis of metastatic neoplasm. This review discusses the recent advances in the field of epigenetics of NMSCs. Particularly, the role of DNA methylation, histone hyperacetylation and non-coding RNA such as long-chain noncoding (lnc) RNAs, circular RNAs and miRNA in the disease progression are summarized.
Collapse
Affiliation(s)
- Mahendra Pratap Kashyap
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rajesh Sinha
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Piipponen M, Nissinen L, Kähäri VM. Long non-coding RNAs in cutaneous biology and keratinocyte carcinomas. Cell Mol Life Sci 2020; 77:4601-4614. [PMID: 32462404 PMCID: PMC7599158 DOI: 10.1007/s00018-020-03554-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a largely uncharacterized group of non-coding RNAs with diverse regulatory roles in various biological processes. Recent observations have elucidated the functional roles of lncRNAs in cutaneous biology, e.g. in proliferation and differentiation of epidermal keratinocytes and in cutaneous wound repair. Furthermore, the role of lncRNAs in keratinocyte-derived skin cancers is emerging, especially in cutaneous squamous cell carcinoma (cSCC), which presents a significant burden to health care services worldwide and causes high mortality as metastatic disease. Elucidation of the functions of keratinocyte-specific lncRNAs will improve understanding of the molecular pathogenesis of epidermal disorders and skin cancers and can be exploited in development of new diagnostic and therapeutic applications for keratinocyte carcinomas. In this review, we summarize the current evidence of functionally important lncRNAs in cutaneous biology and in keratinocyte carcinomas.
Collapse
Affiliation(s)
- Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
- Cancer Research Laboratory, Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland
- Cancer Research Laboratory, Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, 20520, Turku, Finland.
- Cancer Research Laboratory, Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
9
|
Recent Advances in Signaling Pathways Comprehension as Carcinogenesis Triggers in Basal Cell Carcinoma. J Clin Med 2020; 9:jcm9093010. [PMID: 32961989 PMCID: PMC7565128 DOI: 10.3390/jcm9093010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common malignant skin tumor. BCC displays a different behavior compared with other neoplasms, has a slow evolution, and metastasizes very rarely, but sometimes it causes an important local destruction. Chronic ultraviolet exposure along with genetic factors are the most important risk factors involved in BCC development. Mutations in the PTCH1 gene are associated with Gorlin syndrome, an autosomal dominant disorder characterized by the occurrence of multiple BCCs, but are also the most frequent mutations observed in sporadic BCCs. PTCH1 encodes for PTCH1 protein, the most important negative regulator of the Hedgehog (Hh) pathway. There are numerous studies confirming Hh pathway involvement in BCC pathogenesis. Although Hh pathway has been intensively investigated, it remains incompletely elucidated. Recent studies on BCC tumorigenesis have shown that in addition to Hh pathway, there are other signaling pathways involved in BCC development. In this review, we present recent advances in BCC carcinogenesis.
Collapse
|
10
|
Yang F, Liu D, Deng Y, Wang J, Mei S, Ge S, Li H, Zhang C, Zhang T. Frequent promoter methylation of HOXD10 in endometrial carcinoma and its pathological significance. Oncol Lett 2020; 19:3602-3608. [PMID: 32269635 DOI: 10.3892/ol.2020.11467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/02/2020] [Indexed: 02/07/2023] Open
Abstract
Homeobox D 10 (HOXD10) is important in cell differentiation and morphogenesis and serves as a tumor suppressor gene (TSG) in a number of malignancies. The present study investigated its promoter methylation status and association with the clinicopathological features of endometrial cancer (EC), and measured HOXD10 protein expression levels. EC samples (n=62), including 50 endometroid adenocarcinoma (EA) and 12 mucinous endometrial carcinoma samples (EC) and 70 non-cancerous samples were collected. All samples were evaluated for the methylation status of several TSGs, including HOXD10, using methylation-specific PCR. HOXD10 expression level was evaluated using immunohistochemistry. 5-Aza-2-deoxycytidine treatment was performed in the EC cell line Ishikawa to observe the change in HOXD10 expression levels. HOXD10 promoter methylation was more frequent in cancer samples (P<0.001). Downregulation of HOXD10 in EC samples was confirmed at the protein level using immunohistochemistry (P<0.001) and immunohistochemical staining was negatively associated with methylation status (P<0.05). Less HOXD10 protein was expressed in MEC compared with EA samples (P<0.001). The HOXD10 promoter was hypermethylated in both EA and MEC, causing decreased HOXD10 protein expression levels in EC cells. HOXD10 expression levels were partially reversed by 5-Aza-2-deoxycytidine treatment. The results of the present study demonstrated that epigenetic silencing of HOXD10 putatively contributed to the tumorigenesis of EA. Although there was no significant difference in HOXD10 methylation between EA and MEC, HOXD10 protein expression levels differed between these two diseases, indicating that it may be a useful protein biomarker for distinguishing between these two lesions.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Dongchen Liu
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Yupeng Deng
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Jun Wang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Shuyu Mei
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Shuang Ge
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Hailing Li
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
11
|
Todorova K, Mandinova A. Novel approaches for managing aged skin and nonmelanoma skin cancer. Adv Drug Deliv Rev 2020; 153:18-27. [PMID: 32526451 DOI: 10.1016/j.addr.2020.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
The process of aging influences every bodily organ and tissue, and those with rapid epithelial cell turnover, are particularly affected. The most visible of these, however, is the skin (including the epidermis), the largest human organ that provides a barrier to external insults, structure to the body and its movements, facilitates thermoregulation, harbors immune cells, and incorporates sensory neurons (including mechanoreceptors, nociceptors, and thermoreceptors). Skin aging has traditionally been categorized into intrinsic and extrinsic, with the latter nearly exclusively restricted to "photoaging," (i.e., aging due to exposure to solar or artificial ultraviolet radiation). However, both intrinsic and extrinsic aging share similar causes, including oxidative damage, telomere shortening, and mitochondrial senescence. Also, like other malignancies, the risk of malignant and nonmalignant lesions increases with age. Herein, we review the most recent findings in skin aging and nonmelanoma skin cancer, including addition to traditional and developing therapies.
Collapse
|
12
|
Hawkshaw N, Hardman J, Alam M, Jimenez F, Paus R. Deciphering the molecular morphology of the human hair cycle: Wnt signalling during the telogen–anagen transformation. Br J Dermatol 2019; 182:1184-1193. [DOI: 10.1111/bjd.18356] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
Affiliation(s)
- N.J. Hawkshaw
- Centre for Dermatology Research The University of Manchester and NIHR Biomedical Research Centre Manchester U.K
| | - J.A. Hardman
- Centre for Dermatology Research The University of Manchester and NIHR Biomedical Research Centre Manchester U.K
| | - M. Alam
- Mediteknia Skin and Hair Lab Las Palmas de Gran Canaria Spain
- Monasterium Laboratory Skin and Hair Research Solutions GmbH Münster Germany
- Universidad Fernando Pessoa‐Canarias Las Palmas de Gran Canaria Spain
| | - F. Jimenez
- Mediteknia Skin and Hair Lab Las Palmas de Gran Canaria Spain
- Universidad Fernando Pessoa‐Canarias Las Palmas de Gran Canaria Spain
| | - R. Paus
- Centre for Dermatology Research The University of Manchester and NIHR Biomedical Research Centre Manchester U.K
- Monasterium Laboratory Skin and Hair Research Solutions GmbH Münster Germany
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL U.S.A
| |
Collapse
|
13
|
Lang CMR, Chan CK, Veltri A, Lien WH. Wnt Signaling Pathways in Keratinocyte Carcinomas. Cancers (Basel) 2019; 11:cancers11091216. [PMID: 31438551 PMCID: PMC6769728 DOI: 10.3390/cancers11091216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The skin functions as a barrier between the organism and the surrounding environment. Direct exposure to external stimuli and the accumulation of genetic mutations may lead to abnormal cell growth, irreversible tissue damage and potentially favor skin malignancy. Skin homeostasis is coordinated by an intricate signaling network, and its dysregulation has been implicated in the development of skin cancers. Wnt signaling is one such regulatory pathway orchestrating skin development, homeostasis, and stem cell activation. Aberrant regulation of Wnt signaling cascades not only gives rise to tumor initiation, progression and invasion, but also maintains cancer stem cells which contribute to tumor recurrence. In this review, we summarize recent studies highlighting functional evidence of Wnt-related oncology in keratinocyte carcinomas, as well as discussing preclinical and clinical approaches that target oncogenic Wnt signaling to treat cancers. Our review provides valuable insight into the significance of Wnt signaling for future interventions against keratinocyte carcinomas.
Collapse
Affiliation(s)
| | - Chim Kei Chan
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Anthony Veltri
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Wen-Hui Lien
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium.
| |
Collapse
|
14
|
Köhler F, Rodríguez-Paredes M. DNA Methylation in Epidermal Differentiation, Aging, and Cancer. J Invest Dermatol 2019; 140:38-47. [PMID: 31427190 DOI: 10.1016/j.jid.2019.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/24/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022]
Abstract
The formation and maintenance of the epidermis depend on epidermal stem cell differentiation and must be tightly regulated. Epigenetic mechanisms such as DNA methylation allow the precise gene expression cascade needed during cellular differentiation. However, these mechanisms become deregulated during aging and tumorigenesis, where cellular function and identity become compromised. Here we provide a review of this rapidly developing field. We discuss recent discoveries related to epidermal homeostasis, aging, and cancer, including the functional role of DNA methyltransferases, the methylation clock, and the determination of tumor cells-of-origin. Finally, we focus on future advances, greatly influenced by single-cell sequencing technologies.
Collapse
Affiliation(s)
- Florian Köhler
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Manuel Rodríguez-Paredes
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
15
|
Yu J, Xie Y, Li M, Zhou F, Zhong Z, Liu Y, Wang F, Qi J. Association between SFRP promoter hypermethylation and different types of cancer: A systematic review and meta-analysis. Oncol Lett 2019; 18:3481-3492. [PMID: 31516566 PMCID: PMC6733008 DOI: 10.3892/ol.2019.10709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Abnormal methylation of secreted frizzled-related proteins (SFRPs) has been observed in various human cancer types. The loss of SFRP gene expression induces the activation of the Wnt pathway and is a vital mechanism for tumorigenesis and development. The aim of the present systematic review was to assess the association between SFRP methylation and cancer risk. A meta-analysis was systematically conducted to assess the clinicopathological significance of SFRP methylation in cancer risk. The Cochrane Library, PubMed and Web of Science databases were comprehensively searched, and 83 publications with a total of 21,612 samples were selected for the meta-analysis. The pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to evaluate the degree of associations between SFRP promoter methylation and cancer risk. Subgroup analysis, meta regression and sensitivity analysis were used to identify the potential sources of heterogeneity. SFRP1, SFRP2, SFRP4 and SFRP5 hypermethylation was significantly associated with cancer risk, with ORs of 8.48 (95% CI, 6.26-11.49), 8.21 (95% CI, 6.20-10.88), 11.41 (95% CI, 6.42-20.30) and 6.34 (95% CI, 3.86-10.42), respectively. SFRP2 methylation was significantly associated with differentiation in colorectal cancer (OR, 2.16; 95% CI, 1.02-4.56). The results of the present study demonstrated that SFRP methylation may contribute to carcinogenesis, especially in certain cancer types, including hepatocellular carcinoma and colorectal cancer.
Collapse
Affiliation(s)
- Jun Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yang Xie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Mengying Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fenfang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhenyang Zhong
- Department of Nephrology, Xingguo County People's Hospital, Ganzhou, Jiangxi 344000, P.R. China
| | - Yuting Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Feng Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jian Qi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
16
|
|
17
|
Mitsiogianni M, Amery T, Franco R, Zoumpourlis V, Pappa A, Panayiotidis MI. From chemo-prevention to epigenetic regulation: The role of isothiocyanates in skin cancer prevention. Pharmacol Ther 2018; 190:187-201. [DOI: 10.1016/j.pharmthera.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Tan SH, Barker N. Wnt Signaling in Adult Epithelial Stem Cells and Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:21-79. [PMID: 29389518 DOI: 10.1016/bs.pmbts.2017.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Wnt/β-catenin signaling is integral to the homeostasis and regeneration of many epithelial tissues due to its critical role in adult stem cell regulation. It is also implicated in many epithelial cancers, with mutations in core pathway components frequently present in patient tumors. In this chapter, we discuss the roles of Wnt/β-catenin signaling and Wnt-regulated stem cells in homeostatic, regenerative and cancer contexts of the intestines, stomach, skin, and liver. We also examine the sources of Wnt ligands that form part of the stem cell niche. Despite the diversity in characteristics of various tissue stem cells, the role(s) of Wnt/β-catenin signaling is generally coherent in maintaining stem cell fate and/or promoting proliferation. It is also likely to play similar roles in cancer stem cells, making the pathway a salient therapeutic target for cancer. While promising progress is being made in the field, deeper understanding of the functions and signaling mechanisms of the pathway in individual epithelial tissues will expedite efforts to modulate Wnt/β-catenin signaling in cancer treatment and tissue regeneration.
Collapse
Affiliation(s)
- Si Hui Tan
- A*STAR Institute of Medical Biology, Singapore
| | - Nick Barker
- A*STAR Institute of Medical Biology, Singapore; Kanazawa University, Kanazawa, Japan; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
19
|
Sominsky S, Shterzer N, Jackman A, Shapiro B, Yaniv A, Sherman L. E6 proteins of α and β cutaneous HPV types differ in their ability to potentiate Wnt signaling. Virology 2017; 509:11-22. [DOI: 10.1016/j.virol.2017.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 01/29/2023]
|
20
|
Armas-López L, Zúñiga J, Arrieta O, Ávila-Moreno F. The Hedgehog-GLI pathway in embryonic development and cancer: implications for pulmonary oncology therapy. Oncotarget 2017; 8:60684-60703. [PMID: 28948003 PMCID: PMC5601171 DOI: 10.18632/oncotarget.19527] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Transcriptional regulation and epigenetic mechanisms closely control gene expression through diverse physiological and pathophysiological processes. These include the development of germ layers and post-natal epithelial cell-tissue differentiation, as well as, involved with the induction, promotion and/or progression of human malignancies. Diverse studies have shed light on the molecular similarities and differences involved in the stages of embryological epithelial development and dedifferentiation processes in malignant tumors of epithelial origin, of which many focus on lung carcinomas. In lung cancer, several transcriptional, epigenetic and genetic aberrations have been described to partly arise from environmental risk factors, but ethnic genetic predisposition factors may also play a role. The classification of the molecular hallmarks of cancer has been essential to study and achieve a comprehensive view of the interaction networks between cell signaling pathways and functional roles of the transcriptional and epigenetic regulatory mechanisms. This has in turn increased understanding on how these molecular networks are involved in embryo-layers and malignant diseases development. Ultimately, a major biomedicine goal is to achieve a thorough understanding of their roles as diagnostic, prognostic and treatment response indicators in lung oncological patients. Recently, several notable cell-signaling pathways have been studied based on their contribution to promoting and/or regulating the engagement of different cancer hallmarks, among them genome instability, exacerbated proliferative signaling, replicative immortality, tumor invasion-metastasis, inflammation, and immune-surveillance evasion mechanisms. Of these, the Hedgehog-GLI (Hh) cell-signaling pathway has been identified as a main molecular contribution into several of the abovementioned functional embryo-malignancy processes. Nonetheless, the systematic study of the regulatory epigenetic and transcriptional mechanisms has remained mostly unexplored, which could identify the interaction networks between specific biomarkers and/or new therapeutic targets in malignant tumor progression and resistance to lung oncologic therapy. In the present work, we aimed to revise the most important up-to-date experimental and clinical findings in biology, embryology and cancer research regarding the Hh pathway. We explore the potential control of the transcriptional-epigenetic programming versus reprogramming mechanisms associated with its Hh-GLI cell signaling pathway members. Last, we present a summary of this information to systematically integrate the Hh signaling pathway to identify and propose novel compound strategies or better oncological therapeutic schemes for lung cancer patients.
Collapse
Affiliation(s)
- Leonel Armas-López
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES) Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics And Lung Diseases Laboratory (UNAM-INER), Mexico City, México
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Research Unit, Mexico City, México
| | - Oscar Arrieta
- Instituto Nacional de Cancerología (INCAN), Thoracic Oncology Clinic, Mexico City, México
| | - Federico Ávila-Moreno
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES) Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics And Lung Diseases Laboratory (UNAM-INER), Mexico City, México
- Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Research Unit, Mexico City, México
| |
Collapse
|
21
|
Bakshi A, Chaudhary SC, Rana M, Elmets CA, Athar M. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond. Mol Carcinog 2017; 56:2543-2557. [PMID: 28574612 DOI: 10.1002/mc.22690] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
Abstract
Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10-100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs.
Collapse
Affiliation(s)
- Anshika Bakshi
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Sandeep C Chaudhary
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mehtab Rana
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Craig A Elmets
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
22
|
p40 in Conjunction With CK20 and E-Cadherin Distinguishes Primary Adnexal Neoplasms of the Skin. Appl Immunohistochem Mol Morphol 2017; 24:414-21. [PMID: 26180934 DOI: 10.1097/pai.0000000000000204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although basal cell carcinomas (BCC) show typical histomorphologic features, they sometimes remain difficult in distinction from benign adnexal skin tumors of follicular origin like trichoepithelioma (TE) or trichoblastoma (TB). Consequently, an immunohistochemical marker panel separating described entities would be helpful in clinical routine. Thus, we stained 22 skin lesions (BCC, TE, and TB) against β-catenin, CK20, E-cadherin, p40, and p63. The staining pattern was described and quantified using an immunohistochemical score. Although p40 and p63 revealed a strong staining intensity of all skin lesions without distinction between BCC and benign lesions (P=1.000), established Merkel cell marker CK20 illustrated a loss of staining in BCC compared with TE and TB (P=0.007). In contrast, BCC exhibited an increased expression of E-cadherin in relation to TE and TB (P=0.009). Single application of CK20 or E-cadherin could predict diagnosis of BCC in 81.8% or 72.7%, respectively. Combining consecutive staining of E-cadherin and CK20 could even enhance specificity toward diagnosis of TE or TB. Hence, findings of our study imply that sequential staining of CK20 and E-cadherin prevents false-positive classification of BCC. Furthermore, our study demonstrated that p40 exhibits the same staining pattern in BCC, TE, and TB. Therefore, p40 might replace p63 equivalently establishing diagnosis of primary adnexal neoplasms of the skin in the form of BCC as well as benign adnexal tumors. As a result, the depicted immunohistochemical marker panel may be applied for adnexal skin neoplasms as a diagnostic adjunct especially in surgically challenging body regions.
Collapse
|
23
|
Asić K. Dominant mechanisms of primary resistance differ from dominant mechanisms of secondary resistance to targeted therapies. Crit Rev Oncol Hematol 2016; 97:178-96. [DOI: 10.1016/j.critrevonc.2015.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 06/18/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
|
24
|
Tilley C, Deep G, Agarwal R. Chemopreventive opportunities to control basal cell carcinoma: Current perspectives. Mol Carcinog 2015; 54:688-97. [PMID: 26053157 DOI: 10.1002/mc.22348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/09/2015] [Accepted: 05/15/2015] [Indexed: 11/10/2022]
Abstract
Basal cell carcinoma (BCC) is a major health problem with approximately 2.8 million new cases diagnosed each year in the United States. BCC incidences have continued to rise due to lack of effective chemopreventive options. One of the key molecular characteristics of BCC is the sustained activation of hedgehog signaling through inactivating mutations in the tumor suppressor gene patch (Ptch) or activating mutations in Smoothened. In the past, several studies have addressed targeting the activated hedgehog pathway for the treatment and prevention of BCC, although with toxic effects. Other studies have attempted BCC chemoprevention through targeting the promotional phase of the disease especially the inflammatory component. The compounds that have been utilized in pre-clinical and/or clinical studies include green and black tea, difluoromethylornithine, thymidine dinucleotide, retinoids, non-steroidal anti-inflammatory drugs, vitamin D3, and silibinin. In this review, we have discussed genetic and epigenetic modifications that occur during BCC development as well as the current state of BCC pre-clinical and clinical chemoprevention studies.
Collapse
Affiliation(s)
- Cynthia Tilley
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado, Aurora, Colorado
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado, Aurora, Colorado
| |
Collapse
|
25
|
Koguchi-Yoshioka H, Wataya-Kaneda M, Nakano H, Tanemura A, Akasaka E, Sawamura D, Katayama I. Severe scoliosis associated with the WNT10A mutation. J Dermatol 2015; 42:322-3. [PMID: 25571904 DOI: 10.1111/1346-8138.12762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hanako Koguchi-Yoshioka
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Saito T, Mitomi H, Imamhasan A, Hayashi T, Kurisaki-Arakawa A, Mitani K, Takahashi M, Kajiyama Y, Yao T. PTCH1 mutation is a frequent event in oesophageal basaloid squamous cell carcinoma. Mutagenesis 2014; 30:297-301. [PMID: 25395299 DOI: 10.1093/mutage/geu072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Basaloid squamous cell carcinoma (BSCC) is a rare and poorly differentiated variant of typical squamous cell carcinoma, and is characterised in part by activation of the Wnt signalling pathway. We previously demonstrated that constitutive activation of the Wnt signalling pathway by epigenetic silencing of secreted frizzled-related protein 4 (SFRP4) is observed in this tumour. Increasing evidence shows that the Wnt signalling pathway cross-talks with other developmental pathways, including the Hedgehog (HH) pathway. The HH pathway is stimulated by inactivating mutations of PTCH1, which have a well-described oncogenic role in basal cell carcinoma (BCC) of the skin. We employed polymerase chain reaction followed by direct sequencing to detect inactivating mutations of PTCH1 using archival tissue samples of 30 oesophageal BSCCs. The frequency of PTCH1 mutation was compared to that of Wnt component genes that we reported previously. We found PTCH1 mutations in 53.3% (16/30) of cases, revealing T1195S as a hotspot mutation. This frequency is quite high for cancers other than BCC of the skin, and PTCH1 mutations were almost mutually exclusive with mutations in APC, Axin1 and Axin2. Considering the fact that activation of Wnt signalling via down-regulation of APC and SFRP5 due to promoter methylation is observed in BCC of the skin, Wnt signalling activation in oesophageal BSCC might be a secondary effect of the PTCH1-inactivating mutations. These findings suggest that the HH and Wnt pathways coordinately contribute to tumourigenesis in oesophageal BSCC. Furthermore, this study provides a potential therapeutic application for HH pathway inhibitors in oesophageal BSCC with highly malignant potential.
Collapse
Affiliation(s)
- Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan,
| | - Hiroyuki Mitomi
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan, Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, Kitakobayashi 880, Mibumachi, Shimotsugagun, Tochigi, 321-0293, Japan and
| | - Abdukadir Imamhasan
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Aiko Kurisaki-Arakawa
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Keiko Mitani
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Michiko Takahashi
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshiaki Kajiyama
- Department of Surgery, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
27
|
B-RAF mutation and accumulated gene methylation in aberrant crypt foci (ACF), sessile serrated adenoma/polyp (SSA/P) and cancer in SSA/P. Br J Cancer 2014; 112:403-12. [PMID: 25314065 PMCID: PMC4453443 DOI: 10.1038/bjc.2014.545] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/17/2014] [Accepted: 09/20/2014] [Indexed: 01/27/2023] Open
Abstract
Background: Sessile serrated adenomas/polyps (SSA/Ps) are a putative precursor of colon cancer with microsatellite instability (MSI). However, the developmental mechanism of SSA/P remains unknown. We performed genetic analysis and genome-wide DNA methylation analysis in aberrant crypt foci (ACF), SSA/P, and cancer in SSA/P specimens to show a close association between ACF and the SSA/P-cancer sequence. We also evaluated the prevalence and number of ACF in SSA/P patients. Methods: ACF in the right-side colon were observed in 36 patients with SSA/Ps alone, 2 with cancers in SSA/P, and 20 normal subjects and biopsied under magnifying endoscopy. B-RAF mutation and MSI were analysed by PCR–restriction fragment length polymorphism (RFLP) and PCR–SSCP, respectively, in 15 ACF, 20 SSA/P, and 2 cancer specimens. DNA methylation array analysis of seven ACF, seven SSA/P, and two cancer in SSA/P specimens was performed using the microarray-based integrated analysis of methylation by isochizomers (MIAMI) method. Results: B-RAF mutations were frequently detected in ACF, SSA/P, and cancer in SSA/P tissues. The number of methylated genes increased significantly in the order of ACF<SSA/P<cancer. The most commonly methylated genes in SSA/P were PQLC1, HDHD3, RASL10B, FLI1, GJA3, and SLC26A2. Some of these genes were methylated in ACF, whereas all genes were methylated in cancers. Immunohistochemistry revealed their silenced expression. Microsatellite instability and MLH1 methylation were observed only in cancer. The prevalence and number of ACF were significantly higher in SSA/P patients than in normal subjects. A significant correlation was seen between the numbers of SSA/P and ACF in SSA/P patients. Conclusions: Our results suggest that ACF are precursor lesions of the SSA/P-cancer sequence in patients with SSA/P, where ACF arise by B-RAF mutation and methylation of some of the six identified genes and develop into SSA/Ps through accumulated methylation of these genes.
Collapse
|
28
|
Gurgel CAS, Buim MEC, Carvalho KC, Sales CBS, Reis MG, de Souza RO, de Faro Valverde L, de Azevedo RA, Dos Santos JN, Soares FA, Ramos EAG. Transcriptional profiles of SHH pathway genes in keratocystic odontogenic tumor and ameloblastoma. J Oral Pathol Med 2014; 43:619-26. [PMID: 24930892 DOI: 10.1111/jop.12180] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sonic hedgehog (SHH) pathway activation has been identified as a key factor in the development of many types of tumors, including odontogenic tumors. Our study examined the expression of genes in the SHH pathway to characterize their roles in the pathogenesis of keratocystic odontogenic tumors (KOT) and ameloblastomas (AB). METHODS We quantified the expression of SHH, SMO, PTCH1, SUFU, GLI1, CCND1, and BCL2 genes by qPCR in a total of 23 KOT, 11 AB, and three non-neoplastic oral mucosa (NNM). We also measured the expression of proteins related to this pathway (CCND1 and BCL2) by immunohistochemistry. RESULTS We observed overexpression of SMO, PTCH1, GLI1, and CCND1 genes in both KOT (23/23) and AB (11/11). However, we did not detect expression of the SHH gene in 21/23 KOT and 10/11 AB tumors. Low levels of the SUFU gene were expressed in KOT (P = 0.0199) and AB (P = 0.0127) relative to the NNM. Recurrent KOT exhibited high levels of SMO (P = 0.035), PTCH1 (P = 0.048), CCND1 (P = 0.048), and BCL2 (P = 0.045) transcripts. Using immunolabeling of CCND1, we observed no statistical difference between primary and recurrent KOT (P = 0.8815), sporadic and NBCCS-KOT (P = 0.7688), and unicystic and solid AB (P = 0.7521). CONCLUSIONS Overexpression of upstream (PTCH1 and SMO) and downstream (GLI1, CCND1 and BCL2) genes in the SHH pathway leads to the constitutive activation of this pathway in KOT and AB and may suggest a mechanism for the development of these types of tumors.
Collapse
|
29
|
Stamatelli A, Vlachou C, Aroni K, Papassideri I, Patsouris E, Saetta AA. Epigenetic alterations in sporadic basal cell carcinomas. Arch Dermatol Res 2014; 306:561-9. [PMID: 24573469 DOI: 10.1007/s00403-014-1454-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/14/2014] [Accepted: 02/03/2014] [Indexed: 12/11/2022]
Abstract
Basal cell carcinoma (BCC) is the most common malignant human neoplasm characterized by slow growth and virtual absence of metastases. Recently, it has become evident that along with genetic mutations epigenetic alterations play a key role in the pathogenesis of human cancer. We searched for promoter methylation of hMLH1, RASSF1A, DAPK, APC, DCR1 and DCR2 genes and BRAF mutations in BCCs in association with the clinicopathological parameters and the histological subtypes of the tumours. Fifty-two BCCs, 17 FFPE along with 35 fresh tissue samples with matching normal tissues for 26 cases were analyzed by methylation-specific PCR to assess the methylation status of hMLH1, RASSF1A, DAPK, APC, DCR1 and DCR2 genes after sodium bisulfite treatment of the tumour and normal DNA. hMLH1 and DCR1 gene expression was investigated by immunohistochemistry. BRAF mutations were studied by high resolution melting analysis. Methylation was detected at a variable frequency of 44, 33, 32.5, 32 and 14 % of DCR2, APC, DCR1, RASSF1 and DAPK promoters, respectively, whereas methylation of hMLH1 promoter was absent. No BRAF mutations were found. There was no correlation between the frequency of the promoter methylation of the above-mentioned genes and the clinicopathological features or the histological subtypes of the tumours. The relatively high frequency of RASSF1A, DCR1, DCR2 and APC promoter methylation may imply that methylation constitutes an important pathway in the tumourigenesis of BCC that could provide new opportunities in developing epigenetic therapies for BCC patients. Nevertheless, further studies are needed to establish the above-mentioned hypothesis.
Collapse
Affiliation(s)
- Angeliki Stamatelli
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, 11527, Athens, Greece,
| | | | | | | | | | | |
Collapse
|
30
|
Perdigoto CN, Valdes VJ, Bardot ES, Ezhkova E. Epigenetic regulation of epidermal differentiation. Cold Spring Harb Perspect Med 2014; 4:4/2/a015263. [PMID: 24492849 DOI: 10.1101/cshperspect.a015263] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In a cell, the chromatin state is controlled by the highly regulated interplay of epigenetic mechanisms ranging from DNA methylation and incorporation of different histone variants to posttranslational modification of histones and ATP-dependent chromatin remodeling. These changes alter the structure of the chromatin to either facilitate or restrict the access of transcription machinery to DNA. These epigenetic modifications function to exquisitely orchestrate the expression of different genes, and together constitute the epigenome of a cell. In the skin, different epigenetic regulators form a regulatory network that operates to guarantee skin stem cell maintenance while controlling differentiation to multiple skin structures. In this review, we will discuss recent findings on epigenetic mechanisms of skin control and their relationship to skin pathologies.
Collapse
Affiliation(s)
- Carolina N Perdigoto
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | | | | | | |
Collapse
|
31
|
Expanded access study of patients with advanced basal cell carcinoma treated with the Hedgehog pathway inhibitor, vismodegib. J Am Acad Dermatol 2014; 70:60-9. [DOI: 10.1016/j.jaad.2013.09.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 11/23/2022]
|